
1292 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

Oblivious Routing in IP Networks
Marco Chiesa , Gábor Rétvári , and Michael Schapira

Abstract— To optimize the flow of traffic in IP networks,
operators do traffic engineering (TE), i.e., tune routing-protocol
parameters in response to traffic demands. TE in IP networks
typically involves configuring static link weights and splitting
traffic between the resulting shortest-paths via the equal-cost-
multipath (ECMP) mechanism. Unfortunately, ECMP is a noto-
riously cumbersome and indirect means for optimizing traffic
flow, often leading to poor network performance. Also, obtaining
accurate knowledge of traffic demands as the input to TE
is a non-trivial task that may require additional monitoring
infrastructure, and traffic conditions can be highly variable,
further complicating TE. We leverage recently proposed schemes
for increasing ECMP’s expressiveness via carefully disseminated
bogus information (lies) to design COYOTE, a readily deployable
TE scheme for robust and efficient network utilization. COYOTE
leverages new algorithmic ideas to configure (static) traffic
splitting ratios that are optimized with respect to all (even
adversarial) traffic scenarios within the operator’s “uncertainty
bounds”. Our experimental analyses show that COYOTE signif-
icantly outperforms today’s prevalent TE schemes in a manner
that is robust to traffic uncertainty and variation. We discuss
experiments with a prototype implementation of COYOTE.

Index Terms— Software defined networking, routing, IP net-
works, wide area networks, network theory.

I. INTRODUCTION

Today’s Traffic Engineering Is Suboptimal:

TO ADAPT the routing of traffic to the demands network
operators do traffic engineering (TE), i.e., tune routing-

protocol parameters so as to influence how traffic flows in
their networks [1]–[3]. One of the most prevalent schemes for
TE within an organizational IP network is based on config-
uring static link-weights into shortest-path protocols such as
OSPF [4] and splitting traffic between the resulting shortest-
paths via ECMP [5]. Traditional TE with ECMP significantly
constrains both route-computation and traffic splitting between
multiple paths in two crucial ways: (1) traffic from a source
to a destination in the network can only flow along the
shortest paths between them (for the given configuration of
link weights), and (2) traffic splitting between multiple paths
(if multiple shortest paths exist) can only be done in very
specific manners (see Section II for an illustration).

ECMP’s lack of expressiveness makes traffic engineering
with ECMP a notoriously hard task that often results in

Manuscript received December 25, 2016; revised July 24, 2017 and
December 20, 2017; accepted March 28, 2018; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor Y. Yi. Date of publication
May 23, 2018; date of current version June 14, 2018. (Corresponding author:
Marco Chiesa.)

M. Chiesa is with the KTH Royal Institute of Technology, 11428 Stockholm,
Sweden (e-mail: chiesa@dia.uniroma3.it).

G. Rétvári is with the MTA-BME Information Systems Research Group,
1521 Budapest, Hungary.

M. Schapira is with the Hebrew University of Jerusalem,
Jerusalem 9190401, Israel.

Digital Object Identifier 10.1109/TNET.2018.2832020

poor performance. Indeed, not only does ECMP’s inflexibility
imply that traffic flow might be arbitrarily far from the global
optimum [6], but even choosing “good” link weights for TE
with ECMP is infeasible in general [7]. Beyond ECMP’s
deficiencies, today’s dominant TE schemes also suffer from
other predicaments, e.g., obtaining an accurate view of traffic
demand so as to optimize TE is difficult in practice [8],
as most networks lack the appropriate additional measurement
infrastructure [8] (e.g., NetFlow). In fact, the more widely
deployed monitoring tools, i.e., SNMP [9], only measures
link loads. Also, traffic can be highly variable and routing
configurations that are good with respect to one traffic sce-
nario can be bad with respect to another. From a recent
Internet measurement study in [10], we also observe that
the most prominent alternative to OSPF/ECMP TE scheme,
i.e., MPLS [11], is neither widely deployed (i.e., recent studies
have shown that over half of the Internet paths do not cross
even a single MPLS tunnel) and MPLS is rarely used for
TE (i.e., with only 20% of the MPLS tunnels being used for
TE purposes), thus relying on OSPF/ECMP mechanisms to
perform TE. We thus seek a TE scheme that is backwards
compatible with legacy routing infrastructure (i.e., OSPF and
ECMP), yet robustly achieves high performance even under
uncertain or variable traffic conditions.

SDN to the Rescue? Software-Defined Networking (SDN)
comes with the promise of improved network manageability
and flexibility. Yet, transition to SDN is extremely challenging
in practice as realizing full-fledged SDN can involve drastic
changes to the legacy routing infrastructure. Consequently,
recent proposals focus on providing “SDN-like” control over
legacy network devices [12], [13]. However, while such control
greatly enhances the expressiveness of today’s IP routing,
backwards compatibility with legacy equipment and protocols
imposes nontrivial constraints on the design of new SDN
applications, including that routing be destination-based and,
typically, absence of an online traffic measurement infrastruc-
ture. We explore how “legacy-compatible SDN control” can
be harnessed to improve TE in traditional IP networks.

COYOTE (Optimized, OSPF/ECMP-Compatible TE):
We leverage recently introduced approaches for enriching
ECMP’s expressiveness without changing router hardware/
software to design COYOTE (COmpatible Yet Optimized TE).
Recent studies show that by injecting “lies” into OSPF-ECMP
(specifically, information about fake links and nodes), OSPF
and ECMP can support much richer traffic flow configura-
tions [12], [13]. We exploit these developments to explore how
OSPF-ECMP routing can be extended to achieve consistently
high performance even under great uncertainty about the traffic
conditions and high variability of traffic. To accomplish this,
COYOTE relies on new algorithmic ideas to configure (static)
traffic splitting ratios at routers/switches that are optimized

1063-6692 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-9675-9729
https://orcid.org/0000-0002-5958-7817

CHIESA et al.: OBLIVIOUS ROUTING IN IP NETWORKS 1293

with respect to all (even adversarially chosen) traffic scenarios
within operator-specified “uncertainty bounds”. COYOTE can
be combined with dynamic TE techniques, which adapts rout-
ing to the measured traffic demands, by executing it at regular
time intervals, thus adapting routing to any estimate measure
of the traffic matrices while being robust to sudden traffic
changes and measurement uncertainty in a proactive manner.

Our experimentation with COYOTE on real network topolo-
gies shows that COYOTE consistently and robustly achieves
good performance even with very limited (in fact, sometimes
even no) knowledge about the traffic demands and, in particu-
lar, exhibits significantly better performance than (optimized)
traditional TE with ECMP. Our experiments with a prototype
implementation of COYOTE also demonstrate its performance
benefits. We briefly discuss below the algorithmic challenges
facing the design of COYOTE and how these are tackled.

As discussed above, we view COYOTE as an important
additional step in the recent exploration of how SDN-like
functionality can be accomplished without changing today’s
networking infrastructure (see [12], [13]). Indeed, COYOTE
can be regarded as the first legacy-compatible SDN application
for TE.

