
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Morpheus: A Run Time Compiler and Optimizer for
Software Data Planes

Sebastiano Miano, Alireza Sanaee, Fulvio Risso, Gábor Rétvári, Gianni Antichi

Abstract—State-of-the-art approaches to design, develop and
optimize software packet-processing programs are based on static
compilation: the compiler’s input is a description of the forwarding
plane semantics and the output is a binary that can accommodate
any control plane configuration or input traffic.

In this paper, we demonstrate that tracking control plane
actions and packet-level traffic dynamics at run time opens up
new opportunities for code specialization. We present Morpheus,
a system working alongside static compilers that continuously
optimizes the targeted networking code. We introduce a number
of new techniques, from static code analysis to adaptive code
instrumentation, and we implement a toolbox of domain specific
optimizations that are not restricted to a specific data plane
framework or programming language. We apply Morpheus to
several systems, from eBPF and DPDK programs including
Katran, Meta’s production-grade load balancer to container
orchestration solutions such a Kubernets. We compare Morpheus
to state-of-the-art optimization frameworks and show that it can
bring up to 2x throughput improvement, while halving the 99th
percentile latency.

Index Terms—Data Plane Compilation, LLVM, eBPF, XDP,
DPDK

I. INTRODUCTION

SOFTWARE Data Planes, packet processing programs
implemented on commodity servers, are widely adopted

in real deployments [2]–[9]. Since data plane programs tend
to be performance-critical, the code is usually transformed
through a sequence of offline optimization steps (e.g., inlining,
loop unrolling, branch elimination, or vectorization [10], [11])
during the compilation process [12], [13]. These are mainly
static transformations, independent of the actual input the code
will process in operation, as this is unknown until then [14],
[15]. Thus, the resulting code is generic, as it contains logic
for protocols and features that may never be triggered in a
deployment, performs costly memory loads to access values
that are only known at run time, and takes difficult-to-predict
branches conditioned on variable data.

This work was partially supported by the European Union under the
Italian National Recovery and Resilience Plan (NRRP) of NextGenerationEU,
partnership on “Telecommunications of the Future” (PE00000001 - program
“RESTART”) and by the NKFIH/OTKA Project #135606, the MTA-BME Infor-
mation Systems Research Group and the MTA-BME Network Softwarization
Research Group. Preliminary results were presented at ACM ASPLOS ’22 [1].
(Corresponding author: Sebastiano Miano).

Sebastiano Miano is with the Politecnico di Milano, 20158, Italy (email:
sebastiano.miano@polimi.it).

Alireza Sanaee is with the Queen Mary University of London, E1 4NS,
United Kingdom (email: a.sanaee@qmul.ac.uk).

Fulvio Risso is with Politecnico di Torino, 10129, Italy (email: ful-
vio.risso@polito.it).

Gábor Rétvári is with Budapest University of Technology and Economics
& Ericsson Research, 1111, Hungary (email: retvari@tmit.bme.hu).

Gianni Antichi is with Politecnico di Milano, 20158, Italy (email:
gianni.antichi@polimi.it).

Dynamic compilation, in contrast, enables program
optimization based on invariant data computed at run time and
produces code that is specialized to the input the program is
processing [15], [23], [24]. The idea is to continuously collect
run time data about program execution and then re-compile it
to improve performance. This is a well-known practice adopted
by generic programming languages (e.g., Java [15], JavaScript
[24], and C/C++ [23]) and often produces orders of magnitude
more efficient code as shown for data-caching services [16],
data mining [17] and databases [25], [26]. Unfortunately, this
is not the case for packet-processing programs [11], [18],
[22], since their performance critically depends on highly
dynamic domain-specific knowledge, such as traffic patterns,
match-action table content, and network configuration (§II).
Obtaining and tracking this knowledge efficiently is extremely
challenging: lightweight online tracing tools (e.g., Linux perf
[27]) are restricted to CPU performance counters, whereas
capturing all domain-specific information requires tracking
packet-level and instruction-level logs which is prohibitively
costly. As an example, GCC FDO instrumentation, when
applied in this context, may easily incur ∼900% mean
overhead [28]. Therefore, existing solutions tailored for the
networking domain (Table II) resort to offline profiling, which
requires operators to collect representative samples of data-
plane configuration and match-action tables from production
deployments and still completely miss out on dynamic traffic-
level insights. The main challenge we tackle in this paper is
unsupervised dynamic compilation for network code, which
captures just enough domain-specific knowledge to enable
efficient dynamic performance optimization, but inexpensive
enough to be run online, inside the data plane pipeline.

We present Morpheus, a system to optimize network code at
run time using domain-specific dynamic optimization tech-
niques. Morpheus operates in unsupervised mode: it does
not require any a priori knowledge about control plane
configuration or data plane traffic patterns. We discuss its design
challenges (§III), such as automatically tracking highly variable
input (e.g., inbound traffic) that may change tens, or hundreds
of millions times per second. We show that the required
profiling and tracing facilities, if implemented carelessly, can
easily nullify the performance benefit of code specialization.
We introduce several novel techniques; we leverage static
code analysis to build an understanding of the program
offline and propose a low-overhead adaptive instrumentation
mechanism to minimize the amount of data collected online.
Then, we invoke several dynamic optimization passes (e.g.,
dead code elimination, data-structure specialization, just-in-time
compilation, and branch injection) to specialize the code against
control plane actions and data plane traffic patterns. Finally, we

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

Name Domain
specific

Unsupervised
adaptation to
control plane
actions

Unsupervised
adaptation to
data plane
traffic

Data
plane
agnostic

Description

Bolt [16] ✗ - - ✓ Offline profile-guided optimizer for generic software code.
AutoFDO [17] ✗ - - ✓ Offline profile-guided optimizer for generic software code.
eSwitch [18] ✓ ✓ ✗ ✗ Policy-driven optimizer for DPDK-based OpenFlow software switches.
P5 [19] ✓ ✗ ✗ ✗ Policy-driven optimizer for P4/RMT packet-processing pipelines.
P2GO [20] ✓ ✗ ✗ ✗ Offline profile-guided optimizer for P4/RMT packet-processing pipelines.
PacketMill [21] ✓ ✗ ✗ ✗ Packet metadata management optimizer for DPDK software data planes.
NFReducer [22] ✓ ✗ ✗ ✓ Policy-driven optimizer for network function virtualization.
Morpheus ✓ ✓ ✓ ✓ Run time compiler and optimizer framework for arbitrary networking code.

TABLE I
A COMPARISON OF SOME POPULAR DYNAMIC OPTIMIZATION FRAMEWORKS AND MORPHEUS.

protect the consistency of the specialized code against changes
to input that is considered invariant by injecting guards (§IV).

Our implementation exploits the LLVM JIT compiler
toolchain to apply the above ideas at the LLVM Intermediate
Representation (IR) level in a generic fashion and separates data
plane specific code to several backend plugins to minimize
the effort in porting Morpheus to a new architecture (§V).
The code currently contains an eBPF and a DPDK/C plugin.
We apply Morpheus to a number of packet processing pro-
grams, including the production-grade L4 load balancer Katran
from Facebook and Kubernetes, the state-of-the-art container
orchestration system, using synthetic and real-world traffic
traces (§VI). Our results show that Morpheus can improve
the performance of the unoptimized (statically compiled)
eBPF application up to 94%, while reducing packet-processing
latency by up to 123% at the 99th percentile. Applying
Morpheus to a DPDK program, we increase performance by
up to 469%. We measured Morpheus against state-of-the-art
network code optimization frameworks such as ESwitch [18]
and PacketMill [21]: we show that Morpheus boosts the
throughput by up to 80% and 294%, respectively, compared
to existing work. Finally, we demonstrate that Morpheus
can successfully optimize the performance of the Kubernetes
Container Networking Interface (CNI) plugin used by cloud-
native applications.
Contributions In this paper, we:
• demonstrate that tracking packet-level dynamics opens up

new opportunities for network code specialization;
• design and implement Morpheus, a system working with

standard compilers to optimize network code at run time;
• extensively evaluated Morpheus by applying it to two

different I/O technologies (i.e., DPDK and eBPF), and a
number of programs including production-grade software;

• show the applicability of Morpheus to real-world environ-
ment such as Kubernetes container networking [29];

• share the code in open source to foster reproducibility [30]1.

II. THE CASE FOR DOMAIN-SPECIFIC OPTIMIZATIONS

State-of-the-art profile guided optimization tools (PGO), such
as Google’s AutoFDO [17], [31] and Facebook’s Bolt [16],

1A working version with latest updates is also available here: https:
//github.com/Morpheus-compiler/Morpheus

can dynamically rewrite the targeted code using execution
profiles recorded offline; e.g., by simplifying load instructions
or reordering basic blocks to speed up the most frequently
executed code paths. Fig.1a shows the single-core throughout
obtained when applying AutoFDO and Bolt combined (PGO)
to a sample DPDK firewall application [32], which performs
basic L2/L3/L4 packet processing followed by a lookup into
an access control list (ACL), over a stream of 64-byte packets
at 40Gb line rate (see §VI for the details of the configuration).
In line with the expectations [16], [17], [28], we managed to
improve the performance of the targeted code by a mere 4.2%.

The behavior of packet-processing code can, however, be
deeply influenced by specific metrics (e.g., match-action table
access patterns, table sizes and content) that cannot be tracked
with generic profiling mechanisms (i.e., Linux perf) used by
standard PGO tools. Lacking such domain-specific insight,
meaningful only in the packet processing context, generic
purpose PGO tools cannot be fully exploited for dynamically
optimizing network code [11], [18], [21], [22], [33].

To understand the potential of domain-specific optimizations,
we present a series of preliminary benchmarks using real
network code. We consider two applications: the DPDK sample
firewall discussed above and Katran [6], Facebook’s open-
source L4 eBPF/XDP load balancer.
The promise of policy-driven optimizations. Most data-
plane programs are developed as a single monolithic block
containing various features that might be activated depending
on the specific network configuration in use at any instance
of time. For example, many large-scale cloud deployments
still run on pure IPv4 and so the hypervisor switches would
never have to process IPv6 packets [34] or adopt a single
virtualization technology (VLAN/VxLAN/GRE/Geneve/GTP)
and so switches would never see other encapsulations in
operation [5], [35]. This implies that, depending on dynamic
input that is unknown at compile time, a huge body of unused
code gets assembled into the program, boosting code size and
causing excess branch prediction misses, negatively impacting
the overall performance [11], [22], [36], [37].

Removing unused code based on run time configuration
can have a profound effect on software performance. To show
this, we configured our firewall as a TCP signature-based
Intrusion Detection System (IDS), with only TCP wildcard
rules generated with ClassBench [38]. This opens up an

https://github.com/Morpheus-compiler/Morpheus
https://github.com/Morpheus-compiler/Morpheus

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

opportunity for optimization: all non-TCP packets can bypass
the ACL table, avoiding a wasteful lookup. Fig. 1b shows
the run time benefit of this optimization (under the Run time
configuration bar) for a synthetic input traffic trace where
only about 10% of the packets are UDP. Although around
90% of the traffic still has to undergo an ACL lookup, just
avoiding this costly operation for a small percentage of traffic
increases performance with about 4.7%, without changing the
semantic in any way. In many practical scenarios, like DDoS
blocking, security groups [29], [39] or whitelist-based access
control, most firewall rules are fully-specified; for instance, in
the official Stanford ruleset [40] on average ∼45% of the rules
are purely exact-matching. This opens up another dynamic
optimization opportunity: add in front of the ACL an exact-
matching lookup table to sidestep the costly wildcard lookup.
The result in Fig. 1b (under the Table specialization bar) shows
a further ∼8% performance improvement.

A similar effect is visible with the load-balancer (Fig. 1c):
configuring Katran as an HTTP load balancer [41], [42] allows
to dynamically remove all the branches and code unrelated to
IPv4/TCP processing, which reduces the number of instructions
by ∼58% (as reported by the Linux perf tool), yielding
∼17,1% decrease in the number of L1 instruction cache-
load misses. Better cache locality then translates into ∼12%
performance improvement (from 4.09 Mpps to 4.69 Mpps).
Takeaway #1: Specializing networking code for slowly chang-
ing input, like flow-rules, ACLs and control plane policies,
substantially improves the performance of software data planes.
The need for tracking packet-level dynamics. The potential
to optimize code for specific network configurations has been
explored in prior work, for OpenFlow [18], P4 software [20],
[33] and hardware targets [19], network functions [22], and
programmable switches [21] (see Table I). In order to maximize
performance, however, we need to go beyond specializing the
code for relatively stable run time configuration and apply
optimizations at the packet level.

Consider the DPDK firewall application. We installed 1000
wildcard rules and generated highly skewed traffic, so that from
the thousand active unique 5-tuple flows only 5% accounts for
95% of the traffic. This opens up the opportunity to inline the
match-action logic for the recurring rules. As the results show
(Fig. 1b, under the Fast Path bar), we obtain ∼42% performance
improvement with this simple traffic-dependent optimization.
With the eBPF load balancer the effect is also quite visible:
configuring 10 Virtual IPs (VIP) (both TCP and UDP), each
with hundred different back-end servers, a similarly skewed
input traffic trace presents the same opportunity to inline code,
yielding ∼24% performance edge (Fig.1c).
Takeaway #2: For maximum performance, networking code
must be specialized with respect to inbound traffic patterns,
despite the potentially daunting packet-level dynamics.

III. CHALLENGES

Static compilation performs optimizations that depend only
on compile-time constants: it does not optimize variables whose
value is invariant during the execution of the program but
remain unknown until then. Dynamic compilation, in contrast,

 0

 4

 8

 12

 16

 20

Firewall (DPDK)

(a)

T
h
ro

u
g
h
p
u
t
(M

p
p
s
)

+4.2%

Baseline
PGO
Table Specialization

Run time Configuration
Fast Path

Firewall (DPDK)
 0

 4

 8

 12

 16

 20

+7.9%

+42.2%

+4.7%

(b)

Load Balancer (eBPF)
 0

 1

 2

 3

 4

 5

 6

+7.9%

+42.2%

+4.7% +12.2%

+23.9%

(c)

T
h
ro

u
g
h
p
u
t
(M

p
p
s
)

Fig. 1. (a) Impact of AutoFDO+Bolt (PGO) and performance breakdown
when applying a set of domain specific optimizations to both (b) the DPDK
firewall and (c) the Facebook’s Katran eBPF load balancer. We were unable
to run PGO on the latter, since existing tools do not support eBPF targets.

enables specializing the code with respect to invariant run
time data [23]. This opens up a broad toolbox of optimization
opportunities, to propagate, fold and inline constants, remove
branches and eliminate code never triggered in operation,
or even to completely sidestep costly match-action table
processing. The unsupervised optimization of networking code,
however, presents a number of unique challenges:
Challenge #1: Low-overhead run time instrumentation.
Unsupervised dynamic optimization rests on the assumption
that program variables remaining invariant for an extended
period of time are promptly detected. This is the job of profiling
tools. Although low-overhead solutions exist [27], [43]–[45],
they track high-level code behavior information such as cache
events, branch misses or memory accesses which is not enough
for packet-processing code (§II). Less lightweight and more
accurate tools [46]–[48], instead, are not practical to be used at
data-plane time scales: recording at run time instruction-level
logs for code that processes potentially tens of millions of
packets per second can introduce an overhead that makes the
subsequent optimization pointless. For example, GCC FDO
instrumentation can easily incur ∼900% mean overhead [28].
We tackle this challenge in Morpheus by using static code
analysis to understand the structure of the program offline
(§IV-A) and leveraging an adaptive instrumentation mechanism
to minimize the amount of data that is collected online (§IV-B).
Challenge #2: Dynamic code generation. Once run time
profiling information is available, the dynamic compiler applies
domain-specific optimizations to specialize the code for that
profile. Here, code generation must integrate seamlessly into
the compiler toolchain, to avoid interference with the built-
in optimizations. Furthermore, a toolbox of domain-specific
optimization passes must be identified, which, when applied
to networking code, promise significant speedup (§IV-C).
Challenge #3: Consistency. The dynamically optimized data
plane is contingent on the assumption that the data considered
invariant during the compilation indeed remains so: any update
to such data would immediately invalidate the specialized code.
Here, the challenge is to guarantee data plane consistency under
any modification to the invariants on which the specialized code
relies. We tackle this challenge by injecting guards at critical
points in the code that allow the execution to fall back to the
generic unoptimized path whenever an invariant changes. Since
the performance burden on each packet, possibly taking several
guards during its journey, can be taxing, we introduce a guard

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

IR

Feedback

Loop

Compiler Runtime

Analysis
(Section 4.1)

1

Instrumentation
(Section 4.2)

2

Optimization
(Section 4.3)

3

Update
(Section 4.4)

4

Original

code

New optimized

code

Fig. 2. The Morpheus compiler pipeline.

elision heuristic to sidestep useless guards (§IV-C). To do so,
our static code analysis tool must have enough understanding
of the program to separate stateless from stateful code (§IV-C).
Finally, mechanisms are needed to atomically update the data
plane once the code is re-optimized for the new invariants
(§IV-D).

IV. MORPHEUS COMPILATION PIPELINE

We designed Morpheus with an ambitious goal: to build
a portable dynamic software data plane compilation and
optimization toolbox. The system architecture is shown in
Fig. 2. Morpheus accepts the input code at the Intermediate
Representation (IR) level. The pipeline is triggered periodically
at given time slots to readjust the code for possibly changed
traffic patterns and control plane updates. At each invocation,
the compiler performs an extensive offline code analysis to
understand the program control/data flow (see §IV-A) and
then reads a comprehensive set of instrumentation tables to
extract run time match-action table access patterns (see §IV-B).
Finally, Morpheus invokes a set of dynamic compilation passes
to specialize the code (see §IV-C) and then replaces the running
data plane with the new, optimized code on the fly (see §IV-D).

Below, we review the above steps in more detail. We use the
simplified main loop of the Katran XDP/eBPF load balancer [6]
as a running example (see Listing 1). The main loop is invoked
by the Linux XDP datapath for each packet. It starts by parsing
the L3 (line 4) and the L4 (line 5) header fields, using a special
case for QUIC traffic as this is not trivial to identify [49]. In
particular, QUIC flows are marked by a flag stored in the VIP
record (line 12); if the flag is set, then a special function is
called to deal with the QUIC protocol. Otherwise, a lookup
in the connection table (line 17) is done: in case of a match,
the ID of the backend assigned to the flow is returned; if no
connection tracking information is found, a new backend is
allocated and written back to the connection table (line 20).
Finally, the IP address of the backend associated with the
packet is read from the backend pool (line 24), the packet is
encapsulated (line 25) and sent out (line 26).

A. Code Analysis

To be able to specialize code, we need to have a good
understanding of the possible inputs it may receive during run
time. Networking code tends to be fairly simplistic in this
regard: commonly, the input consists of the context, which
in eBPF/XDP corresponds to the raw packet buffers, and the
content of match-action tables named maps in the eBPF world
(Listing 1). Since input traffic may be highly variable and
provides limited visibility into program operation, Morpheus
does not monitor this input directly [11]. Rather, it relies on
tracking the map access patterns and uses this information to

1 i n t p r o c e s s p a c k e t (p a c k e t p k t) {
2 u32 backend idx ;
3

4 p a r s e l 3 h e a d e r s (p k t) ;
5 p a r s e l 4 h e a d e r s (p k t) ;
6

7 v i p . v i p = p k t . d s t I P ;
8 v i p . p o r t = p k t . d s t P o r t ;
9 v i p . p r o t o = p k t . p r o t o ;

10 v i p i n f o = vip map . lookup (v i p) ;
11

12 i f (v i p i n f o −> f l a g s & F QUIC VIP) {
13 backend idx = h a n d l e q u i c () ;
14 go to send ;
15 }
16

17 backend idx = c o n n t a b l e . lookup (p k t) ;
18 i f (! backend idx) {
19 backend idx = a s s i g n t o b a c k e n d (p k t)
20 c o n n t a b l e . u p d a t e (pkt , backend idx) ;
21 }
22

23 send :
24 backend = backend poo l . lookup (backend idx) ;
25 e n c a p s u l a t e p k t (backend −> i p) ;
26 r e t u r n XDP TX ;
27 }

Listing 1. Simplified Katran main loop

indirectly reconstruct aggregate traffic dynamics and identify
invariants along frequently taken control flow branches.

In the first pass, Morpheus uses comprehensive statement-
level static code analysis to identify all map access sites in
the code, understand whether a particular access is a read
or a write operation, and reason about the way the result is
used later in the code. In particular, signature-based call site
analysis is used to track map lookup and update calls, and
then a combination of memory dependency analysis [50] and
alias analysis [51] is performed to match map lookups to map
updates. Maps that are never modified from within the data
plane are marked as read-only (RO) and the rest as read-write
(RW). Note that RO maps may still be modified from user
space, but such control-plane actions tend to occur at a coarser
timescale compared to RW maps, which may be updated with
each packet. This observation will then allow to apply more
aggressive optimizations to stateless code, which interacts only
with relatively stable RO maps, and resort to conservative
optimization strategies when specializing stateful code, which
depend on potentially highly variable RW maps.
Running example. Consider the Katran main loop (Listing 1).
Morpheus leverages the domain-specific knowledge, provided
by the eBPF data-plane plugin (§V-A), to identify map reads by
the map.lookup eBPF helper signature and map writes either
via map.update calls or a direct pointer dereference. Thus,
map backend_pool is marked as RO and conn_table
as RW. For vip_map, memory dependency analysis finds
an access via a pointer (line 12), but since this conditional
statement does not modify the entry and no other alias is found,
vip_map is marked as RO as well.

B. Instrumentation

In the second pass, Morpheus profiles the dynamics of
the input traffic by generating heatmaps of the maps’ access

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

Optimization Description Small RO maps Large RO maps RW maps Traffic-dependent
JIT (§IV-C1) inline frequently hit table entries into the code ✓ ✓ ✓ ✓
Table Elimination (§IV-C1) remove empty tables ✓ ✓ ✗ ✗
Constant Propagation (§IV-C2) substitute run time constants into expressions ✓ ✓ ✗ ✓
Dead Code Elimination (§IV-C3) remove branches that are not being used ✓ ✓ ✗ ✓
Data Structure Specialization (§IV-C4) adapt map implementation to the entries stored ✓ ✓ ✓ ✗
Branch Injection (§IV-C5) prevent table lookup for select inputs ✓ ✓ ✗ ✗
Guard Elision (§IV-C6) eliminate useless guards ✓ ✓ ✗ ✗

TABLE II
DYNAMIC OPTIMIZATIONS IN MORPHEUS. APPLICABILITY OF EACH OPTIMIZATION DEPENDS ON THE MAP SIZE, ACCESS PROFILE (RO/RW), AND

AVAILABILITY OF INSTRUMENTATION INFORMATION. NOTE THAT OPTIMIZATIONS MARKED AS ”TRAFFIC-DEPENDENT” CAN ALSO BE APPLIED, AT LEAST
PARTIALLY, WITHOUT PACKET-LEVEL INFORMATION (E.G., SMALL RO MAPS CAN ALWAYS JUST-IN-TIME COMPILED). FOR FULL EFFICIENCY, THESE

PASSES RELY ON TIMELY INSTRUMENTATION INFORMATION (E.G., TO JIT HEAVY HITTERS FROM A LARGE MAP AS A FAST-PATH).

patterns, so that the collected statistics can then be used to drive
the subsequent optimization passes. Specifically, Morpheus
uses a sketch to keep track of map accesses2, by storing
instrumentation data in a LRU (least-recently-used) cache
alongside each map and adapting the sampling rate along
several dimensions to control the run time cost of profiling.
The dimensions of adaptation are as follows. (1) Size: small
maps are unconditionally inlined into the code and hence
instrumentation is disabled for these maps. (2) Dynamics:
Morpheus does not record each map access, but rather it
samples just enough information to reliably detect heavy hitters
[53]. (3) Locality: instrumentation caches are per-CPU and
hence track the local traffic conditions at each execution thread
separately, i.e., specific to the RSS context. This improves per-
core heavy hitter detection in presence of highly asymmetric
traffic. (4) Scope: after identifying heavy hitters in the CPU
context, local instrumentation caches are run together to identify
global heavy hitters. (5) Context: if a map is accessed from
multiple call sites then each one is instrumented separately, so
that profiling information is specific to the calling context. (6)
Application-specific insight: the operator can manually disable
instrumentation for a map if it is clear from operational context
that access patterns prohibit any traffic-dependent optimization
(see Table II). Traffic-independent optimizations are still applied
by Morpheus in such cases.
Running example. Consider the vip_map in our sample
program, identified as an RO map in the first pass. In addition,
suppose that there are hundreds of VIPs associated with TCP
services stored in the vip_map and only a single one is
running QUIC, but the QUIC service receives the vast majority
of run time hits. Then, instrumentation will identify the QUIC
VIP as a heavy hitter and Morpheus will seize the opportunity
to specialize the subsequent QUIC call-path explicitly. Note
that this comes without direct traffic monitoring, only using
indirect traffic-specific instrumentation information.

C. Optimization Passes

The third step of the compilation pipeline is where all online
code transformations are applied. Before deploying any code
transformation, Morpheus has to protect the consistency of
the new specialized code against changes to the invariants the

2In implementing the sketch, we applied the same insights as those
uncovered in [52]. Specifically, for the eBPF implementation, instead of
invoking a dedicated helper function to obtain a random number for controlling
the instrumentation rate, we employ an additional ARRAY map containing a
collection of pre-generated random numbers.

optimizations depend on. To do this, Morpheus uses guards, a
standard mechanism used by dynamic compilers to guarantee
code consistency by injecting simple run time version checks at
specific points in the code [54]. When the control flow reaches
a guard, it atomically checks if the version of the guard is the
same as the version of the optimized code; if yes, execution
jumps to the optimized version, otherwise it falls back to the
original code (“deoptimization”). Below, we describe all the
various run time optimizations currently applied by Morpheus;
see Table II for a summary.

1) Just-in-time compilation (JIT): Empirical evidence (see
§II) suggests that table lookup is a particularly taxing operation
for software data planes. This is because certain match-action
table types (e.g., LPM or wildcard), that are relatively simple in
hardware, are notoriously expensive to implement in software
[55]. Therefore, Morpheus specializes tables at run time
with respect to their content and dynamic access patterns,
as learned in the instrumentation pass. Specifically, empty
maps are completely removed, small maps are unconditionally
just-in-time (JIT) compiled into equivalent code, and larger
maps are preceded by a similar JIT compiled fast-path cache,
which is in charge of handling the heavy hitters. Note that
the consistency of the the fast-path cache must be carefully
protected against potential changes made to the specialized
map entries; Morpheus places guards into the code to ensure
this (see later).
Running example. Consider again Listing 1 and suppose
that there are only two VIPs configured in the vip_map.
Being an exact-matching hash it is trivial to compile the
vip_map into an “if-then-else” statement, representing each
distinct map key as a separate branch. To do so, Morpheus
uses the insights from the code analysis phase to discover
that relevant fields in the lookup are the destination address
(pkt.dstIP), port (pkt.dstPort) and the IP protocol
(pkt.proto). Then, for each entry in the map, it builds a
separate “if” conditional to compare the entry’s fields against
the relevant packet header fields and chains these with “else”
blocks. Since the instrumentation and the just-in-time compiled
map are specific to unique combinations of destination address/
port and protocol, the lookup semantics is correctly preserved
even for longest prefix matching (LPM) caches and wildcard
lookup.