New Algorithmic Framework (Destination-Based Oblivious
Routing): A rich body of literature in algorithmic theory
investigates “(traffic-demands-)oblivious routing” [14]–[16],
i.e., how to compute provably good routing configurations with
limited (possibly even no) knowledge of the traffic demands.
Past studies [15], [17] show that, even though lacking accu-
rate information about the traffic demands, demands-oblivious
routing algorithms yield remarkably close-to-optimal perfor-
mance on real-world networks. Unfortunately, the above-
mentioned algorithms involve forwarding packets based on
both source and destination and are so inherently incompatible
with destination-based routing via OSPF-ECMP. In addition,
realizing these schemes in practice entails either excessive
use of (e.g., MPLS) tunneling/tagging in traditional IP net-
works [15], [18], or the ubiquitous deployment of per-flow
routing software-defined networking infrastructure [19].

Our design of COYOTE relies on a novel algorithmic
framework for demands-oblivious IP routing. We initiate the
study of optimizing oblivious routing under the restriction
that forwarding is destination-based. In light of the recent
progress on enhancing OSPF-ECMP’s expressiveness through
“SDN-like” control, we view the algorithmic investigation of
destination-based oblivious routing as an important and timely
research agenda. We take the first steps in this direction and
provide the following contributions:
• Our first result establishes that computing the optimal

destination-based oblivious routing configuration is compu-
tationally intractable, i.e., NP-Hard. This result highlights a
stark difference with unconstrained oblivious routing, which
can efficiently be solved in polynomial time [15].
• We show how, via the decomposition of this problem into

sub-problems that are easier to address with today’s mathe-
matical toolkit, and by leveraging prior research, COYOTE
can generate good routing configurations.
• Finally, we assess COYOTE using a set of 16 empirically-

derived Internet topologies [20] and the same traffic

Fig. 1. A sample network: (a) topology with unit capacity links;
(b) per-destination ECMP routing (oblivious performance ratio 3/2);
(c) COYOTE (oblivious performance ratio 4/3); and (d) COYOTE implemen-
tation with a fake node inserted at s1 for realizing the required splitting ratio.

uncertainty model from previous work [15]. We show that
COYOTE significantly outperforms traditional OSPF-ECMP-
based link weight optimization techniques.

Organization: We motivate our approach to TE via a
simple example in Section II and formulate a major algorith-
mic challenge facing legacy-compatible TE optimization in
Section III. Our negative results are presented in Section IV.
We present COYOTE’s design and explain how it addresses
these challenges in Sections V. A more detailed exposi-
tion of COYOTE’s algorithmic framework is presented in
the Appendix. An experimental evaluation of COYOTE on
empirically-derived datasets and COYOTE’s prototype imple-
mentation are presented in Sections VI and VII, respectively.
We discuss related work in Section VIII. We conclude and
leave the reader with promising directions for future research
in Section IX.

II. A MOTIVATING EXAMPLE

We next motivate our approach to TE in IP networks through
a simple example, which will be used as a running example
throughout the sequel.

Consider the toy example in Fig. 1a. Two network users,
s1 and s2, wish to send traffic to target t. Suppose that
each user is expected to send between 0 and 2 units of
flow and each link is of capacity 1. Suppose also that the
network operator is oblivious to the actual traffic demands
or, alternatively, that traffic is variable and user demands
might drastically change over time. The operator aims to
provide robustly good network performance, and thus has an
ambitious goal: configuring OSPF-ECMP routing parameters
so as to minimize link over-subscription across all possible
combinations of traffic demands within the above-specified
uncertainty bounds.

Consider first the traditional practice of splitting traffic
equally amongst the next-hops on shortest-paths to the des-
tination (i.e., traditional TE with ECMP, see Fig. 1b), where
the shortest path DAG towards t is depicted by dashed
arrows labelled with the resulting flow splitting ratios. Such
a DAG can be obtained by setting the link weghts of
(s1, s2),(s2, v),(v, t),(s2, t), and (s1, v), to 1, 1, 1, 2, and 2,
respectively. The in-DAG splitting ratios of each link are

1294 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

shown on each DAG edge. Observe that if the actual traffic
demands are 2 and 0 for s1 and s2, respectively, routing
as in Fig. 1b would result in link (over-)utilization that is
3/2 higher than that of the optimal routing of these specific
demands (which can send all traffic without exceeding any
link capacity). Specifically, routing as in Fig. 1b would result
in 3/2 units of traffic traversing link (v, t), whereas the total
flow could be optimally routed without at all exceeding the
link capacities by equally splitting it between paths (s1 s2 t)
and (s1 v t). One can actually show that this is, in fact,
the best guarantee achievable for this network via traditional
TE with ECMP, i.e., for any choice of link weights, equal
splitting of traffic between shortest paths would result in link
utilization that is 3/2 higher than optimal for some possible
traffic scenario. Can we do better?

We show that this is indeed possible if more flexible traffic
splitting than that of traditional TE with ECMP is possible.
One can prove that for any traffic demands of the users, per-
destination routing as in Fig. 1c results in a maximum link
utilization at most 4/3 times that of the optimal routing.1

We explain later how COYOTE realizes such uneven per-
destination load balancing without any modification to legacy
OSPF-ECMP. We next formulate the algorithmic challenge
facing COYOTE’s design.

III. THE ALGORITHMIC CHALLENGE

Recent proposals advocate “SDN-like” control over legacy
network devices [12], [13]. By carefully crafting “lies” (fake
links and nodes) to inject into OSPF-ECMP, OSPF and ECMP
can be made to support much richer traffic flow configurations.
We aim to investigate how these recent advances can be
harnessed to improve TE in traditional IP networks.

Importantly, while the proposed SDN approach to legacy
networks discussed above can greatly enhance the expressive-
ness of today’s IP routing, compatibility with legacy equip-
ment and routing protocols induces nontrivial constraints on
the design of “legacy-compatible SDN applications”: (1) that
routing be destination-based, and (2) typically, the absence
of an online traffic measurement infrastructure. Algorithmic
research on traffic flow optimization, in contrast, almost uni-
versally allows the routing of traffic to be dependent on both
sources and targets, and often involves accurate and up-to-date
knowledge of the traffic demand matrices.

We thus seek an algorithmic solution to the following
natural and, to the best of our knowledge, previously unex-
plored, challenge: Compute destination-based (i.e., IP-routing-
compatible) routing configurations that optimize the flow of
traffic with respect to operator-specified “uncertainty margins”
regarding the traffic demand matrices. We next proceed to
formulating this challenge. Our model draws upon the ideas
presented in [15].

Network, Routing, and Traffic Splitting: The network is
modeled as a directed and capacitated graph G = (V, E),
where ce denotes the capacity of edge e. Each vertex in G

1In fact, even the routing configuration in Fig. 1c is not optimal in this
respect. Indeed, COYOTE’s optimization techniques, discussed in Section V,
yield configurations with better guarantees (see Appendix B).

represent an ingress/egress node of the network or an internal
node. A routing configuration φ on network G specifies, for
each vertex t ∈ V , and for each edge e = (u, v) ∈ E, a value
φt(e) representing the fraction of the flow to t entering vertex
u that should be forwarded through edge (link) e. Clearly,
for every vertex u,

∑
(u,v) φt(u, v) = 1. Observe that the

combination of all φt(e) values (across all vertices t and
edges e) indeed completely determines how flow will be routed
between every two end-points.