2) Constant propagation: Specializing a table does not only
benefit the performance of the lookup process but has far
reaching consequences for the rest of the code. This is because
a specialized table contains all the constants (keys and values)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

rnd = get_random();
if (rnd < map_sample_rate)
instr_cache.update(pkt);

if (map.version == v1)
goto opt;

else
goto origin;

original codeoriginal code

map.lookup(key)map.lookup(key)

map_jit.lookup(key)map_jit.lookup(key)miss

hit

origin opt

original codeoriginal code

map_jit.lookup(key)map_jit.lookup(key)

original codeoriginal code

optimized codeoptimized code

original path
optimized path
instrumentation
guard
jitted table

map.lookup(key)map.lookup(key)

map_jit.lookup(key)map_jit.lookup(key)

original codeoriginal code

optimized codeoptimized code

rnd = get_random();
if (rnd < map_sample_rate)
instr_cache.update(pkt);

miss

hit

(a) Read-Write Table (b) Large Read-Only Table (c) Small Read-Only Table(a) Read-Write table

rnd = get_random();
if (rnd < map_sample_rate)
instr_cache.update(pkt);

if (map.version == v1)
goto opt;

else
goto origin;

original codeoriginal code

map.lookup(key)map.lookup(key)

map_jit.lookup(key)map_jit.lookup(key)miss

hit

origin opt

original codeoriginal code

map_jit.lookup(key)map_jit.lookup(key)

original codeoriginal code

optimized codeoptimized code

original path
optimized path
instrumentation
guard
jitted table

map.lookup(key)map.lookup(key)

map_jit.lookup(key)map_jit.lookup(key)

original codeoriginal code

optimized codeoptimized code

rnd = get_random();
if (rnd < map_sample_rate)
instr_cache.update(pkt);

miss

hit

(a) Read-Write Table (b) Large Read-Only Table (c) Small Read-Only Table(b) Large Read-Only table

rnd = get_random();
if (rnd < map_sample_rate)
instr_cache.update(pkt);

if (map.version == v1)
goto opt;

else
goto origin;

original codeoriginal code

map.lookup(key)map.lookup(key)

map_jit.lookup(key)map_jit.lookup(key)miss

hit

origin opt

original codeoriginal code

map_jit.lookup(key)map_jit.lookup(key)

original codeoriginal code

optimized codeoptimized code

original path
optimized path
instrumentation
guard
jitted table

map.lookup(key)map.lookup(key)

map_jit.lookup(key)map_jit.lookup(key)

original codeoriginal code

optimized codeoptimized code

rnd = get_random();
if (rnd < map_sample_rate)
instr_cache.update(pkt);

miss

hit

(a) Read-Write Table (b) Large Read-Only Table (c) Small Read-Only Table(c) Small Read-Only table
Fig. 3. Morpheus handles the optimizations and provide code consistency mechanisms that are table-dependent.

inlined, which makes it possible to propagate these constants
to the surrounding code so to inline memory accesses. In
Morpheus, constant propagation opportunistically extends to
larger maps that cannot be wholly just-in-time compiled: if a
certain table field is found to be constant across all entries, then
it is also inlined into the surrounding code. This optimization is
thereby two-faceted: it can be used to specialize the code with
respect to the inbound traffic (traffic-dependent, former case)
but can also be applied without packet-level information (traffic-
independent, the latter case). Morpheus does not implement
constant propagation itself; rather, it relies on the underlying
compiler toolchain to perform this pass.
Running example. Suppose there are only two backends in the
backend_pool. Here, the map lookup (line 24) is rewritten
into an “if-then-else” statement, with two branches for each
backend. Correspondingly, in each branch the value of the
backend variable is constant, which allows to save the costly
memory dereference backend->ip (line 25) by inlining the
backend IP address right into the specialized code.

3) Dead code elimination: Depending on the specific
configuration, a large portion of code may sit unused in memory
at any point in time. Such “dead code” can be found using
a combination of static code analysis and the instrumentation
information obtained from the previous pass. Upon detection,
Morpheus removes all dead code on the optimized code path.
As previously, this operation is outsourced to the compiler.
Running example. Consider the vip_map lookup site
(line 10) and suppose that there are no QUIC services
configured. As a consequence, the vip_info->flags is
identical across all the entries in the vip_map and the constant
propagation pass inlines this constant into the subsequent condi-
tional (line 10). Thus, the condition vip_info->flags &
F_QUIC_VIP always evaluates to false and the subsequent
branch can be safely removed.

4) Data Structure Specialization: Morpheus adapts the
layout, size and lookup algorithm of a table against its content
at run time. For example, if all entries share the same prefix
length in an LPM map, then a much faster exact-matching cache
[18] can be used. This is done by first associating a backend-
specific cost function with each applicable representation (this
can be automatically inferred using static analysis and symbolic
execution [16], [56]), generate the expected cost of each

candidate, and finally implement the table that minimizes the
cost.

5) Branch Injection: This pass applies to the cases when
certain fields take only few possible values in a table, which
makes it possible to eliminate subsequent code that handles
the rest of the values. This optimization was used in §II to
sidestep the ACL lookup for UDP packets in the firewall use
case: if we observe that the “IP protocol” field can have only
a single value in the ACL (e.g., TCP), then we can inject a
conditional statement before the ACL lookup to check if the
IP protocol field in a packet is TCP, use symbolic execution
to track the use of this value throughout the resultant branch,
and invoke dead code elimination to remove the useless ACL
lookup on the non-TCP “else” branch.

6) Guard elision: As discussed before, Morpheus uses
guards to protect the consistency of the optimized code.
Since each packet may need to pass multiple checks while
traversing the datapath, guards may introduce non trivial run
time overhead [57]. To mitigate this, Morpheus heuristically
eliminates as many guards as possible; this is achieved by
using different schemes depending if changes to the code are
made from the control plane or from the data-plane itself, as
in the case when a program implements a stateful network
function.
Handling control plane updates. Theoretically, each table
should be protected by a guard when the contents are modified
from the control plane. This would require packets to perform
one costly guard check for each table. To reduce this overhead,
Morpheus collapses all table-specific guards protecting against
control plane updates into a single program-level guard, injected
at the program entry point. Once an RO map gets updated by
the control plane, the program-level guard directs all incoming
packets to the original (unoptimized) datapath until the next
compilation cycle kicks in to re-optimize the code with respect
to the new table content.
Handling updates within the data plane. The optimized
datapath must be protected from data-plane updates as well,
which requires an explicit guard at all access sites for RW
maps. If the guard tests valid then a query is made into the
just-in-time compiled fast-path map cache and, on cache hit,
the result is used in the subsequent code. Once a modification
is made to the map from inside the data plane, the guard is
invalidated and map lookup falls back to the original map.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

Fig. 3 presents a breakdown of the strategies Morpheus uses
to protect the consistency of optimized code. For RW maps
(Fig. 3a), first an instrumentation cache is inlined at the access
sites, followed by a guard that protects the just-in-time compiled
fast-path against data-plane updates. Note that the constant
propagation and dead code elimination passes are suppressed,
since these passes may modify the code after the map lookup
and the guard does not protect these optimizations. In contrast,
RO map lookups (Fig. 3b and Fig. 3c) elide the guard, because
only control-plane updates could invalidate the optimizations
in this case but these are covered by the program-level guard.
RO maps are specialized more aggressively than RW maps, by
enabling all optimization passes. Finally, additional overhead
can be shaved off for small RO tables by removing the fall-back
map all together (Fig. 4c).
Running example. Once static code analysis confirms that
the vip_map and backend_pool maps are RO, Morpheus
opportunistically eliminates the corresponding guards at the
call site. This then implies that, as long as the VIPs and the
backend pool are invariant, the optimized code elides the guard.
Since the conn_table map is RW, it is protected with a
specific guard at the call site (line 17). Thus, the specialized
map is used only as long as the connection tracking module’s
state remains constant; once a new flow is introduced into
conn_table (line 20) the specialized code is immediately
invalidated by bumping the data-plane version. This does not
invalidate all optimizations: as long as the rest of the (RO) maps
are not updated by the control plane, the program-level guard
remains valid and the corresponding RO map specializations
still apply.

D. Update

Upon invocation, Morpheus executes the above passes to
create the optimized datapath and uses the native compiler
toolchain to transform the optimized code to target native
code. Meanwhile, control plane updates are temporarily queued
without being processed. This allows the “old” code to process
packets without any disruption while the optimization takes
place. Once compilation is finished, the optimized code is
injected into the data path, the program-level guard is updated
[58] and the outstanding table updates are executed.

V. IMPLEMENTATION

Morpheus is implemented in about 6000 lines of C++
code and it is openly available at https://github.com/
Morpheus-compiler/Morpheus, with the artifacts archived on
Zenodo [30]. As shown in Figure 4, the code is separated into
a data plane independent portable core, containing the compiler
passes, and technology-specific plugins to interact with the
underlying technology (i.e., eBPF, DPDK).

The Morpheus core extends the LLVM [13] compiler
toolchain (v10.0.1) and the ORCv2/MCJIT [59], [60] toolset
for code manipulation and run time code generation. We opted
to implement Morpheus at the intermediate representation
(IR) level as it allows to reason about the running code
using a relatively high-level language framework without
compromising on code generation time. Moreover, this also

Morpheus

Init Update Analysis Instrumentation Optimization

FastClick (CP)Polycube (CP)

Frontend APIs

eBPF
Programs

FastClick
Elements

LLVM
bytecode

eBPF(DP) FastClick(DP)
BPF_PROG_ARRAY

Prog1

Prog3
(opt)Prog2

Prog3

Tail
call

Prog4

eBPF
Maps

Elem1

Elem3
(opt)

Elem2

Function
call

Elem3

Trampoline:
jmp Elem3

Trampoline:
jmp Elem3(opt)1 Prog2

2 Prog3(opt)
1 Prog2
2 Prog3

Init LLVM
ORC/MCJIT

Parse
LLVM IR

BPF

X86

Identify
MATs

Identify
Packet
Logic

...

Compile On
Demand

Emit Native
Code

Load new
code

Elem4

Backend APIs

Fig. 4. Implementation details of Morpheus compilation pipeline. In the
bottom part of the figure we show the details of the pipeline swap for the
eBPF and FastClick plugins.

makes the Morpheus core portable across different data plane
frameworks and programming languages [61].

As shown in the upper part of Figure 4, Morpheus requires to
implement a set of frontend APIs for each supported framework.
These APIs provide control plane related information to
Morpheus, such as when a new program is instantiated, or
to provide a mechanism for the Morpheus core to intercept,
inspect, and queue any update made by the control plane.
This allows Morpheus to internally register the program to be
optimized at runtime, or to trigger the compilation pipeline
when Morpheus intercepts a control plane event, e.g., an update
to a table. The frontend APIs also offer an abstraction layer that
allows the CP program to communicate with the optimized
data plane in the same way as with the original program.
This makes all the automatic and runtime optimization that
Morpheus performs entirely transparent to users.

On the other hand, the data plane plugins are abstracted
via a backend API. This API exports a set of functions for
the core to identify match-action table access sites based on
data-plane specific call signatures; compute cost functions for
data structure specialization; rewrite data plane dependent code
using templates; and provide an interface to inject guards. Addi-
tionally, the backend can channel instrumentation data from the
data plane to the compiler core and implement the data plane
dependent parts of the pipeline update mechanism. Currently,
only eBPF (fully) and DPDK (partially) are supported, but the
architecture is generic enough to be extended to essentially
any I/O framework, like netmap [62] or AF XDP [63].
Initialization: Once the framework starts, the LLVM JIT
framework is initialized with the corresponding native target
(i.e., eBPF or x86) and, depending on the instantiated program
it loads the associated LLVM bytecode. Following the usual
analysis, instrumentation, and optimization, it activates the
compile-on-demand layer, which compiles the program on-the-
fly, emitting the final code. Later, the backend-specific APIs
are used to load the new code into the pipeline, as shown in
the subsequent sections.

A. The eBPF Plugin

Morpheus leverages the Polycube [64] framework as an
eBPF backend to manage chains of in-kernel packet processing

https://github.com/Morpheus-compiler/Morpheus
https://github.com/Morpheus-compiler/Morpheus

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

programs. Polycube readily delivers almost all the needed
components for an eBPF backend. We added a mechanism
for updating the data plane program on-the-fly and defined
templates to inject guards. We discuss these components next.
Pipeline update. Once the optimized program is built, Mor-
pheus calls the eBPF LLVM backend to generate the final
eBPF native code, loads the new program into the kernel using
the bpf() system call, and directs execution to the new code.
In Polycube, a generic data plane program is usually realized
as a chain of small eBPF programs connected via the eBPF
tail-call mechanism, using a BPF_PROG_ARRAY map to get
the address of the entry point of the next eBPF program to
execute. Thus, injecting a new version of an eBPF program
boils down to atomically update the BPF_PROG_ARRAY map
entry pointing to it with the address of the new code, as
shown in Figure 4. When loading the optimized code, it is
possible that the verifier will reject it. Currently, Morpheus
doesn’t incorporate additional mechanisms to ensure that the
regenerated code can pass the verifier. Ideed, in Morpheus
each optimization pass is carefully designed to ensure that the
modification made to the program are deterministic and that
the generated code is verifiable. While it’s possible that a bug
in a specific pass could lead to an unsafe program rejected
by the verifier, Morpheus addresses this by preserving the
latest stable version of the program and falling back to the
original program if the latest version does not implement the
new runtime configuration. During subsequent optimization
cycles, one optimization pass is disabled at a time, and the
newly generated code is reloaded to check verifier acceptance.
This iterative process helps identify the combination of passes
that resulted in the problematic code.
Guards. Morpheus relies on guards to protect the special-
ized code against map updates. The program-level guard is
implemented as a simple run time version check [58]. For
stateful processing, Morpheus installs a guard at each map
lookup site and injects a guard update pre-handler at the
instruction address corresponding to the map update eBPF
function (map_update_elem). This handler will then safely
invalidate the guard before executing the map update.

B. The DPDK Plugin

Morpheus leverages FastClick [65], a framework to manage
packet-processing applications based on DPDK. FastClick
makes implementing most components of the backend API
trivial; below we report only on pipeline updates and guards.
Pipeline update. A FastClick program is assembled from
primitive network functions, called elements, connected into a
dataflow graph. As shown in Figure 4, every FastClick element
holds a pointer to the next element along the processing chain.
To switch between different element implementations at run
time, Morpheus adds a level of indirection to the FastClick
pipeline: every time an element would pass execution to the
next one, the corresponding function call is conveyed through
a trampoline, which stores the real address of the next element
to be called. Then, atomic pipeline update simplifies into
rewriting the corresponding trampoline to the address of the
new code. In contrast to eBPF, which explicitly externalizes

into separate maps all program data intended to survive a
single packet’s context, a FastClick element can hold non-
trivial internal state, which would need to be tediously copied
into the new element. As a workaround, our DPDK plugin
disables dynamic optimizations for stateful FastClick elements.
Guards. Since stateful FastClick elements are never optimized
in Morpheus and RO elements always elide the guard, our
DPDK plugin currently does not implement guards, except a
program-level version check at the entry point.

VI. EVALUATION

Our testbed includes two servers connected back-to-back
with a dual-port Intel XL710 40Gbps NIC. The first, a 2x10-
core Intel Xeon Silver 4210R CPU @2.40GHz with support for
Intel’s Data Direct I/O (DDIO) [66] and 27.5 MB of L3 cache,
runs the various applications under consideration. The second,
a 2x10 Intel Xeon Silver 4114 CPU @2.20GHz with 13.75MB
of L3 cache, is used as packet generator. Both servers are
installed with Ubuntu 20.04.2, with the former running kernel
5.10.9 and the latter kernel 4.15.0-112. We also configured
the NIC Receive-Side Scaling (RSS) to redirect all flows to a
single receive queue, forcing the applications to be executed
on a single CPU core, while Morpheus was pinned to another
CPU core on the device-under-test (DUT).

In our tests, we used pktgen [67] with DPDK v20.11.0
to generate traffic and report the throughput results, and the
DPDK burst replay tool [68] to replay the different packet
traces. Unless otherwise stated, we report the average single-
core throughput across five different runs of each benchmark,
measured at the minimum packet size (64-bytes). For latency
tests, we used Moongen [69] to estimate the round-trip-time of
a packet from the generator to the DUT and back. Finally, we
used perf v5.10 to characterize the micro-architectural metrics
of the DUT (e.g., cache misses, cycles, number of instructions).

In order to benchmark Morpheus on real applications,
we chose four eBPF/XDP-based packet processing programs
from the open-source eBPF/XDP reference network function
virtualization framework Polycube [70], plus Facebook’s Katran
load-balancer used earlier as a running example [6].

The L2 switch, the Router and the NAT applications were
taken from Polycube [70]. The L2 switch use case is a functional
Ethernet switch supporting 802.1Q VLAN and STP, with STP
and flooding delegated to the control plane while learning
and forwarding implemented entirely in eBPF, using an exact-
matching MAC table supporting up to 4K entries. The Router
use case implements a standard IP router, with RFC-1812
header checks, next-hop processing and checksum rewriting,
configured with an LPM table taken from the Stanford routing
tables [40]. The NAT is an eBPF re-implementation of the
corresponding Linux Netfilter application, configured with a
single two-way SNAT/masquerading rule: the source IP of
every packet is replaced with the IP of the outgoing NAT
port and a separate L4 source port is allocated for each new
flow. BPF-iptables is an eBPF/XDP clone [71] of the well-
known Linux iptables framework, configured with 5-tuple rules
generated by Classbench [38]. We used the Classbench trace
generator [72] to generate packets matching the created rule

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

 0

 1

 2

 3

 4

 5

 6

Switc
h

Router

Katra
n

BPF−iptables

A
v
g
 T

h
ro

u
g
h
p
u
t
(M

p
p
s
)

High Locality

Baseline Morpheus eSwitch

Switc
h

Router

Katra
n

BPF−iptables

Low Locality

Switc
h

Router

Katra
n

BPF−iptables

No Locality

Switc
h

Router

Katra
n

BPF−iptables

ESwitch

Baseline Morpheus ESwitch

Fig. 5. Single core throughput (64B packets) varying input traffic locality.
The optimizations adopted by Morpheus are traffic-dependent, while the ones
from ESwitch [18] are not. For this reason, the ESwitch throughput (shown
in the right box) is the same across the different traffic localities.

 0
 20
 40
 60
 80

 100

Switch Router Katran BPF−iptables

%
 D

e
c
re

a
s
e Best case

Cycles
Instructions

Branches
LLC load misses

 0
 10
 20
 30
 40
 50

Switch Router Katran BPF−iptables

%
 D

e
c
re

a
s
e Worst case

Fig. 6. Effect of Morpheus optimizations on PMU counters, obtained with
perf at the default frequency (40KHz). The top panel shows the percentage
of decrease, per packet, of different metrics for high locality traffic (best-case
for Morpheus), and the bottom panel for no locality traffic (worst-case).

set using a Pareto cumulative density function to control the
locality of reference. We used the same default parameters
suggested by the ClassBench paper [38] to generate traces
of varying locality, in particular the no-locality trace uses
α = 1, β = 0 as Pareto parameters, the low locality uses
α = 1, β = 0.0001, and the high locality uses α = 1, β = 1.
Finally, Katran [6] was configured as a web-frontend, with 10
TCP services/VIPs and 100 backend servers for each VIP.

For each benchmark, we generated 3 traffic traces with
varying locality, to demonstrate the ability of Morpheus to track
packet-level dynamics and optimize the programs accordingly.
In particular, we created a high-locality traffic trace, where
few flows account for most of the traffic, a no-locality trace
with flows generated at random by a uniform distribution and
a low-locality trace that sits in the middle between the two
previous cases.

A. Benefits of Optimizations

We first show the impact of Morpheus on the mentioned pro-
grams, when attached to the XDP hook of the ingress interface.
Morpheus improves packet-processing throughput. In Fig. 5,
we show the impact of Morpheus under different traffic
conditions. Throughput is defined as the maximum packet-
rate sustained by a program without experiencing packet loss.
When a small subset of flows sends the majority of traffic (high-
locality), Morpheus consistently delivers over 50% throughput
improvement compared to the baseline, achieving a 2× speed-
up for the Router. This is because it can track heavy flows
and optimize the code accordingly. Notably, traffic-dependent
optimization contributes to ∼65% of the improvement for high-
locality traces, with JIT optimization being the most significant

 0

 10

 20

 30

 40

 50

 60

 70

Switc
h

Router

Katra
n

BPF−iptables

P
9

9
 L

a
te

n
c
y
 (

µ
s
)

No load

Switc
h

Router

Katra
n

BPF−iptables
 0

 50

 100

 150

 200

 250

 300

 350

 400
Under load

Baseline
Morph. (best)
Morph. (worst)

Fig. 7. 99th percentile (P99) latency with Morpheus. The graph shows both
the latency for the optimized and non-optimized code paths, under small load
(10pps) and heavy load (highest rate without packet drop).

contributor. Data-structure optimization accounts for ∼26%,
while DCE/Constant Propagation contributes to the remainder.
In low-locality traces, the improvement from traffic-dependent
optimization decreases to around 40% of the overall throughput
enhancement. For no-locality traces, policy-driven optimization
primarily drives improvements, accounting for ∼25%. However,
this improvement is offset by the instrumentation overhead,
as detailed in Section VI-B. To confirm the benefit of packet-
level optimizations in Morpheus, we compared it to a faithful
eBPF/XDP re-implementation of ESwitch, a dynamic compiler
that does not consider traffic dynamics [18]. The results (Fig 5)
show that Morpheus delivers 5–10× the improvement compared
to ESwitch for high-locality traces, while it falls back to
ESwitch for uniform traffic.
Morpheus benefits at the micro-architectural scale. In Fig. 6,
we show that Morpheus reduces the last-level CPU cache misses
by up to 96% and halves the instructions and branches executed
per packet. At low or no traffic locality, the effects of packet-
level optimizations diminish, but Morpheus can still bring
considerable performance improvement: we see ∼ 30% margin
for BPF-iptables even for the no-locality trace. This is because
the optimization passes in Morpheus are carefully selected to
be applicable independently from packet-level dynamics (see
Table II).
Morpheus reduces packet-processing latency. In Fig. 7,
we compared the 99th percentile baseline latency for each
application against the one obtained with Morpheus, both
in a best-case scenario when all packets travel through the
optimized code path (e.g., the right branch in Fig. 3a), and a
worst-case scenario with all packets falling back to the default
branch instead of taking the fast-patch cache for each map
(the left branch in Fig. 3a). The left panel in Fig. 7 shows the
latency measured at low packet rate (10pps) so to avoid queuing
effects [73], whereas the right panel shows latency under the
maximum sustained load without packet drops [74]. First, we
observe that Morpheus never increases latency, despite the
considerable additional logic it injects dynamically into the
code (guards, instrumentation; see below); in fact, it generally
reduces it even in the worst case scenario. Notably, it reduces
Katran’s packet-processing latency by about 123%.

B. What is the cost of code instrumentation?

Clearly, the price for performance improvements is the
additional logic, most prominently, instrumentation, injected by
Morpheus into the fast packet-processing path. To understand

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

 0

 1

 2

 3

 4

 5

Switch Router Katran BPF−iptables

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

Baseline
Optimized

Naive instrumentation
Adaptive instrumentation

Fig. 8. Naive vs adaptive instrumentation (low locality traffic). In the naive
case all map lookups are recorded, while adaptive instrumentation adjusts data
sampling selectively for the access patterns at each lookup call site.

 2

 3

 4

 5

1 5 25 50 7510
0

Instrumentation rate (%)

T
h
ro

u
g
h
p
u
t
(M

p
p
s
)

Baseline
+Instr.
+Instr. (opt)
+Instr.+Opts.

Router

1 5 25 50 7510
0
 0.5

 1

 1.5

 2

Instrumentation rate (%)

BPF−iptables

Fig. 9. Effectiveness of instrumentation at varying sampling rates (Router
and BPF-iptables, low-locality traffic).

this price, we compared our adaptive instrumentation scheme
(§IV-B) against a naive approach where all map lookups are
explicitly recorded. Fig. 8 shows that instrumentation involves
visible overhead: the instrumented code performs worse than the
baseline. The naive approach imposes a hefty 14–23% overhead,
but adaptive instrumentation reduces this to just 0.9%–9%. Most
importantly, this reduction does not come at a prohibitive cost:
adaptive instrumentation provides enough insight to Morpheus
to make up for the performance penalty imposed by it and
still attain a considerable throughput improvement on top (see
the green stacked barplots). In contrast, the performance tax
of naive instrumentation may very well nullify optimization
benefits, even despite full visibility into run time dynamics
(e.g., for the L2 switch or Katran).

We also studied the impact of packet sampling rate on
instrumentation. Indeed, Morpheus collects information on
packet-level dynamics only on a subset of input traffic in order
to minimize the overhead. Fig. 9 highlights that Morpheus can
strike a balance between overhead and efficiency by adapting
the sampling rate. At a low sampling rate (e.g., recording every
100th packet) Morpheus does not have enough visibility into
dynamics, which renders traffic-dependent optimizations less
effective (but the traffic-invariant optimizations still apply).
Higher sampling rates provide better visibility but also impose
higher overhead. At the extreme (BPF-iptables, 100% instru-
mentation rate), optimization is just enough to offset the price
of instrumentation. In conclusion, we found that setting the
sampling rate at 5%–25% represents the best compromise.

Finally, we tested a different implementation of the Morpheus
instrumentation, which uses an additional ARRAY map that
contains a set of pre-generated random numbers generated in
accordance with the Morpheus sampling rate. This is used to
reduce the cost associated with the BPF get_prandom_u32

TABLE III
TIME (IN MS) TO EXECUTE THE ENTIRE MORPHEUS COMPILATION

PIPELINE AND INSTALL THE OPTIMIZED DATAPATH. LOC IS CALCULATED
USING cloc (V1.82) EXCLUDING COMMENTS AND BLANK LINES WHILE

INSTRUCTION COUNT IS MEASURED WITH bpftool V5.9.

Application
C

LOC
BPF
Insn

Compilation (ms) Injection (ms)
Best Worst

Best Worst
t1 t2 t1 t2

L2 Switch 243 464 81 62 140 78 0.5 0.9

Router 331 458 87 65 196 91 1.1 1.3

BPF-iptables* 220 358 95 62 105 87 0.6 0.5

Katran 494 905 287 115 569 151 3.4 6.1

* Uses a chain of eBPF programs; since Morpheus optimizes every eBPF program
separately, values shown refer to the most complex program in the chain.
t1 Time to analyze the program, instrument it and read the maps.
t2 Time to generate the final eBPF code.

helper function, as also suggested in [52]. Results shown in
Figure 9 revealed that when the number of instrumented maps is
small (fewer than 2) such as in the router case, the performance
improvement with this approach is almost negligible, since the
overhead of the helper function is replaced by the overhead of
the new lookup call needed to retrieve the pre-generated random
numbers. However, when the number of instrumented maps
is larger such as in the BPF-iptables case, the new approach
brings a notable performance improvement by reducing the
overall instrumentation overhead of Morpheus.