Since routing is required to be destination-based, the routes
to each destination vertex must form a directed acyclic
graph (DAG). This is formally captured by requiring that for
every vertex t ∈ V and directed cycle C in G, for some
edge e ∈ C on the cycle φt(e) = 0. We say that a routing
configuration φ that satisfies this condition is a per-destination
(PD) routing configuration. For a PD routing configuration
φ, let fst(v), for vertices s, t, v ∈ V , be the fraction of the
demand s→ t that enters v. Observe that in PD routing, fst(v)
is well-defined and is induced by the φt(e) values as follows:
fst(v) =

∑
e=(u,v) fst(u)φt(e) if v �= s, 1 otherwise. Observe

that when x units of flow are routed from s to t through the
network, the contribution of this flow to the load on link (u, v)
is xfst(u)φt(u, v).

Performance Ratio: We are now ready to formalize
the optimization objective. Our focus is on the traditional
goal of minimizing link (over-)utilization (often also called
“congestion” in TE literature). Given a Demand Matrix (DM)
D = {ds1t1 , . . . , dsktk

} specifying the demand between each
pair of vertices, the maximum link utilization induced by a PD
routing (φ, f) is

MxLU(φ, D) = max
e=(u,v)∈E

∑

s,t∈D

dstfst(u)φt(e)/ce.

An optimal routing for D is a PD routing that minimizes
the load on the most utilized link, i.e.,

OPTU(D) = min
φ|φ is a PD routing

MxLU(φ, D).

The performance ratio of a given PD routing φ
on a specific given DM D is PERF (φ, {D}) =
MxLU(φ, D)/OPTU(D). Given a set D of DMs, the per-
formance ratio of a PD routing φ on D is PERF (φ,D) =
maxD∈D PERF (φ, {D}). D, in this formulation, should be
thought of as the space of demand matrices deemed to be
feasible by the network operator. When D is the set of
all possible DMs, the performance ratio is referred to as
the oblivious performance ratio. A routing φ is optimal if
PERF (φ,D) ≤ PERF (φ′,D) for any φ′. The OBLIVIOUS

IP ROUTING problem is computing a PD routing φ that is
optimal with respect to a given set D of DMs. The OBLIVIOUS

IP ROUTING can be formulated as the following non-linear
minimization problem.

min α

φ is a PD routing
∀ edges e = (u, v) :
∀ DMs D ∈ D with OPTU(D) = r :∑

(s,t)

dstfst(u)φt(e)/c(e) ≤ αr

CHIESA et al.: OBLIVIOUS ROUTING IN IP NETWORKS 1295

Fig. 2. The INTEGER gadget.

Observe that this optimization objective thus captures both
the computation of per-destination DAGs and the computation
of in-DAG traffic splitting ratios. Our focus is on sets of
demand matrices D that can be defined through linear con-
straints as such sets are expressive enough to model traffic
uncertainty, but mitigate the complexity of the optimization
problem. Specifically, the actual demand dst from a vertex s
to t can assume any value in the range dmin

st ≤ dst ≤ dmax
st ,

where dmin
st and dmax

st are the operator’s “uncertainty margins”
regarding dst and are given as input.

IV. NEGATIVE RESULTS

We formulated, in Section III, the fundamental algorith-
mic challenge facing COYOTE’s design: optimizing (traffic-
demands-)oblivious routing in IP networks. Importantly, this
optimization goal is closely related to the rich body of litera-
ture in algorithmic theory on “unconstrained” (i.e., not limited
to destination-based) oblivious routing [14]–[16].

Our results in this section show that imposing the real-
world limitation that routing be destination-based renders the
computation of “good” oblivious routing solutions signifi-
cantly harder. We first show that, in contrast to unconstrained
oblivious routing [15], destination-based oblivious routing is
intractable, in the sense that computing the optimal routing
configuration is NP-hard. Worse yet, in general, the oblivious
performance ratio, i.e., the distance from the best demands-
aware routing solution can be very high (as opposed to
logarithmic for unconstrained oblivious routing). We explain
in Section V how COYOTE’s design addresses these obstacles.
We next present our two negative results.

A. Oblivious IP Routing Is NP-Hard

We examine the computational complexity of the OBLIV-
IOUS IP ROUTING problem, as formulated in Section III.
We present the following computational hardness result.

Theorem 1: The OBLIVIOUS IP ROUTING problem is
NP-hard even if D consists of only two possible demand
matrices, only two vertices can source traffic, and all traffic is
destined for a single target vertex.

Proof of Theorem 1: Our proof reduces the BIPARTITION

problem to OBLIVIOUS IP ROUTING. In the BIPARTITION

problem, the input is a set W = {w1, . . . , wk} of k positive
integers and the goal is to partition then into two sets A and
B such that the sum of the elements in one partition is equal
to the sum of the elements in the other partition.

Fig. 3. Reduction instance.

We now show how to construct an instance I ′ of the
OBLIVIOUS IP ROUTING problem from an instance I of the
BIPARTITION problem so that the reduction holds, i.e., I ′ is
a positive instance if and only if I is a positive instance..

Let SUM be the sum of all the elements in W . We create
a directed graph G as follows. We add two source vertices
s1 and s2 and a single destination vertex d into G. For
each integer wi in W , we construct an INTEGER gadget
as follows (see Fig. 2). We add three vertices x1

i , x2
i , and

mi. We then add bidirectional edges (x1
i , x

2
i), (x1

i , mi), and
(x2

i , mi) each with capacity wi. Finally, we add two edges
(s1, x

1
i) and (s2, x

2
i) with capacity 2wi and edge (mi, d) with

capacity 2wi into G.
Observe that we can narrow our attention to demand matri-

ces that can be routed in G without exceeding the edge
capacities since the performance ratio is invariant to the
rescaling of traffic demands. In addition, as this set describes a
convex polyhedron in the demand space, we can further restrict
our focus to those vertices of the demand polyhedron that are
not “dominated” by any other demand vertex, i.e., demand
d = (d1, . . . , dn) dominates demand d′ = (d′1, . . . , d′n), if, for
all i = 1, . . . , n, we have di ≥ d′i.

In our reduction, the min-cut between the source ver-
tices and the target t is 2SUM , i.e., mincut(s1, t) =
mincut(s2, t) = mincut({s1, s2}, t) = 2SUM . As such,
the set of demand matrices that can be routed within the edge
capacities is D = {(ds1t, ds2t)|ds1t + ds2t ≤ 2SUM, ds1t ≥
0, ds2t ≥ 0}. As observed in Section III, the only relevant
demand points are D1 = (ds1t, ds2t) = (2SUM, 0) and
D2 = (ds1t, ds2t) = (0, 2SUM), which are vertices of the
demands polyhedron.