C. How fast is the compilation?

In Table III, we indicate with t1 the time to analyze,
instrument and optimize the LLVM IR code, and with t2 the
time to generate the final eBPF code, starting from the LLVM
IR. Note that t1 is highly dependent on table size: the bigger
the table, the more time needed to read and analyze it. We show
the results for high-locality and no-locality traffic. The former
is the best case since Morpheus needs to track fewer flows,
thus requiring lighter instrumentation tables that are faster to
analyze. The latter is the worst case. Generally, table read
time (i.e., t1) dominates over compilation time, consistently
staying below 100ms and reaching only for Katran in the
worst-case scenario almost 600ms. This is because Katran
uses huge static maps with tens of thousands of entries to
implement consistent hashing. Recent advances in the Linux
kernel allow to read maps in batches, which would cut down
this time by as much as 80% [75], reducing recompilation
time for Katran below 100ms. Furthermore, the time needed
to inject the optimized datapath into the kernel depends on
the complexity of the program, since all eBPF code must pass
the in-kernel verifier for a safety check before being activated.
This also ensures that a mistaken Morpheus optimization pass
will never break the data plane. In our tests, injection time
varies between 0.5 to 3.4ms in the best case and at most 6.1ms
in the worst case. Finally, in all the tests we run the Morpheus
compilation pipeline on a separate core with respect to the
data plane application, and we noticed that in most of the
case it consumes, on average, ∼5% of CPU, with a peak of
15% for applications that consist of a pipeline of multiple
programs chained together (e.g., BPF-iptables) and with lot of
table entries to be analyzed (e.g., Katran).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

 2

 3

 4

 5

 6

 2 4 6 8 10 12 14 16 18 20

Pattern

change

High

locality

High locality

with new set

 of flows

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

Time (s)

Baseline
Morpheus

 20

 21

 22

 23

 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Time (s)

Baseline
Morpheus

Fig. 10. (a) Single core throughput over time with Morpheus on the Router use
case, with dynamically changing traffic patterns, and (b) with a CAIDA [76]
trace.

 0

 5

 10

 15

 20

 1 2 3 4

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

of cores

Baseline
Morpheus

Fig. 11. Multicore application (router) with Morpheus.

D. Morpheus in action

To test the ability of Morpheus to track highly dynamic
inputs, we fed the Router application with time-varying
traffic and observed the throughput over time (Fig. 10a).
Recompilation period was conservatively set to 1 second. In
the first 5 seconds we generate uniform traffic; here, the traffic-
independent optimizations applied by Morpheus yield roughly
15% performance improvement over the baseline. At the 5th
second, the traffic changes to a high-locality profile: after a
quick learning period Morpheus specializes the code, essentially
doubling the throughput. We see the same effect from the
10th second, when we switch to another high-locality trace
with a new set of heavy-hitters: after a brief training period
Morpheus dynamically adapts the optimized datapath to the
new profile and attains 60–100% performance improvement.
We also repeated the same test using a real-world traffic trace
(CAIDA 2019 dataset, equinix-nyc [76]), counting 30M packets
with an average size of 910B. The trace experiences also a
low degree of traffic locality, with the most hit entry matched
around 0.4% overall. In Figure 10b, we show how Morpheus
consistently improves the throughput of the router by factor of
∼10%. Increasing the most hit entry matched rate from 0.4%
to 5% in the CAIDA trace increased the average throughput
with the Morpheus optimizations from 22Gbps to ∼22.5Gbps,
with peaks reaching ∼23Gbps.

Finally, in Figure 11, we report the multi-core scaling of
Morpheus. Here, we still used the router when processing input
traffic characterized by low-locality. The constant performance
increase is enabled mainly by our adaptive instrumentation
mechanism, which is able to track the flow states across the
different cores, i.e., specific to the RSS context and, depending
on their distribution optimize the code accordingly.

E. What can go wrong?

The primary limitation of Morpheus lies in the potential for
misdirected runtime code transformations that could adversely
impact performance. This drawback is analogous to situations
in generic languages where a dynamic compiler can steal
CPU cycles from the running code [15], [77], necessitating
manual compiler parameter tuning and in-depth application-
specific knowledge to mitigate performance losses [78]. In
the context of dynamically optimizing network code, we can
illustrate this limitation through the example of a NAT use
case [64]. The NAT involves a large connection tracking table
that undergoes frequent updates within the data plane for each
new flow. This represents a worst-case scenario for Morpheus:
fully stateful code, so that guards cannot be opportunistically
elided, coupled with potentially high traffic dynamics. Yet, since
traffic-independent optimizations can still be applied (Table II)
Morpheus can improve throughput by around 5% (from 4.36 to
4.58 Mpps) in the presence of high-locality traffic. However, for
low-locality traffic we see about 6% performance degradation
compared to the baseline. Intuitively, Morpheus just keeps on
recompiling the conntrack fast-path with another set of potential
heavy hitters, just to immediately remove this optimization as
a new flow arrives. Our tests mark micro-architectural reasons
behind this: the number of branch misses and instruction
cache loads increases by 90% and 75%, respectively, both
clear symptoms of frequent code changes. Similar patterns are
observed in other stateful applications, such as the L2 switch
and Katran. However, the speed-up achieved through dead
code elimination, constant propagation, and branch injection
can offset the performance impact in these cases. As with Java,
such cases require human intervention; manually disabling
optimization for the connection tracking module’s table safely
eliminates the performance degradation on the NAT use case.
In general, Morpheus tends to excel in scenarios where both the
runtime configuration and the data structures used within the
code remain relatively stable, i.e., they do not undergo frequent
changes (where “frequent” is defined within the timescale
of Morpheus’ compilation periodicity). When focusing solely
on policy-driven optimizations, Morpheus consistently proves
effective. These optimizations don’t rely on instrumentation
or guards for data plane consistency, thus avoiding additional
overhead in these scenarios.

F. Morpheus with DPDK programs

We applied Morpheus to a DPDK program, the
FastClick [65] version of the eBPF Router application, the same
one used in PacketMill’s paper [21]. We configured it with
either 20 or 500 rules from the Stanford routing tables [40] and
generated traffic with different levels of locality. We compared
the throughput and the latency of the baseline code, the Mor-
pheus optimized and its version transformed with PacketMill,
state-of-the-art DPDK packet-processing optimizer. In our tests
PacketMill uses the following optimizations: removing virtual
function calls, inlining variables, and allocating/defining the
elements’ objects in the source code.

Fig. 12a reports the average throughput results. For only
20 prefix rules and with low locality traffic, PacketMill

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

 0

 2

 4

 6

 8

 10

 12

 14

High Low NoA
v
g

 T
h

ro
u

g
h

p
u

t
(M

p
p

s
) Router (20 rules)

High Low No
 0

 2

 4

 6

 8

 10

 12

Traffic locality

Router (500 rules)

Baseline
PacketMill
Morpheus

 0

 1

 2

 3

 4

 5

 6

20 rules 500 rules

P
9
9
 L

a
te

n
c
y
 (

µ
s
)

No load

20 rules 500 rules
 0
 5
 10
 15
 20
 25
 30
 35
 40

Under load

Fig. 12. Comparison between vanilla FastClick, PacketMill and Morpheus
for the Router FastClick (DPDK) application with 20 and 500 rules.

outperforms Morpheus by about 9%, whereas for high-locality
traffic and larger forwarding tables Morpheus produces a
whopping 469% improvement over PacketMill. The reason
for the large performance drop from 20 rules to 500 rules is
that LPM lookup is particularly expensive in FastClick (linear
search), but Morpheus can largely avoid this costly lookup
by inlining heavy hitters. The 99th percentile latency results
(Fig. 12b) confirm this finding, with Morpheus decreasing
latency 5-fold compared to PacketMill with high-locality traffic.

On the other hand, the reason for the lower performance
of Morpheus in the low/no locality case (20 rules) can be
found in the main difference between the two systems. First,
Morpheus requires instrumentation to track table access patters,
which produces some run time overhead, while PacketMill
does not apply online optimizations and so it does not
need instrumentation at all. Second, PacketMill implements
some optimizations that Morpheus does not (although nothing
prevents us from implementing them), but in most cases the
effect of these additional optimizations is masked by the
speedup brought by the Morpheus traffic-level optimizations.

VII. MORPHEUS WITH KUBERNETES

In the previous section, we demonstrated the ability of
Morpheus to enhance the performance of various eBPF and
DPDK network functions, including real-world applications like
Katran, Facebook’s load balancer. In this section, our focus is on
showcasing the impact of Morpheus on real-world cloud-native
scenarios, particularly within the context of Kubernetes [29].
We aim to evaluate how Morpheus can improve the performance
of a CNI plugin for Kubernetes and compare the results with
existing production-grade solutions.

For our evaluation, we considered three different CNI plugins.
Cilium [79] and Calico [80] are both eBPF-based production-
ready networking plugins for Kubernetes that provide security
and observability features for container workloads. The Poly-
cube [81] CNI is built on the Polycube [70] framework, offering
standard CNI functionality by chaining various Polycube
network functions, such as switches, load balancers, and NAT,

 0

 2

 4

 6

 8

 10

P+M Polycube Cilium Calico

L
a

te
n

c
y
 (

µ
s
) 8.4 8.8

9.3
8.78.6 8.9

9.4
8.6

Same Node

P+M Polycube Cilium Calico
 0

 5

 10

 15

 20

 25

 30

CNI Plugin

Pod2Pod

17.0

21.9

28.2

21.4

Pod2Svc

16.8

22.5

27.5

20.7

Different Node

Fig. 13. TCP latency comparison between different CNI plugins when the
communication is performed between Pods on the same node or different nodes
(Pod-2-Pod), and between Pods using the Service IP (Pod-2-Svc). Morpheus
is applied on top of the Polycube CNI plugin (P+M).

to achieve the desired outcome for the default Kubernetes
networking interface. While Polycube has limited functionality
compared to the other two solutions, especially in terms
of security and observability, our tests focused solely on
the common networking functionality shared among these
providers.

We deployed Morpheus on top of the Polycube CNI and
compared its performance with the other CNI providers. The
experiments were conducted on the NSF Cloudlab [82] using
two XL170 nodes. Each node was equipped with a 10-core
Intel E5-2640v4 CPU@2.4 GHz, 64GB memory, and a 25Gb
Mellanox ConnectX-4 NIC. The setup employed Ubuntu 20.04
with kernel version 5.16.

To perform the experiments, we utilized the standard
benchmark suite available in the Kubernetes repository [83].
The suite employed a custom docker container with a go binary,
iperf v3.1.3, and qperf integrated within it. We deployed four
pods3 - two worker pods running iperf server and client on the
same node, and another worker pod on a different node. An
orchestrator pod coordinated the workers to execute the tests.
We tested the communication between pods co-located on the
same node and remotely located pods. For both cases, we tested
communication using the pod’s direct IP or its Service IP4.
We conducted these tests to examine the scenarios involving
additional components of the CNIs, such as NATTing and load-
balancing, when communicating between Pods and Service IPs.

Figure 13 presents the latency results obtained using the
qperf tools. The optimizations implemented by Morpheus
resulted in a significant reduction in overall latency. When
comparing with the original Polycube CNI, Morpheus achieved
a 25% latency reduction in Pod-to-Pod communication between
different nodes, and similar results were observed in Pod-to-
Service communication. Moreover, Morpheus achieved a 40%
latency reduction compared to Cilium. Regarding throughput,
our optimized Morpheus on top of the Polycube CNI achieved
approximately 61Gbps for Pod-2-Pod communication and
around 60.2Gbps for Pod-2-Svc on a single node. In contrast,
Cilium and Calico achieved 56Gbps and 57Gbps, respectively.

3A pod is the smallest execution unit in Kubernetes, representing a group
of containers deployed on the same host.

4In Kubernetes, Services are an abstract way to expose an application
running on a set of Pods. Services can have a cluster-scoped virtual IP address
that clients can connect to, and Kubernetes load-balances traffic to that service
across the different backing pods.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

The significant performance improvement observed in inter-
Pod communication with Morpheus can be attributed to the
specific characteristics of the Polycube CNI [81]. When Pods
communicate within the same node, they primarily interact
with an internal load balancer that forwards packets directly
to the destination Pod. However, cross-node communication
involves traversing an additional set of NFs, including a firewall,
an external load balancer, and a router. Morpheus provides
benefits even for same-node communication, but its impact
is most notable when packets traverse all three NFs during
cross-node communication. Specifically, Morpheus tailors the
packet processing pipeline based on the CNI’s configuration,
eliminating unnecessary processing to support a variety of
services. This reduction in latency is primarily achieved by
eliminating additional BPF map lookup calls made by the
load balancer and firewall services for packet redirection.
Additionally, Morpheus’ traffic-level optimization creates fast
paths for packets received on a particular node, while still
maintaining mappings for all Services and Pods in the cluster
within the CNI on every node.

VIII. DISCUSSIONS

Add other optimizations to Morpheus compilation pipeline.
Morpheus is orthogonal to most optimizations proposed in
recent literature and can be extended to support them. For
example, PacketMill optimizations [21], such as the reordering
of metadata fields, could be easily integrated into Morpheus
with the added benefit that, having access to the number of
accesses to a given variable thanks to Morpheus’s instrumen-
tation, we could obtain a more accurate reordering compared
to PacketMill, which only estimates access patterns. Finally,
traditional PGO optimizations can be used with Morpheus
too, allowing the compiler to optimize the code on-the-fly, as
opposed to traditional PGO approaches where the profile is
collected offline.
Extend Morpheus to other data plane technologies. Mor-
pheus comprises a data plane-independent core implementing
the bulk of the optimization passes, and separate data plane-
specific plugins. This design allows Morpheus to potentially
support various network functions with different logic, provided
they are part of the existing frameworks and data plane-specific
plugins currently supported by Morpheus, such as Polycube
for eBPF-based network functions and FastClick for DPDK-
based ones. Furthermore, it simplifies the process of porting
Morpheus to new data planes with well-defined APIs. In such
cases, developers would need to specify function signatures for
relevant API calls and providing simple operators for Morpheus
to interact with match-action table content and modify the
underlying code (e.g., inject a guard).