There are two crucial routing decisions that have to be made
at this point in order to route any demand matrix in D. The
first one is deciding what is the directed acyclic graph that
must be used to route any traffic from the source vertices to t.
The second one is computing the splitting ratios within
that DAG.

Observe that an optimal routing solution for D1 (D2) would
orient all the edges x1

i (x2
i) towards x2

i (x1
i) in the per-

destination DAG rooted at t and split the traffic at s1 in such a
way that 2wi units of flow are sent to the i’th INTEGER gadget
and equal split is performed at x1

i (x2
i). In this case, D1 (D2)

could be routed without exceeding the edge capacities. This
optimal routing for DM D1 (D2) would cause a link utilization
of 2 when routing DM D2 (D1). As such, in order to minimize

1296 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

the oblivious ratio, the crucial routing decision boils down
to carefully choose how to orient the edges (x1

i , x
2
i) in each

INTEGER gadget.
Lemma 2: Let I be a positive instance of BIPARTITION.

Then I ′ has a solution with oblivious performance 4
3 .

Proof: Let (P1, W \ P1) be two equal size partitions
of W . We show how to construct an oblivious routing that
has oblivious performance 4

3 .
We define an oblivious routing via splitting ratios at each

vertex of the graph, where a splitting ratio of 0 implies that
the outgoing link is oriented in the opposite direction in the
per-destination DAG towards t. The splitting ratios φ(s1, x

1
i)

at s1 (s2) is 4wi

3SUM if wi is in P1 (P2), 2wi

3SUM otherwise. The
splitting ratios φ(x1

i , x
2
i) at x1

i (x2
i) is 1

2 if wi is in P1 (P2), 0
otherwise. The splitting ratios φ(x1

i , mi) at x1
i is 1−φ(x1

i , x
2
i)

and the splitting ratios φ(x2
i , mi) at x2

i is 1− φ(x2
i , x

1
i).

We now show that we can route D1 with congestion at most
4
3 using the above routing solution. Let C = 4

3 . Consider an
arbitrary integer wi ∈ W . Two cases are possible: either (i)
wi is in P1 or (ii) not.

In case (i), i.e., wi is in P1, we send 2SUM 4wi

3SUM = 2wiC
units of flow to x1

i , which let (s1, x
1
i) be over-utilized by a

factor of C. In turn, x1
i sends 2wiC

1
2 = wiC unit of flow

to mi, which let (x1
i , mi) be over-utilized by a factor of C

and it sends wiC units of flow to x1
i , which let (x1

i , x
2
i) be

over-utilized by a factor of C. The latter flow is forwarded
through (x2

i , mi) with a link utilization of C. Finally, vertex
mi receives two flows, each of wiC units from x1

i and x2
i .

Since the capacity of edge (mi, t) is 2wi, the link utilization
is again C.

In case (ii), i.e., wi is not in P1, we have that a flow of
2SUM 2wi

3SUM = wiC units is sent through edges (s1, x
1
i),

(x1
i , mi), and (mi, t), which causes a link utilization no larger

than C.
A similar analysis can be performed to show that the link

utilization for DM D2 is never larger than C, which proves
the statement of the lemma.

Lemma 3: Let I be a negative instance of BIPARTITION.
Then I ′ does not admit a solution with oblivious ratio ≤ 4

3
Proof: We prove that if I ′ has an oblivious ratio ≤ 4

3 , then
I is a positive instance for BIPARTITION. Let φ be a routing
that has oblivious performance ratio ≤ 4

3 . Let P1 be a set of
indices such that i ∈ P1 if φ(x2

i , x
1
i) = 0. Let P2 = W \ P1.

Two cases are possible: (i)
∑

i∈P1
wi ≤ SUM

2 or (ii) not.
In case (i), we consider DM D1, i.e., (ds1t, ds2t) =

(2SUM, 0). Observe that the maximum amount of flow F1

that can be sent through edges (x1
i , mi), with i = 1, . . . , k is

at most F1 ≤ 4
3

∑
i∈P1

wi ≤ 4
3SUM since the link utilization

over all the edges is less than 4
3 . As such, the amount of flow

that must be routed through the edges in {(x1
i , x

2
i)|i ∈ P1} is

at least 2SUM − F1 ≥ 2SUM − 4
3SUM = 2

3SUM . This
amount of flow is routed without exceeding the edge capacities
by a factor higher than 4

3 . This implies that 2
3

SUM�
i∈P1

wi
≤ 4

3 ,

which implies that SUM
2 ≤

∑
i∈P1

wi. Since the sum of the
element in P1 is no greater than SUM

2 , the above inequality
can be true only if

∑
i∈P1

wi = SUM
2 , that is, P1 is an

even bipartition of I . Hence, I is a positive instance of

Fig. 4. Network example used in the proof of Theorem 4.

BIPARTITION and the statement of the lemma holds in this
case.

In case (ii), i.e.,
∑

i∈P1
wi > SUM

2 , by symmetry, we can
apply the same argument used in case (i) to prove that I is
a positive instance of BIPARTITION, where P2 plays the role
of P1 and we analyze DM D2 instead of D1. This concludes
the proof of the theorem.

By Lemma 2 and 3, the reduction from BIPARTITION

to OBLIVIOUS IP ROUTING follows and the statement of
Theorem 1 easily holds.

B. Far-From-Optimal Performance

Our next negative result shows that in some scenarios even
the optimal destination-based oblivious routing can be far from
the optimal demands-aware routing (specifically, an Ω(|V |)
factor away, where V is the number of vertices).

Theorem 4: There exists a capacitated network graph
G = (V, E) and a set D of possible traffic matrices such that
the performance ratio of the optimal oblivious per-destination
routing is Ω(|V |).

Proof: Consider an n-vertex path (x1, . . . , xn) connected
by bidirectional edges with infinite (i.e., arbitrarily high)
capacity as in Fig. 4. Now, add a destination vertex t and
connect each source vertex xi, with i = 1, . . . , n to t with a
directed edge of capacity 1. Suppose that the set of possible
traffic matrices consists of all possible matrices, i.e., any
set of inter-vertex demand values is admissible. We show
that the performance of any oblivious per-destination routing
configuration is Ω(n).

Consider the set D of n possible traffic matrices D1, . . . , Dn

such that in Di source node si wants to send a flow of n unit
to t and the demands of all other vertices are 0 with respect
to all target vertices. For each traffic matrix Di, an optimal
demands-aware per-destination routing φ′ can route the xi → t
flow by carefully splitting it in such a way that each vertex
xi receives a fraction 1/n of the flow. Each vertex xi can
then route the received flow directly to t without exceeding
the edge capacities, and so OPTU(Di) ≤ 1. Now, consider
any oblivious per-destination routing φ. At least one vertex
xi must send its traffic only through edge (xi, t), otherwise
a forwarding loop exists—a contradiction. This implies that
routing Di with φ will cause a link utilization of n over
edge (xi, t), i.e., PERF (φ,D) ≥ PERF (φ, Di) = n, which
concludes the proof of the theorem.