Extend Morpheus to generic network programs. As
previously mentioned, Morpheus is designed to work seamlessly
with networking code that follows a structured approach and
maintains a distinct separation between its operations and
interactions with the external environment. Adapting Morpheus
to generic code presents more challenges. Generic code lacks
the specific structural constraints and clear differentiation
between data structures and packet processing logic making

the automatic inference of such information and its subsequent
recompilation at runtime complex. We are exploring this idea
further, as outlined in [84].
The choice of working at the IR level. In Morpheus, all the
optimizations are directly applied at the LLVM IR level. A
major drawback of this approach is that by doing so we lose
direct access to the low-level machine code, making certain
optimizations impossible: peephole, vectorization/SIMD, or
other micro-architectural optimizations [85]–[89]. Nevertheless,
this choice provides also a series of benefits: (i) IR code is in the
Static Single Assignment (SSA) form and SSA simplifies the
use of different compiler optimization algorithms; (ii) Morpheus
optimization passes can exploit flow information performed
in the compiler itself to gather information about the code
under consideration: for instance, we use LLVM MemorySSA
analysis to retrieve information about variable and load/store
dependencies; (iii) working at the IR level allows Morpheus to
re-use part of the other optimizations already available in the
compiler suite; (iv) finally, it allows to keep the optimization
passes as generic as possible with respect to the language in
which the data plane is written.
It is not all about table lookups. Morpheus heavily optimizes
also the code surrounding the table lookups using the insights it
obtains during code analysis. It separates table lookup code into
a fast-path, with the lookup results specialized for the heavy
hitters, and a generic slow-path. It uses the table lookup code
to also gather information about the table’s content, and how it
is used in the rest of the code. This allows for optimizing the
entire fast-path code after the table lookup without affecting
the slow path in any way. For example, constants are folded
from the JITted lookup code (effectively a set of nested if-
then-else statements) into the surrounding code (i.e., each
branch of the if-then-else is specific to a certain value of
the conditional), unreachable code is removed or tables are
specialized depending on their run time entries.

Because of this, caching/JITting table lookups is just one,
albeit very important, optimization that Morpheus performs.
As shown in Figure 5, the results with the “no locality” trace
demonstrate the combined benefits of all the optimizations
that are independent from the input traffic, such as dead
code elimination, constant propagation and data structure
specialization, while the rest of the cases (“low/high-locality”)
show the additional effect of traffic-dependent optimizations.
Note that some optimizations cannot be directly measured since
they are the results of a combination of other passes; e.g., the
contribution of dead code elimination is dependent on constant
propagation.
Morpheus dependence on compilation periodicity. The
performance of Morpheus depend on how fast Morpheus
can recompile the targeted code (see Table III). In the
presence of traffic changes that are faster than that, then traffic-
dependent optimizations become less effective. Nevertheless,
Morpheus can still speedup the original function, since other
traffic-independent optimizations are still valid (Figure 4).
Potentially, we could disable traffic-level optimizations when
Morpheus discovers highly variable traffic that goes under
the recompilation period (Section VI-E); this would reduce
the impact of guards and instrumentation and increase the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

benefits of traffic-independent optimizations. Examining these
techniques remains as future work.
Use Morpheus with the other Kubernetes CNI plugins. As

discussed in Section V-A, Morpheus relies on the Polycube
framework to manage chains of eBPF packet processing
programs. To simplify the writing and manipulation of eBPF
programs, Polycube uses the BPF Compiler Collection (BCC),
which integrates Clang+LLVM to statically compile programs
written in a higher level syntax into the necessary eBPF
object files. By seamlessly integrating with Polycube and BCC,
Morpheus adds the necessary compiler runtime, on-the-fly
instrumentation, and optimization functionality.

Unlike Polycube, CNI plugins like Cilium and Calico do
not use BCC to build their eBPF dataplanes. Instead, they use
the libbpf library to compile eBPF objects offline and inject
the program during the startup phase of the CNI plugin. While
Morpheus supports libbpf-based eBPF dataplanes, it requires
additional engineering effort to integrate Morpheus APIs into
the CNI plugin control plane, which is out-of-scope. Despite
this, the results demonstrate that Morpheus can still provide
benefits in a real-world scenario, and we leave the process of
integrating Morpheus with the other CNIs as future work.

IX. RELATED WORK

Generic code optimization has a long-standing stream of
research and prototypes [16], [17], [31], [88]–[92]. In the
context of networking, domain-specific data-plane optimization
has also gained substantial interest lately.
Static optimization of data-plane programs. Several packet
I/O frameworks present specific APIs for developers to
optimize network code [9], [93]–[96], or implement different
paradigms to efficiently execute packet-processing programs
sequentially or in parallel [36], [85], [86], [97]–[101]. Other
proposals aim to remove redundant logic or merge different
elements together [102]–[104]. These works provide static
optimizations; Morpheus, on top of these, also considers run
time insight to specialize generic network code.
Dynamic optimization of packet-processing programs.
ESwitch [18], [33] was the first functional framework for the
unsupervised dynamic optimization of software data planes with
respect to the packet-processing program, specified in Open-
Flow, being executed. PacketMill [21] and NFReducer [22]
leverage the LLVM toolchain [13] instead of OpenFlow:
PacketMill targets the FastClick datapath by exploiting the
DPDK packet I/O framework and NFReducer aims to eliminate
redundant logic from generic packet processing programs using
symbolic execution. Morpheus is strictly complementary to
these works: (1) it applies some of the same optimizations but
it also introduces a toolbox of new ones (e.g., branch injection
or constant propagation for stable table entries); (2) Morpheus
can detect packet-level dynamics and apply more aggressive
optimizations depending on the specific traffic patterns; and
(3) Morpheus is data-plane agnostic, in that it performs the
optimizations at the IR-level using a portable compiler core and
relies on the built-in compiler toolchain to generate machine
code and a data-plane plugin to inject it into the datapath.
Profile-guided optimization for packet-processing hardware.
P2GO [20] and P5 [19] apply several profile-driven optimiza-

tions to improve the resource utilization of programmable P4
hardware targets. Some of the ideas presented in this work
can also be used with programmable P4 hardware, provided
it is possible to re-synthesize the packet processing pipeline
without traffic disruption, with a notable difference: P2GO
and P5 require a priori knowledge (i.e., the profiles) while
Morpheus aims at unsupervised dynamic optimization.

X. CONCLUSIONS & FUTURE WORK

We presented Morpheus, a run time compiler and optimizer
framework for arbitrary networking code. We demonstrated
the importance of tracking packet-level dynamics and how
they open up opportunities for a number of domain-specific
optimizations. We proposed a solution, Morpheus, capable of
applying them without any a priori information on the running
program and implemented on top of the LLVM JIT compiler
toolchain at the IR level. This allows to decouple our system
from the specific framework used by the underlying data plane
as much as possible. Finally, we demonstrated the effectiveness
of Morpheus on a number of programs written in eBPF and
DPDK, on Kubernetes, and released the code in open-source
to foster reproducibility of our results.

We consider Morpheus only as a first step towards more
intelligent systems that can adapt to network conditions. As
future work, we intend to integrate a run time performance
prediction model [56], [105]–[108] into Morpheus, enabling the
compiler to reason about the effect of each different dynamic
optimization pass. This would allow for selecting the most
efficient subset of optimizations and adapt the recompilation
timescales to the current network conditions.

REFERENCES

[1] S. Miano et al., “Domain Specific Run Time Optimization for Software
Data Planes,” ser. ASPLOS ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 1148–1164. [Online]. Available:
https://doi.org/10.1145/3503222.3507769

[2] Sourcefire, “Snort - Network Intrusion Detection & Prevention System,”
nov 2020, [Online; accessed 13-November-2023]. [Online]. Available:
https://www.snort.org/

[3] I. Authors, “Istio - Connect, secure, control, and observe services,”
nov 2020, [Online; accessed 13-November-2023]. [Online]. Available:
https://istio.io/

[4] O. I. S. Foundation, “Suricata - intrusion detection system,”
nov 2020, [Online; accessed 07-August-2021]. [Online]. Available:
https://suricata-ids.org/

[5] J. Kempf, B. Johansson, S. Pettersson, H. Luning, and T. Nilsson,
“Moving the Mobile Evolved Packet Core to the Cloud,” ser. WIMOB
’12. USA: IEEE Computer Society, 2012, p. 784–791. [Online].
Available: https://doi.org/10.1109/WiMOB.2012.6379165

[6] C. Hopps, “Katran: A high performance layer 4 load balancer,”
September 2019, https://github.com/facebookincubator/katran.

[7] D. Wragg, “Unimog - Cloudflare’s edge load balancer,”
sep 2020. [Online]. Available: https://blog.cloudflare.com/
unimog-cloudflares-edge-load-balancer/

[8] M. Xhonneux, F. Duchene, and O. Bonaventure, “Leveraging
EBPF for Programmable Network Functions with IPv6 Segment
Routing,” ser. CoNEXT ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 67–72. [Online]. Available:
https://doi.org/10.1145/3281411.3281426

[9] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,
“NetBricks: Taking the V out of NFV,” ser. OSDI’16. USA: USENIX
Association, 2016, p. 203–216. [Online]. Available: https://www.usenix.
org/conference/osdi16/technical-sessions/presentation/panda

https://doi.org/10.1145/3503222.3507769
https://www.snort.org/
https://istio.io/
https://suricata-ids.org/
https://doi.org/10.1109/WiMOB.2012.6379165
https://github.com/facebookincubator/katran
https://blog.cloudflare.com/unimog-cloudflares-edge-load-balancer/
https://blog.cloudflare.com/unimog-cloudflares-edge-load-balancer/
https://doi.org/10.1145/3281411.3281426
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/panda
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/panda

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

[10] L. Linguaglossa, S. Lange, S. Pontarelli, G. Rétvári, D. Rossi, T. Zinner,
R. Bifulco, M. Jarschel, and G. Bianchi, “Survey of Performance Accel-
eration Techniques for Network Function Virtualization,” Proceedings
of the IEEE, vol. 107, no. 4, pp. 746–764, 2019.

[11] O. Alipourfard and M. Yu, “Decoupling Algorithms and Optimizations
in Network Functions,” ser. HotNets ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 71–77. [Online].
Available: https://doi.org/10.1145/3286062.3286073

[12] GNU Project, “GNU Compiler Collection,” [Online; accessed
13-November-2023]. [Online]. Available: https://gcc.gnu.org/

[13] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis and Transformation,” ser. CGO ’04. USA: IEEE
Computer Society, 2004, p. 75.

[14] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: A Transparent
Dynamic Optimization System,” ser. PLDI ’00. New York, NY,
USA: Association for Computing Machinery, 2000, p. 1–12. [Online].
Available: https://doi.org/10.1145/349299.349303

[15] T. Cramer, R. Friedman, T. Miller, D. Seberger, R. Wilson,
and M. Wolczko, “Compiling java just in time,” IEEE Micro,
vol. 17, no. 3, p. 36–43, may 1997. [Online]. Available:
https://doi.org/10.1109/40.591653

[16] M. Panchenko, R. Auler, B. Nell, and G. Ottoni, “BOLT: A
Practical Binary Optimizer for Data Centers and Beyond,” ser.
CGO 2019. IEEE Press, 2019, p. 2–14. [Online]. Available:
https://dl.acm.org/doi/10.5555/3314872.3314876

[17] D. Chen, D. X. Li, and T. Moseley, “AutoFDO: Automatic Feedback-
Directed Optimization for Warehouse-Scale Applications,” ser. CGO
’16. New York, NY, USA: Association for Computing Machinery, 2016,
p. 12–23. [Online]. Available: https://doi.org/10.1145/2854038.2854044

[18] L. Molnár, G. Pongrácz, G. Enyedi, Z. L. Kis, L. Csikor, F. Juhász,
A. Kőrösi, and G. Rétvári, “Dataplane Specialization for High-
Performance OpenFlow Software Switching,” ser. SIGCOMM ’16.
New York, NY, USA: Association for Computing Machinery, 2016, p.
539–552. [Online]. Available: https://doi.org/10.1145/2934872.2934887

[19] A. Abhashkumar, J. Lee, J. Tourrilhes, S. Banerjee, W. Wu,
J.-M. Kang, and A. Akella, “P5: Policy-Driven Optimization of
P4 Pipeline,” ser. SOSR ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 136–142. [Online]. Available:
https://doi.org/10.1145/3050220.3050235

[20] P. Wintermeyer, M. Apostolaki, A. Dietmüller, and L. Vanbever, “P2GO:
P4 Profile-Guided Optimizations.” ACM, 2020.

[21] A. Farshin, T. Barbette, A. Roozbeh, G. Q. Maguire Jr., and
D. Kostić, “PacketMill: Toward per-Core 100-Gbps Networking,”
ser. ASPLOS 2021. New York, NY, USA: Association for
Computing Machinery, 2021, p. 1–17. [Online]. Available: https:
//doi.org/10.1145/3445814.3446724

[22] B. Deng, W. Wu, and L. Song, “Redundant Logic Elimination
in Network Functions,” ser. SOSR ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 34–40. [Online].
Available: https://doi.org/10.1145/3373360.3380832

[23] J. Auslander, M. Philipose, C. Chambers, S. J. Eggers, and B. N.
Bershad, “Fast, Effective Dynamic Compilation,” ser. PLDI ’96. New
York, NY, USA: Association for Computing Machinery, 1996, p.
149–159.

[24] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat,
B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ruderman, E. W.
Smith, R. Reitmaier, M. Bebenita, M. Chang, and M. Franz, “Trace-
based Just-in-Time type specialization for dynamic languages,” ser.
PLDI ’09, 2009, p. 465–478.

[25] R. Zhang, S. Debray, and R. T. Snodgrass, “Micro-specialization:
Dynamic code specialization of database management systems,” ser.
CGO ’12. New York, NY, USA: Association for Computing
Machinery, 2012, p. 63–73. [Online]. Available: https://doi.org/10.1145/
2259016.2259025

[26] A. Kohn, V. Leis, and T. Neumann, “Adaptive Execution of Compiled
Queries,” 2018, pp. 197–208.

[27] W. contributors, “Perf (linux),” 2018, [Online; accessed 13-November-
2023]. [Online]. Available: https://en.wikipedia.org/wiki/Perf (Linux)

[28] T. A. Khan, I. Neal, G. Pokam, B. Mozafari, and B. Kasikci, “DMon:
Efficient Detection and Correction of Data Locality Problems Using
Selective Profiling.” USENIX Association, July 2021, pp. 163–
181. [Online]. Available: https://www.usenix.org/conference/osdi21/
presentation/khan

[29] G. Inc., “Kubernetes: Production-Grade Container Orchestration,”
https://kubernetes.io, July 2019, [Online; accessed 07-August-2021].