We note that any unconstrained routing solution, i.e., where
the routing solution also depends on the source of the traffic,
where each demand from xi to t, with i = 1, . . . , n, is equally
split among all the (xj , t) link, with j = 1, . . . , n, is optimal
for any possible traffic demand that can be routed without
exceeding the link capacity as the (xi). This means that the
unconstrained oblivious routing has a performance ratio of 1,
thus a gap of Θ(V) with respect to per-destination routing.

CHIESA et al.: OBLIVIOUS ROUTING IN IP NETWORKS 1297

Fig. 5. COYOTE architecture.

V. COYOTE DESIGN

A. Overview

As proved in Section IV, efficiently computing the optimal
selection of DAGs and in-DAG traffic splitting ratios is beyond
reach. Indeed, a naïve brute force approach would require
exploring the set of exponentially many per-destination DAGs
and infinite in-DAG splitting ratios. We next describe how
COYOTE’s design addresses this challenge. COYOTE’s flow-
computation decomposes the task of computing destination-
based oblivious routing configurations into two algorithmic
sub-problems, and tackles each independently. First, COYOTE
applies a heuristic to compute destination-oriented DAGs.
Then, COYOTE optimizes in-DAG traffic splitting ratios
through a combination of optimization techniques, including
iterative geometric programming. We show in Section VI that
COYOTE’s DAG selection and flow optimization algorithms
empirically exhibit good network performance.

Figure 5 presents an overview of the COYOTE architecture.
COYOTE gets as input the (capacitated) network topology
and the so-called “uncertainty bounds”, i.e., for every two
nodes (routers) in the network, s and t, a real-valued interval
[dmin

st , dmax
st], capturing the operator’s uncertainty about the

traffic demand from s to t or, alternatively, the potential
variability of traffic. COYOTE then uses this information first
to compute a forwarding DAG rooted in each destination
node, and then to optimize traffic splitting ratios within each
DAG. Lastly, the outcome of this computation is converted
into OSPF configuration by injecting “lies” into routers.
An operator executes COYOTE any time his perceptions about
the uncertainty of the prevailing demand matrices are changed.
We next elaborate on each of the above components.

B. Computing DAGs

In COYOTE, DAGs rooted in different destinations are not
coupled in any way, allowing network operators to specify
any set of DAGs. We show, in Section VI, however, that the
following simple approach generates empirically good routing
outcomes.

Step I (Shortest-Path DAG Generation): We assign each
link a weight to generate a shortest-path DAG rooted in each
destination (as in traditional OSPF routing). We evaluate in
Section VI two heuristics for setting link weights from the
OSPF-ECMP TE literature:

• Reverse capacities. Link weights are set to be the inverse
of link capacities. We point out that this is compatible
with Cisco’s recommendations for default OSPF link
weights [21].

• Local search. This heuristic leverages the techniques
in [16] for optimizing oblivious ECMP routing config-
urations. Specifically, link weights are initially set to be
the reverse link capacities (as above). Then, the heuristic
iteratively computes a worst-case traffic matrix for ECMP

TE with respect to the current link weights, adds this
matrix to a set of traffic matrices T (initially set to be
empty), and myopically changes a single link’s weight
if this improves the worst-case ECMP link utilization
over the matrices in set T . The reader is referred to
Appendix A for a detailed exposition.

Step II (DAG Augmentation): Once the shortest-path DAGs
are computed, each DAG is augmented with additional links
as follows. Each link that does not appear in the shortest-
path DAG for some target vertex t is oriented towards the
incident node that is closer to the destination t, breaking ties
lexicographically (suppose that the nodes are numbered).

Let us revisit our running example in Fig.1a. Observe that
while the shortest-path DAG rooted in t does not contain
link (s2, v) if all links have the same weight, the augmented
forwarding DAGs will also utilize this link (in some direction).
DAG-augmentation allows us to enhance path diversity, and so
increases the available network capacity. Since the final DAGs
contain the original shortest-path DAGs, traditional ECMP
routing is a point in the solution space over which COYOTE
optimizes. COYOTE is thus guaranteed to compute an obliv-
ious solution that is no worse than standard OSPF/ECMP.
We show in Section VI that COYOTE indeed significantly
outperforms TE with ECMP using any of the two heuristics.

C. In-DAG Traffic Splitting

Once per-destination DAGs are computed, as described
above, COYOTE executes an algorithm that receives as input
a set of per-destination DAGs and optimizes traffic splitting
within these DAGs, with the objective of minimizing the worst-
case congestion (link utilization) over a given set of possible
traffic demand matrices.

Whether the problem of computing traffic splitting ratios
within a set of given DAGs can be solved optimally in
a computationally-efficient manner remains an open ques-
tion (see Section IX). This seems impossible within the
familiar mathematical toolset of TE, namely, integer and
linear programming. We found that a different approach is,
however, feasible: casting the optimization problem described
in Section III as a geometric program (in fact, a mixed
linear-geometric program (MLGP) [22]). Stating COYOTE’s
traffic splitting optimization as a geometric program is not
straightforward and involves careful application of various
techniques (convex programming, monomial approximations,
LP duality). We provide an intuitive exposition of some
of these ideas below using the running example in Fig. 1.
We dive into the many technical details involved in computing
COYOTE’s traffic splitting ratios in Appendix C.

Again, s1 and s2 send traffic to t, let the DAG for t be
as in Fig. 1c, and suppose that the capacity on links (s1, s2),
(s1, v), and (s2, v) is infinite (that is, arbitrarily large) and
on (s2, t) and (v, t) is 1. We are given as input a set of
possible demand matrices D for the two users and our goal is
to find the traffic splitting ratios φ so that the worst-case link
utilization across these two demand matrices is minimized.
We assume, without loss of generality (since the performance
ratio is invariant to rescaling) that traffic demands in D
can always be routed without exceeding the link capacities.

1298 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

A simplified mathematical program for this problem would
take the following form (see explanations below):

min α

∀(ds1t, ds2t) ∈ D (1)
ds1tφ(s1, s2)φ(s2, t) + ds2tφ(s2, t)

c(s2,t)
≤ α (2)

ds1t(1−φ(s1, s2)φ(s2, t))+ds2t(1−φ(s2, t))
c(v,t)

≤ α (3)

The objective is to minimize α, which represents worst-case
link utilization, i.e., the load (flow divided by capacity) on the
most utilized link across all the admissible demand matrices.
Each variable φ(x, y) denotes the fraction of the incoming
flow destined for to t at vertex x that is routed on link (x, y).
Constraints (2) and (3) force α to be at least the value of
the link utilization of links (s2, t) and (s1, s2), respectively.
Since the other links have infinite (arbitrarily high) capacities,
the load on these links is negligible and so the link utiliza-
tion inequalities for these links are omitted. Now, consider
Constraint (2) for link (s2, t). Observe that from user s1 the
fraction of traffic sent through (s2, t) equals the fraction of
s1’s traffic through (s1, s2) (i.e., φ(s1, s2)) times the fraction
sent through (s2, t) by s2 (i.e., φ(s2, t)). The fraction of s2’s
traffic through (s2, t) is simply φ(s2, t). Accordingly the total
flow on (s2, t) equals ds1t ·φ(s1, s2) ·φ(s2, t)+ds2t ·φ(s2, t).
Hence, the link utilization of (s2, t) is this expression divided
by the capacity of (s2, t), and the corresponding constraint (2)
requires that this utilization be at most α for all demand
matrices (ds1 , ds2) ∈ D. Constraint (3) states the same for
link (v, t), where the fraction of traffic sent by s1 (s2) to t
through (v, t) is equal to 1 minus the fraction of flow sent
from s1 (s2) to t through (s2, t).