[30] S. Miano, “Morpheus: Domain Specific Run Time Optimization for
Software Data Planes - Artifact for ASPLOS’22,” Zenodo, December

2021, version 1.3. [Online]. Available: https://doi.org/10.5281/zenodo.
5830832

[31] G. Inc., “Propeller: Profile Guided Optimizing Large Scale LLVM-based
Relinker,” Oct 2019, [Online; accessed 13-November-2023]. [Online].
Available: https://github.com/google/llvm-propeller

[32] DPDK, “L3 forwarding with access control sample application,”
2021, [Online; accessed 07-August-2021]. [Online]. Available: https:
//doc.dpdk.org/guides/sample app ug/l3 forward access ctrl.html

[33] G. Rétvári, L. Molnár, G. Enyedi, and G. Pongrácz, “Dynamic
Compilation and Optimization of Packet Processing Programs,” ACM
SIGCOMM NetPL, 2017.

[34] J. Jackson, “Kubernetes long road to dual
IPv4/IPv6 support,” 2019, [Online; accessed 13-
November-2023]. [Online]. Available: https://thenewstack.io/
it-takes-a-community-kubernetes-long-road-to-dual-ipv4-ipv6-support

[35] “The Open Virtual Network architecture: Tunnel encapsulations,”
2018, [Online; accessed 07-August-2021]. [Online]. Available:
http://www.openvswitch.org/support/dist-docs/ovn-architecture.7.html

[36] G. Liu, Y. Ren, M. Yurchenko, K. K. Ramakrishnan, and T. Wood,
“Microboxes: High Performance NFV with Customizable, Asynchronous
TCP Stacks and Dynamic Subscriptions,” ser. SIGCOMM ’18. New
York, NY, USA: Association for Computing Machinery, 2018, p.
504–517. [Online]. Available: https://doi.org/10.1145/3230543.3230563

[37] S. Miano, M. Bertrone, F. Risso, M. Tumolo, and M. V. Bernal,
“Creating Complex Network Services with eBPF: Experience and
Lessons Learned,” 2018, pp. 1–8.

[38] D. E. Taylor and J. S. Turner, “Classbench: A packet classification
benchmark,” IEEE/ACM transactions on networking, vol. 15, no. 3, pp.
499–511, 2007.

[39] OpenStack Authors, “OpenStack,” oct 2020, [Online; accessed
13-November-2023]. [Online]. Available: https://www.openstack.org/

[40] P. Kazemian, G. Varghese, and N. McKeown, “Header Space
Analysis: Static Checking for Networks.” San Jose, CA: USENIX
Association, April 2012, pp. 113–126. [Online]. Available: https:
//dl.acm.org/doi/10.5555/2228298.2228311

[41] V. Olteanu, A. Agache, A. Voinescu, and C. Raiciu, “Stateless
datacenter load-balancing with beamer.” Renton, WA: USENIX
Association, April 2018, pp. 125–139. [Online]. Available: https:
//dl.acm.org/doi/10.5555/3307441.3307453

[42] T. Barbette, C. Tang, H. Yao, D. Kostić, G. Q. M. Jr.,
P. Papadimitratos, and M. Chiesa, “A High-Speed Load-Balancer
design with guaranteed Per-Connection-Consistency.” Santa Clara,
CA: USENIX Association, February 2020, pp. 667–683. [Online].
Available: https://dl.acm.org/doi/10.5555/3388242.3388291

[43] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A Call
Graph Execution Profiler,” ser. SIGPLAN ’82. New York, NY, USA:
Association for Computing Machinery, 1982, p. 120–126. [Online].
Available: https://doi.org/10.1145/800230.806987

[44] J. Levon and P. Elie, “Oprofile: A system profiler for linux,”
2004, [Online; accessed 13-November-2023]. [Online]. Available:
https://oprofile.sourceforge.io/news/

[45] W. contributors, “Dtrace,” 2020, [Online; accessed 13-November-2023].
[Online]. Available: https://en.wikipedia.org/wiki/DTrace

[46] D. Bruening, T. Garnett, and S. Amarasinghe, “An Infrastructure
for Adaptive Dynamic Optimization,” ser. CGO ’03. USA:
IEEE Computer Society, 2003, p. 265–275. [Online]. Available:
https://dl.acm.org/doi/10.5555/776261.776290

[47] G. Authors, “AutoFDO tutorial,” 2016, [Online; accessed 13-November-
2023]. [Online]. Available: https://gcc.gnu.org/wiki/AutoFDO/Tutorial

[48] I. Corporation, “Pin - A Dynamic Binary Instrumentation
Tool,” dec 2020, [Online; accessed 13-November-2023].
[Online]. Available: https://software.intel.com/content/www/us/en/
develop/articles/pin-a-dynamic-binary-instrumentation-tool.html

[49] M. Kuehlewind and B. Trammell, “Manageability of the QUIC transport
protocol,” Working Draft, Internet-Draft draft-ietf-quic-manageability-
09, January 2021.

[50] “LLVM MemorySSA,” Feb 2021, [Online; accessed 13-November-
2023]. [Online]. Available: https://llvm.org/docs/MemorySSA.html

[51] “LLVM Alias Analysis,” Feb 2021, [Online; accessed 13-November-
2023]. [Online]. Available: https://llvm.org/docs/AliasAnalysis.html

[52] S. Miano, X. Chen, R. B. Basat, and G. Antichi, “Fast In-
Kernel Traffic Sketching in EBPF,” SIGCOMM Comput. Commun.
Rev., vol. 53, no. 1, pp. 3–13, apr 2023. [Online]. Available:
https://doi.org/10.1145/3594255.3594256

[53] C. Estan and G. Varghese, “New Directions in Traffic Measurement and
Accounting,” ser. SIGCOMM ’02. New York, NY, USA: Association

https://doi.org/10.1145/3286062.3286073
https://gcc.gnu.org/
https://doi.org/10.1145/349299.349303
https://doi.org/10.1109/40.591653
https://dl.acm.org/doi/10.5555/3314872.3314876
https://doi.org/10.1145/2854038.2854044
https://doi.org/10.1145/2934872.2934887
https://doi.org/10.1145/3050220.3050235
https://doi.org/10.1145/3445814.3446724
https://doi.org/10.1145/3445814.3446724
https://doi.org/10.1145/3373360.3380832
https://doi.org/10.1145/2259016.2259025
https://doi.org/10.1145/2259016.2259025
https://en.wikipedia.org/wiki/Perf_(Linux)
https://www.usenix.org/conference/osdi21/presentation/khan
https://www.usenix.org/conference/osdi21/presentation/khan
https://doi.org/10.5281/zenodo.5830832
https://doi.org/10.5281/zenodo.5830832
https://github.com/google/llvm-propeller
https://doc.dpdk.org/guides/sample_app_ug/l3_forward_access_ctrl.html
https://doc.dpdk.org/guides/sample_app_ug/l3_forward_access_ctrl.html
https://thenewstack.io/it-takes-a-community-kubernetes-long-road-to-dual-ipv4-ipv6-support
https://thenewstack.io/it-takes-a-community-kubernetes-long-road-to-dual-ipv4-ipv6-support
http://www.openvswitch.org/support/dist-docs/ovn-architecture.7.html
https://doi.org/10.1145/3230543.3230563
https://www.openstack.org/
https://dl.acm.org/doi/10.5555/2228298.2228311
https://dl.acm.org/doi/10.5555/2228298.2228311
https://dl.acm.org/doi/10.5555/3307441.3307453
https://dl.acm.org/doi/10.5555/3307441.3307453
https://dl.acm.org/doi/10.5555/3388242.3388291
https://doi.org/10.1145/800230.806987
https://oprofile.sourceforge.io/news/
https://en.wikipedia.org/wiki/DTrace
https://dl.acm.org/doi/10.5555/776261.776290
https://gcc.gnu.org/wiki/AutoFDO/Tutorial
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://llvm.org/docs/MemorySSA.html
https://llvm.org/docs/AliasAnalysis.html
https://doi.org/10.1145/3594255.3594256

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 16

for Computing Machinery, 2002, p. 323–336. [Online]. Available:
https://doi.org/10.1145/633025.633056

[54] U. Hölzle and D. Ungar, “Optimizing Dynamically-Dispatched Calls
with Run-Time Type Feedback,” ser. PLDI ’94. New York, NY, USA:
Association for Computing Machinery, 1994, p. 326–336. [Online].
Available: https://doi.org/10.1145/178243.178478

[55] A. Feldman and S. Muthukrishnan, “Tradeoffs for packet classification,”
vol. 3, 2000, pp. 1193–1202 vol.3.

[56] L. Pedrosa, R. Iyer, A. Zaostrovnykh, J. Fietz, and K. Argyraki,
“Automated Synthesis of Adversarial Workloads for Network Functions,”
ser. SIGCOMM ’18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 372–385. [Online]. Available:
https://doi.org/10.1145/3230543.3230573

[57] J. Worthington, “Eliminating unrequired guards,” 2018, [Online;
accessed 13-November-2023]. [Online]. Available: https://6guts.
wordpress.com/2018/09/29/eliminating-unrequired-guards/

[58] J. H. Han, P. Mundkur, C. Rotsos, G. Antichi, N. Dave, A. W. Moore, and
P. G. Neumann, “Blueswitch: enabling provably consistent configuration
of network switches,” 2015, pp. 17–27.

[59] L. Authors, “ORC Design and Implementation,”
https://llvm.org/docs/ORCv2.html, February 2023, [Online; accessed
18-February-2023].

[60] ——, “MCJIT Design and Implementation,”
https://llvm.org/docs/MCJITDesignAndImplementation.html, February
2023, [Online; accessed 18-February-2023].

[61] M. Shahbaz and N. Feamster, “The Case for an Intermediate
Representation for Programmable Data Planes,” ser. SOSR ’15. New
York, NY, USA: Association for Computing Machinery, 2015. [Online].
Available: https://doi.org/10.1145/2774993.2775000

[62] L. Rizzo, “Netmap: A Novel Framework for Fast Packet I/O,” ser.
USENIX ATC’12. USA: USENIX Association, 2012, p. 9. [Online].
Available: https://dl.acm.org/doi/10.5555/2342821.2342830

[63] “Linux AF XDP,” Feb 2021, [Online; accessed 13-November-2023].
[Online]. Available: https://www.kernel.org/doc/html/latest/networking/
af xdp.html

[64] S. Miano, M. Bertrone, F. Risso, M. V. Bernal, Y. Lu, J. Pi,
and A. Shaikh, “A Service-Agnostic Software Framework for Fast
and Efficient in-Kernel Network Services,” 2019, pp. 1–9. [Online].
Available: https://doi.org/10.1109/ANCS.2019.8901880

[65] T. Barbette, C. Soldani, and L. Mathy, “Fast Userspace Packet
Processing,” ser. ANCS ’15. USA: IEEE Computer Society, 2015, p.
5–16.

[66] “Intel Data Direct I/O Technology,” Feb 2021, [Online; accessed 13-
November-2023]. [Online]. Available: https://www.intel.co.uk/content/
www/uk/en/io/data-direct-i-o-technology.html

[67] DPDK, “Pktgen traffic generator using dpdk,” aug 2018, [Online;
accessed 07-August-2021]. [Online]. Available: http://dpdk.org/git/apps/
pktgen-dpdk

[68] J. Ribas, “Dpdk burst replay tool,” Jun 2019, [Online; accessed 13-
November-2023]. [Online]. Available: https://github.com/FraudBuster/
dpdk-burst-replay

[69] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“MoonGen: A Scriptable High-Speed Packet Generator,” ser. IMC ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
275–287. [Online]. Available: https://doi.org/10.1145/2815675.2815692

[70] S. Miano, F. Risso, M. V. Bernal, M. Bertrone, and Y. Lu, “A Framework
for eBPF-based Network Functions in an Era of Microservices,” IEEE
Transactions on Network and Service Management, pp. 1–1, 2021.

[71] S. Miano, M. Bertrone, F. Risso, M. V. Bernal, Y. Lu, and J. Pi,
“Securing Linux with a Faster and Scalable Iptables,” SIGCOMM
Comput. Commun. Rev., vol. 49, no. 3, p. 2–17, November 2019.
[Online]. Available: https://doi.org/10.1145/3371927.3371929

[72] D. E. Taylor and J. S. Turner, “Classbench filter set &
trace generator,” accessed: 2023-11-11. [Online]. Available: https:
//www.arl.wustl.edu/classbench/

[73] S. Bradner, “Benchmarking Terminology for Network Interconnection
Devices,” Internet Requests for Comments, RFC Editor, RFC 1242, July
1991. [Online]. Available: https://www.rfc-editor.org/rfc/rfc1242.txt

[74] S. Bradner and J. McQuaid, “Benchmarking methodology for network
interconnect devices,” Internet Requests for Comments, RFC Editor,
RFC 2544, March 1999, http://www.rfc-editor.org/rfc/rfc2544.txt.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc2544.txt

[75] Yonghong Song, “bpf: adding map batch processing support,”
Aug 2019, [Online; accessed 12-August-2021]. [Online]. Available:
https://lwn.net/Articles/797808/

[76] CAIDA, “The CAIDA UCSD Anonymized Internet Traces,” 2019,
[Online; accessed 13-November-2023]. [Online]. Available: http:
//www.caida.org/data/passive/passive dataset.xml

[77] StackOverflow, What can cause my code to run slower when the server
JIT is activated?, 2011, https://stackoverflow.com/questions/2923989/
what-can-cause-my-code-to-run-slower-when-the-server-jit-is-activated.

[78] Oracle, “Java HotSpot VM Options,” 2021, [Online; accessed
13-November-2023]. [Online]. Available: https://www.oracle.com/java/
technologies/javase/vmoptions-jsp.html

[79] C. Authors, “Cilium: Api-aware networking and security using ebpf
and xdp,” 2020, https://github.com/cilium/cilium.