Two difficulties with these constraints immediately arise:
one is that it is universally quantified over an entire set
of demand matrices, possibly of infinite cardinality, and the
other is that it involves a product of unknowns, namely,
φ(s1, s2) · φ(s2, t), and such products do not fit into the
framework of standard linear and integer programming. For
a discrete set of demand matrices we can handle the first
problem by stating (2) and (3) for each individual demand
matrix. Otherwise (if the set of DMs is of infinite size) the
elegant dualization technique from [15], which we describe
in Appendix C, can be used. To handle the second issue, how-
ever, we need a small trick from geometric programming [22].
Let ds1t = 1 and ds2t = 1 and consider constraint (2):

φ(s2, t) + φ(s1, s2) · φ(s2, t) ≤ α.

Now, let φ̃(s1, s2) = log φ(s1, s2) and φ̃(s2, t) =
log φ(s2, t), and take the logarithm of both sides:

log
(
e
�φ(s2,t) + e

�φ(s1,s2)+�φ(s2,t)
)
≤ log α.

This constraint is now a logarithm of a sum of exponen-
tials of linear functions and so is convex, opening the door
to using standard convex programming. Our implementation
uses a convex program based on the above ideas (and other
ingredients) to compute the traffic splitting ratios. We provide
a detailed exposition in Appendix C.

D. Translation to OSPF-ECMP Configuration

As explained above, using OSPF and ECMP for TE con-
strains the flow of traffic in two significant ways: (1) traffic
only flows on shortest-paths (induced from operator specified
link weights), and (2) traffic is split equally between multiple
next-hops on shortest-paths to a destination. Recent studies
show how OSPF-ECMP’s expressiveness can be significantly
enhanced by effectively deceiving routers. Specifically, Fib-
bing [12], [13] shows how any set of per-destination forward-
ing DAGs can be realized by introducing fake nodes and
virtual links into an underlying link-state routing protocol,
thus overcoming the first limitation of ECMP. Reference [23]
shows how ECMP’s equal load balancing can be extended to
much more nuanced traffic splitting by setting up virtual links
alongside existing physical ones, thus relaxing the second of
these limitations.

We revisit our running example to show how COYOTE
exploits these techniques. Consider Fig. 1d. Inserting a fake
advertisement at s1 into the OSPF link-state database can
“deceive” s1 into believing that, besides its available shortest
paths via s2 and v, destination t is also available via a third,
“virtual” forwarding path. The forwarding adjacency in the
fake advertisement is mapped to s2, so that out of s1’s three
next-hops to t node s2 will appear twice while v only appears
once. Consequently, the traffic is effectively split between s2

and v in a ratio 2/3 to 1/3. Beyond changing how traffic is split
within a given shortest-path DAG, as illustrated in Fig. 1d,
fake nodes/links can be injected into OSPF so to as change
the forwarding DAGs themselves at the per-IP-destination-
prefix granularity, as shown in [13]. COYOTE leverages the
techniques in [13] and [23] to carefully craft “lies” so as
to generate the desired per-destination forwarding DAGs and
approximate the optimal traffic splitting ratios with ECMP.
We show in Section VI that highly optimized TE is achievable
even with the introduction of few virtual nodes and links.

VI. EVALUATION

We experimentally evaluate COYOTE in order to quantify
its performance benefits and its robustness to traffic uncertainty
and variation. Importantly, our focus is solely on destination-
based TE schemes (i.e., TE schemes that can be realized
via today’s IP routing). We show below that COYOTE pro-
vides significantly better performance than ECMP even when
completely oblivious to the traffic demand matrices.2 Also,
COYOTE’s increased path diversity does not come at the cost
of long paths: the paths computed by COYOTE are on average
only a factor of 1.1 longer than ECMP’s. We also discuss
experiments with a prototype implementation of COYOTE.

While the reader might think that COYOTE’s performance
benefits over traditional TE with ECMP are merely a byprod-
uct of its greater flexibility in selecting DAGs and in traf-
fic splitting, our results show that this intuition is, in fact,
false. Specifically, we show that, similarly to unconstrained
(i.e., source and destination based) oblivious routing [15],
even the optimal routing with respect to estimated demand
matrices fares much worse than COYOTE if the actual demand

2Code is available on https://github.com/marchiesa/coyote

CHIESA et al.: OBLIVIOUS ROUTING IN IP NETWORKS 1299

Fig. 6. Evaluation of COYOTE. Legend in (a)-(e): () traditional ECMP, () base-TM-opt, () COYOTE-oblivious, and () COYOTE-partial-knowledge.
Axis in (a)-(e): uncertainty margin on the x-axis and performance-ratio on the y-axis. Axis in (f): topology on the x-axis and path stretch on the y-axis.

matrices are not very “close” to the estimated demands. Hence,
COYOTE’s good performance should be attributed not only
to its expressiveness but also, in large part, to its built-in
algorithms for optimizing performance in the presence of
uncertainty, as discussed in Section V.

A. Simulation Framework

We use the set of 16 backbone Internet topologies from
the Internet Topology Zoo (ITZ) archive [20] to assess the
performance of COYOTE and ECMP. When available, we
use the link capacities provided by ITZ. Otherwise, we set the
link capacities to be inversely-proportional to the ITZ-provided
ECMP weights (in accordance with the Cisco-recommended
default OSPF link configuration [21]). When neither ECMP
link weights nor capacities are available we use unit capac-
ities and link weights. We evaluate COYOTE against ECMP
using the two simple DAG-construction heuristics described
in Section V-B : reverse capacities and local search.

To compute COYOTE’s in-DAG traffic splitting ratios (see
Section V), we use AMPL [24] as the problem formulation
language and MOSEK [25], a non-linear convex optimization
solver. The running time with our current single-threaded
proof-of-concept implementation ranges from few minutes (for
small networks) to few days (for large networks).

We would like to point out that the computation of the
in-DAG traffic splitting ratios needs only be performed once
or on a daily/weekly-base, as routing in COYOTE is not
dynamically adjusted, and that routing configurations for fail-
ure scenarios (e.g., every single link/node failure) can be
precomputed.

We measure performance in terms of the worst-case link uti-
lization (referred to as “congestion” in TE literature [1], [2]),
i.e., the performance of (multicommodity) flow of traffic f is
maxl

f(l)
cl

, where f(l) is the flow traversing link l and cl is
link l’s capacity.

B. Network Performance

We compare COYOTE to ECMP for both DAG-construction
heuristics described above and for two types of base demand
matrices: (1) gravity [26]–[28], where the amount of flow sent

from router i to router j is proportional to the product of i’s
and j’s total outgoing capacities, and (2) bimodal [29], where
a small fraction of all pairs of routers exchange large quantities
of traffic, and the other pairs send small flows.

We first present our results with respect to the reverse capac-
ities heuristic, which is based on ITZ [20] link weights, and an
ideal version of COYOTE capable of arbitrarily fine-grained
traffic splitting. We then show that a close approximation of the
optimal splitting ratios can be obtained with the introduction of
a limited number of additional virtual links. Fig. 6a and Fig. 6b
describe our results for two networks (Geant and Digex,
respectively), the gravity model, and augmented shortest path
DAGs based on the ITZ link weights. The x-axis represents the
“uncertainty margin”: let dst be the amount of flow from router
s to router t in the base demand matrices (namely, gravity), a
margin of uncertainty of x means that the actual flow from s
to t can be any value between dst

x and x ·dst. We increase the
uncertainty margin in increments of 0.5 from 1 (no uncertainty
whatsoever) to 3 (fairly high uncertainty). The y-axis specifies
how far the computed solution is from the demands-aware
optimum within the same DAGs.

We plot four lines, corresponding to the performance
of four different protocols: (1) traditional TE with ECMP,
(2) the optimal demands-aware routing for the base gravity
model (with no uncertainty), which can be obtained with
linear programming techniques [30], (3) COYOTE (oblivious)
with traffic splitting optimized with respect to all possible
demand matrices (i.e., assuming nothing about the demands),
(4) COYOTE (partial-knowledge) optimized with respect to
the demand matrices within the uncertainty margin. Observe
that both variants of COYOTE provide significantly better
performance than TE with ECMP and, more surprisingly, both
COYOTE and (sometimes) ECMP outperform the optimal
base routing, whose performance quickly degrades even with
little demands uncertainty. Our results thus show that COY-
OTE’s built-in robustness to traffic uncertainty, in the form of
optimization under specified uncertainty margins, indeed leads
to superior performance in the face of inaccurate knowledge
about the demand matrices or, alternatively, variable traffic
conditions. Table I shows the extensive results of COYOTE

1300 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

TABLE I

COMPARISON OF COYOTE AGAINST TRADITIONAL ECMP AND BASE-TM-OPT FOR THE GRAVITY BASE MODEL

for eight of the analyzed topologies (full results can be found
in [31]). COYOTE achieves a performance ratio within ∼ 2
in most cases (all cases) with an uncertainty of 3 (of 2), thus
enabling operators with high network utilization (i.e., 50%) to
deal with unexpected traffic variations without exceeding the
link capacities. We evaluated COYOTE up to an uncertainty
margin of 5, reporting similar trends to those visible within a
margin of 3.

We observe the same trends when the base demand matrices
are sampled from the bimodal model, as shown in Fig. 6c.

We now discuss our results for the local search DAG-
construction heuristic (see Section V-B). Fig. 6d presents
a comparison of COYOTE and ECMP using the bimodal
model as the base demand matrices. We use the above
heuristic to compute, for each uncertainty margin in the
range 1 − 5, increasing in 0.5 increments, the (traditional)
ECMP configuration and COYOTE DAGs with respect to
the bimodal-based demand matrices. We then compare the
worst-case link utilization of the two, again, normalized by
the demands-aware optimum within the same (augmented)
DAGs. We note that ECMP is, on average, almost 80%
times further away from the optimum than COYOTE. We
leave as future work the task of comparing COYOTE with
reactive traffic engineering schemes (e.g., [32]–[35]), which
leverages the currently measured traffic conditions to optimize
routing.

Approximating the Optimal Traffic Splitting: We evaluated
above COYOTE under the assumption that arbitrarily fine-
grained traffic splitting is achievable, yet in practice, the reso-
lution of traffic splitting is derived from the number of virtual
links introduced. Clearly, an excessive number of virtual links
should be avoided for at least two reasons: (a) each virtual
next-hop is installed into the finite-sized Forwarding Informa-
tion Base (FIB), and (b) injecting additional information into
OSPF comes at the cost of additional computational overhead.
Our results, illustrated in Fig. 6e for AS 1755 network’s
topology (all other topologies exhibit the same trend), show
that even with just 3 additional virtual links per router inter-
face, COYOTE achieves a 50% improvement over traditional
TE with ECMP. We observe that with 10 virtual links the
computed routing configuration closely approximates the ideal
solution. In [13], the authors provide a scalability analysis
of the computational and memory overheads of implementing
additional next-hops, showing negligible overheads even with
100.000 virtual next-hop installed in a single node.

Fig. 7. Mininet topology (a) and packet drop rate (b).

Average Path Lengths: COYOTE augments the shortest path
DAG with additional links so as to better utilize the network.
Consequently, traffic can potentially traverse longer paths. We
show, however, that COYOTE’s increased path redundancy
does not come at the expense of long paths. Specifically, the
average stretch (increase in length) of the paths in COYOTE
is typically bounded within a 10% factor with respect to the
OSPF/ECMP paths. Fig. 6f plots the average stretch across
all pairs for a margin of 2.5. Similar results are obtained
for all different margins between 1 to 5. Observe that the
DAGs computed by COYOTE rely on shortest-path compu-
tation with respect to the link weights, whereas the stretch is
measured in terms of the number of hops. Thus, it is possible
for the stretch to be less than 1, as is the case, e.g., for
BBNPlanet.

VII. PROTOTYPE IMPLEMENTATION

We implemented and experimented with a prototype
of the COYOTE architecture, as described in Section V.
Our prototype extends the Fibbing controller code, written
in Python and provided by Vissicchio et al. [13], and uses
the code of Nemeth et al. from [23] for approximating the
splitting ratios. We next illustrate the benefits of COYOTE over
traditional TE, as reflected by an evaluation of our prototype
via the mininet [36] network emulator.

Consider the example in Fig 7a: a target node t advertises
two IP prefixes t1 and t2 and two sources, s1 and s2, generate
traffic destined for these IP prefixes. As in traditional TE with
ECMP, the network operator must use the same forwarding
DAG for each destination, this forces either s1 or s2 to route
all of its traffic only on the direct path to the destination. Thus,
three forwarding DAGs are possible: (1) both s1 and s2 route
all traffic on their direct paths to t (TE1), (2) s1 equally splits
its traffic between t and s2, and s2 forwards all traffic on its
direct link to t (TE2), and (3) same as the previous option,
but s1 and s2 swap roles (TE3).

We evaluate these three TE configurations in mininet with
links of bandwidth 1Mbps. We measure the cumulative packet

CHIESA et al.: OBLIVIOUS ROUTING IN IP NETWORKS 1301

drop rate towards two IP destinations, t1 and t2, for three
15-seconds-long traffic scenarios, where traffic is UDP gener-
ated with iperf3 and units are in Mbps: (s1− t1, s2− t2) =
(0, 2), (s1 − t1, s2 − t2) = (1, 1), (s1 − t1, s2 − t2) = (2, 0).