[80] ——, “Tigera adds ebpf support to calico,” 2019, https://www.
projectcalico.org/tigera-adds-ebpf-support-to-calico/.

[81] F. Parola, L. D. Giovanna, G. Ognibene, and F. Risso, “Creating
disaggregated network services with ebpf: the kubernetes network
provider use case,” 2022, pp. 254–258. [Online]. Available:
https://doi.org/10.1109/NetSoft54395.2022.9844062

[82] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,
G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar, and
P. Mishra, “The design and operation of cloudlab,” ser. USENIX ATC
’19. USA: USENIX Association, 2019, p. 1–14.

[83] Kubernetes, “Benchmarking kubernetes networking perfor-
mance,” 2023, [Online; accessed 13-November-2023]. [Online].
Available: https://github.com/kubernetes/perf-tests/tree/master/network/
benchmarks/netperf

[84] F. Shahinfar, S. Miano, G. Siracusano, R. Bifulco, A. Panda, and
G. Antichi, “Automatic kernel offload using bpf,” ser. HOTOS ’23.
New York, NY, USA: Association for Computing Machinery, 2023, p.
143–149. [Online]. Available: https://doi.org/10.1145/3593856.3595888

[85] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu, “NFP: Enabling Network
Function Parallelism in NFV,” ser. SIGCOMM ’17. New York, NY,
USA: Association for Computing Machinery, 2017, p. 43–56. [Online].
Available: https://doi.org/10.1145/3098822.3098826

[86] Y. Yuan, M. Alian, Y. Wang, R. Wang, I. Kurakin, C. Tai, and
N. S. Kim, “Don’t forget the i/o when allocating your llc,” ser.
ISCA ’21. IEEE Press, 2021, p. 112–125. [Online]. Available:
https://doi.org/10.1109/ISCA52012.2021.00018

[87] Y. Chen, C. Mendis, M. Carbin, and S. Amarasinghe, VeGen: A
Vectorizer Generator for SIMD and Beyond, ser. ASPLOS’21. New
York, NY, USA: Association for Computing Machinery, 2021, p.
902–914. [Online]. Available: https://doi.org/10.1145/3445814.3446692

[88] S. Bansal and A. Aiken, “Automatic generation of peephole
superoptimizers,” ser. ASPLOS XII. New York, NY, USA: Association
for Computing Machinery, 2006, p. 394–403. [Online]. Available:
https://doi.org/10.1145/1168857.1168906

[89] R. Joshi, G. Nelson, and K. Randall, “Denali: A Goal-Directed
Superoptimizer,” ser. PLDI ’02. New York, NY, USA: Association
for Computing Machinery, 2002, p. 304–314. [Online]. Available:
https://doi.org/10.1145/512529.512566

[90] R. Sasnauskas, Y. Chen, P. Collingbourne, J. Ketema, J. Taneja, and
J. Regehr, “Souper: A Synthesizing Superoptimizer,” 2017. [Online].
Available: https://arxiv.org/abs/1711.04422

[91] M. Mukherjee, P. Kant, Z. Liu, and J. Regehr, “Dataflow-Based
Pruning for Speeding up Superoptimization,” Proc. ACM Program.
Lang., vol. 4, no. OOPSLA, November 2020. [Online]. Available:
https://doi.org/10.1145/3428245

[92] P. M. Phothilimthana, A. Thakur, R. Bodik, and D. Dhurjati, “Scaling
up Superoptimization,” ser. ASPLOS ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 297–310. [Online].
Available: https://doi.org/10.1145/2872362.2872387

[93] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy,
“Softnic: A software nic to augment hardware,” 2015.

[94] S. Choi, X. Long, M. Shahbaz, S. Booth, A. Keep, J. Marshall, and
C. Kim, “PVPP: A Programmable Vector Packet Processor,” ser. SOSR
’17. New York, NY, USA: Association for Computing Machinery,
2017, p. 197–198. [Online]. Available: https://doi.org/10.1145/3050220.
3060609

[95] ——, “The Case for a Flexible Low-Level Backend for Software
Data Planes,” ser. APNet’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 71–77. [Online]. Available:
https://doi.org/10.1145/3106989.3107000

[96] L. Foundation, “Vector Packet Processing (VPP) platform,” Oct
2020, [Online; accessed 13-November-2023]. [Online]. Available:
https://wiki.fd.io/view/VPP

[97] G. P. Katsikas, T. Barbette, D. Kostić, R. Steinert, and G. Q. M. Jr.,
“Metron: NFV Service Chains at the True Speed of the Underlying

https://doi.org/10.1145/633025.633056
https://doi.org/10.1145/178243.178478
https://doi.org/10.1145/3230543.3230573
https://6guts.wordpress.com/2018/09/29/eliminating-unrequired-guards/
https://6guts.wordpress.com/2018/09/29/eliminating-unrequired-guards/
https://doi.org/10.1145/2774993.2775000
https://dl.acm.org/doi/10.5555/2342821.2342830
https://www.kernel.org/doc/html/latest/networking/af_xdp.html
https://www.kernel.org/doc/html/latest/networking/af_xdp.html
https://doi.org/10.1109/ANCS.2019.8901880
https://www.intel.co.uk/content/www/uk/en/io/data-direct-i-o-technology.html
https://www.intel.co.uk/content/www/uk/en/io/data-direct-i-o-technology.html
http://dpdk.org/git/apps/pktgen-dpdk
http://dpdk.org/git/apps/pktgen-dpdk
https://github.com/FraudBuster/dpdk-burst-replay
https://github.com/FraudBuster/dpdk-burst-replay
https://doi.org/10.1145/2815675.2815692
https://doi.org/10.1145/3371927.3371929
https://www.arl.wustl.edu/classbench/
https://www.arl.wustl.edu/classbench/
https://www.rfc-editor.org/rfc/rfc1242.txt
http://www.rfc-editor.org/rfc/rfc2544.txt
http://www.rfc-editor.org/rfc/rfc2544.txt
https://lwn.net/Articles/797808/
http://www.caida.org/data/passive/passive_dataset.xml
http://www.caida.org/data/passive/passive_dataset.xml
https://stackoverflow.com/questions/2923989/what-can-cause-my-code-to-run-slower-when-the-server-jit-is-activated
https://stackoverflow.com/questions/2923989/what-can-cause-my-code-to-run-slower-when-the-server-jit-is-activated
https://www.oracle.com/java/technologies/javase/vmoptions-jsp.html
https://www.oracle.com/java/technologies/javase/vmoptions-jsp.html
https://github.com/cilium/cilium
https://www.projectcalico.org/tigera-adds-ebpf-support-to-calico/
https://www.projectcalico.org/tigera-adds-ebpf-support-to-calico/
https://doi.org/10.1109/NetSoft54395.2022.9844062
https://github.com/kubernetes/perf-tests/tree/master/network/benchmarks/netperf
https://github.com/kubernetes/perf-tests/tree/master/network/benchmarks/netperf
https://doi.org/10.1145/3593856.3595888
https://doi.org/10.1145/3098822.3098826
https://doi.org/10.1109/ISCA52012.2021.00018
https://doi.org/10.1145/3445814.3446692
https://doi.org/10.1145/1168857.1168906
https://doi.org/10.1145/512529.512566
https://arxiv.org/abs/1711.04422
https://doi.org/10.1145/3428245
https://doi.org/10.1145/2872362.2872387
https://doi.org/10.1145/3050220.3060609
https://doi.org/10.1145/3050220.3060609
https://doi.org/10.1145/3106989.3107000
https://wiki.fd.io/view/VPP

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 17

Hardware.” Renton, WA: USENIX Association, April 2018, pp.
171–186. [Online]. Available: https://dl.acm.org/doi/10.5555/3307441.
3307457

[98] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “ClickOS and the Art of Network Function Virtualization,”
ser. NSDI’14. USA: USENIX Association, 2014, p. 459–473. [Online].
Available: https://dl.acm.org/doi/10.5555/2616448.2616491

[99] H. Ballani, P. Costa, C. Gkantsidis, M. P. Grosvenor, T. Karagiannis,
L. Koromilas, and G. O’Shea, “Enabling End-Host Network
Functions,” ser. SIGCOMM ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 493–507. [Online]. Available:
https://doi.org/10.1145/2785956.2787493

[100] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design and
Implementation of a Consolidated Middlebox Architecture.” San Jose,
CA: USENIX, 2012, pp. 323–336. [Online]. Available: https://www.
usenix.org/conference/nsdi12/technical-sessions/presentation/sekar

[101] F. Parola, F. Risso, and S. Miano, “Providing telco-oriented network
services with ebpf: the case for a 5g mobile gateway,” 2021, pp. 221–225.
[Online]. Available: https://doi.org/10.1109/NetSoft51509.2021.9492571

[102] A. Bremler-Barr, Y. Harchol, and D. Hay, “OpenBox: A Software-
Defined Framework for Developing, Deploying, and Managing Network
Functions,” ser. SIGCOMM ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 511–524. [Online]. Available:
https://doi.org/10.1145/2934872.2934875

[103] M. Shahbaz and N. Feamster, “The case for an intermediate rep-
resentation for programmable data planes,” ser. SOSR ’15. New
York, NY, USA: Association for Computing Machinery, 2015, https:
//doi.org/10.1145/2774993.2775000.

[104] G. P. Katsikas, M. Enguehard, M. Kuźniar, G. Q. Maguire Jr, and
D. Kostić, “SNF: synthesizing high performance NFV service chains,”
PeerJ Computer Science, vol. 2, p. e98, November 2016. [Online].
Available: https://doi.org/10.7717/peerj-cs.98

[105] A. Manousis, R. A. Sharma, V. Sekar, and J. Sherry, “Contention-
aware performance prediction for virtualized network functions,”
ser. SIGCOMM ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 270–282. [Online]. Available:
https://doi.org/10.1145/3387514.3405868

[106] R. Iyer, L. Pedrosa, A. Zaostrovnykh, S. Pirelli, K. Argyraki, and
G. Candea, “Performance contracts for software network functions.”
USENIX Association, February 2019, pp. 517–530.

[107] A. Bhardwaj, A. Shree, V. B. Reddy, and S. Bansal, “A
preliminary performance model for optimizing software packet
processing pipelines,” ser. APSys ’17. New York, NY, USA:
Association for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3124680.3124747

[108] F. Rath, J. Krude, J. Rüth, D. Schemmel, O. Hohlfeld, J. A. Bitsch,
and K. Wehrle, “Symperf: Predicting network function performance,”
ser. SIGCOMM Posters and Demos ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 34–36. [Online].
Available: https://doi.org/10.1145/3123878.3131977

Sebastiano Miano received his M.S. and Ph.D degree
in Computer Engineering from Politecnico di Torino.
He is now Assistant Professor at the Politecnico di
Milano at the Department of Electronics, Information
and Bioengineering. Previously, he was PostDoc
researcher at the School of Electronic Engineering
and Computer Science of Queen Mary Univerisity
of London (QMUL). He is particularly interested in
programmable data planes and high-speed network
function virtualization with a focus on eBPF and
XDP.

Alireza Sanaee received his BSc and MSc degrees in
computer science from the School of Computer Engi-
neering, Iran University of Science and Technology
(IUST) in 2016 and 2018, respectively, supervised
by Prof Mohsen Sharifi. Currently, he is a graduate
student at Queen Mary University of London, advised
by Dr. Gianni Antichi. His research interests focus
on designing operating and networked systems at
different levels of abstraction for data centers to
achieve higher performance.

Fulvio Risso received the M.Sc. (1995) and Ph.D.
(2000) in computer engineering from Politecnico di
Torino, Italy. He is currently Associate Professor at
the same University. His research interests focus on
high-speed and flexible network processing, edge/fog
computing, software-defined networks, network func-
tions virtualization. He has co-authored more than
100 scientific papers.

Gábor Rétvári received the M.Sc. and Ph.D. de-
grees in electrical engineering from the Budapest
University of Technology and Economics in 1999
and 2007. He is now the Ericsson Systems Professor
at the Department of Telecommunications and Media
Informatics and a co-founder and CTO of L7mp.io,
an expert group focusing on cloud-native real-time
communications. His research interests include all
aspects of network routing and switching, the pro-
grammable data plane and the cloud-native network
stack.

Gianni Antichi received the M.Sc. and Ph.D. degrees
in telecomunication engineering from the University
of Pisa in 2007 and 2011. He is now Associate
Professor at Politecnico di Milano and Senior Lec-
turer at Queen Mary University of London. His
research interests are at the intersection of systems
and networking with a special focus on end-host
networking and dataplane offloading.

https://dl.acm.org/doi/10.5555/3307441.3307457
https://dl.acm.org/doi/10.5555/3307441.3307457
https://dl.acm.org/doi/10.5555/2616448.2616491
https://doi.org/10.1145/2785956.2787493
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/sekar
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/sekar
https://doi.org/10.1109/NetSoft51509.2021.9492571
https://doi.org/10.1145/2934872.2934875
https://doi.org/10.1145/2774993.2775000
https://doi.org/10.1145/2774993.2775000
https://doi.org/10.7717/peerj-cs.98
https://doi.org/10.1145/3387514.3405868
https://doi.org/10.1145/3124680.3124747
https://doi.org/10.1145/3123878.3131977

	Introduction
	Motivation
	Challenges
	Compilation pipeline
	Code Analysis
	Instrumentation
	Optimization Passes
	Just-in-time compilation (JIT)
	Constant propagation
	Dead code elimination
	Data Structure Specialization
	Branch Injection
	Guard elision

	Update

	Implementation
	The eBPF Plugin
	The DPDK Plugin

	Evaluation
	Benefits of Optimizations
	What is the cost of code instrumentation?
	How fast is the compilation?
	Morpheus in action
	What can go wrong?
	Morpheus with DPDK programs

	Morpheus with Kubernetes
	Discussions
	Related work
	Conclusion
	References
	Biographies
	Sebastiano Miano
	Alireza Sanaee
	Fulvio Risso
	Gábor Rétvári
	Gianni Antichi