Fig 7b plots the results of this experiment for each of
the TE schemes, described above (excluding TE3, which is
symmetric to TE2). The x-axis is time (in seconds) and the
y-axis is the measured packet loss rate, i.e., the ratio of traffic
received to traffic sent (observe that sent traffic is 30 megabits
in all scenarios). During the first 15 seconds the experiment
emulates the first traffic scenario described above, in the next
15 seconds the second traffic scenario is emulated, and in the
last 15 seconds the third scenario is emulated.

Observe that each of the TE schemes (TE1-3) achievable via
traditional TE with ECMP leads to a significant packet-drop
rate (25%-50%) in at least one of traffic scenarios. COYOTE,
in contrast, leverages its superior expressiveness to generate
different DAGs for each IP prefix destination, as follows:
traffic to for destination t1 is evenly split at node s1 and traffic
to destination t2 is evenly split at s2. This is accomplished by
injecting a lie to s2 so as to attracts half of its traffic to t2 to
the (s2, s1) link. Consequently, as seen in Fig 7b, the rate of
dropped packets is significantly reduced.

VIII. RELATED WORK

TE With ECMP: TE with ECMP is today’s prevalent
approach to TE (see surveys in [1] and [2]). Consequently,
this has been the subject of extensive research and, in particu-
lar, selecting good link weights for ECMP TE has received
much attention [6], [7], [16], [32], [37]–[39]. To handle
uncertainty about traffic demand matrices and variation in
traffic, past studies also examined the optimization of ECMP
configuration with respect to multiple expected demand matri-
ces [39], [6], [40], or even with no knowledge of the demand
matrices [15]. Unfortunately, while careful optimizations of
ECMP configuration can be close-to-optimal in some net-
works [39], this approach is fundamentally plagued by the
intrinsic limitations of ECMP, specifically, routing only on
shortest paths and equally splitting traffic at each hop, and can
hence easily result in poor network performance. Worse yet,
this scheme suffers from inherent computational intractability,
as shown in [32] and [7].

Lying for More Expressive OSPF-ECMP Routing: The first
technique to approximate unequal splitting through ECMP
via the introduction of virtual links was introduced by
Nemeth et al. in [23] (see also [41]). Reference [23], how-
ever, was still limited to shortest-path routing and, conse-
quently, coarse-grained traffic flow manipulation. Recently,
Fibbing [12], [13] showed how any set of destination-based
forwarding DAGs can be generated through the injection of
fake nodes and links into the underlying link-state protocol
(e.g., OSPF).

Adaptive TE Schemes: One approach to overcoming
ECMP’s limitations is dynamically adapting the routing of
traffic in response to changes in traffic conditions as in,
e.g., [32]–[34]. Adaptive schemes, however, typically require
frequently gathering fairly accurate information about demand
matrices, potentially require new routing or measurement

infrastructure, and can be prone to routing instability [42],
slow convergence, packet reordering, and excess control plane
burden [3] (especially in the presence of failures). Moreover,
adaptive TE approaches tailored to datacenters require SDN
devices and tackle different problems than those of WAN
networks [35]. COYOTE, in contrast, reflects the opposite
approach: optimizing the static configuration of traffic flow so
as to achieve good network performance with respect to all,
even adversarially chosen, demand matrices within specified
“uncertainty bounds”. Combining the two approaches is left
as future work.

Demands-Oblivious Routing: A rich body of literature on
algorithmic theory investigates so-called “(demand-)oblivious
routing” [14]–[16]. Breakthrough algorithmic results by Räcke
established that the static (non-adaptive) routing can be opti-
mized so as to be within an O(log n) factor from the optimum
(demands-aware) routing with respect to any combination of
demand matrices [14]. Applegate and Cohen [15] showed that
the optimum unconstrained oblivious routing can be computed
in polynomial time and when applied to actual (ISP) networks,
such demand-oblivious routing algorithms yield remarkably
close-to-optimal performance. Kulfi [17] uses semi-oblivious
routing to improve TE in wide-area networks. Unfortu-
nately, all the above demand-oblivious algorithms involve
forwarding packets based on both the source and destination,
immediately hitting a serious deployability barrier in tradi-
tional IP networks (e.g., due to extensive tunneling [37]).
COYOTE, in contrast, is restricted to destination-based rout-
ing, and so tackles inherently different (and new) algorithmic
challenges (e.g., we show that the per-destination oblivi-
ous TE problem is NP-Hard) and techniques, as discussed
in Sect. IV and V.

IX. CONCLUSION

We presented COYOTE, a new OSPF-ECMP-based TE
scheme that efficiently utilizes the network even with little/
no knowledge of the traffic demand matrices. We showed
that COYOTE significantly outperforms today’s prevalent TE
schemes while requiring no changes whatsoever to routers.
We view COYOTE as an important additional step in the
recent exploration [12], [13] of how SDN functionality can be
accomplished without changing today’s networking infrastruc-
ture. We next discuss important directions for future research.

To efficiently utilize the network in an OSPF-ECMP-
compatible manner, COYOTE leveraged new algorithmic
insights about destination-based oblivious routing. We believe
that further progress on optimizing such routing configurations
is key to improving upon COYOTE. Two interesting research
questions in this direction: (1) We showed in Section IV
that computing the optimal oblivious IP routing configuration
is NP-hard. Can the optimal configuration be provably
well-approximated? (2) COYOTE first computes a forwarding
DAG rooted in each destination node and then computes
traffic splitting ratios within these DAGs. The latter
computation involves nontrivial optimizations, e.g., via
geometric programming, yet, it remains unclear whether
traffic splitting within a given set of DAGs is, in fact,
efficiently and optimally solvable.

1302 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

APPENDIX

We present below a more detailed exposition of COYOTE’s
algorithmic machinery. Recall that COYOTE’s traffic flow
optimization consists of two steps: (1) computing per-
destination DAGs (Section V-B), and (2) optimizing traffic
splitting within these DAGs (Section V-C). We next dive into
the technical details involved in overcoming these challenges.
In Appendix A, we describe the local search heuristic for com-
puting “good” DAGs. We then discuss in-DAG traffic splitting.
Specifically, in Appendix B we revisit our running example
and show how the optimal traffic splitting ratios can be
computed for this specific instance of OBLIVIOUS IP ROUT-
ING. Then, in Appendix C we explain how COYOTE lever-
ages dualization theory and Geometric Programming (GP) to
compute in-DAG traffic splitting in general.

APPENDIX A
THE LOCAL SEARCH DAG-GENERATION ALGORITHM

COYOTE utilizes an adaptation of the local search
DAG-generation heuristic from [16]. The pseudocode is given
in Algorithm 1.

Algorithm 1 The Local Search DAG Generation Algorithm

1: INPUT: graph G(V, E) with link capacities c : E 	→ R

2: OUTPUT: a link cost function w : E 	→ N

3: D ← ∅
4: w ← INVERSECAPACITY(c)
5: while (true) do
6: for each t ∈ V : DAGt ← Shortest-Path-First (G, w, t)
7: DM ← WORSTCASEDM(G, {DAGt})
8: D ← D ∪ {DM}
9: if MAXLINKUTIL(G, {DAGt},D) ≤ B then break

10: w ← FORTZTHORUP(G,D, c)
11: end while

The algorithm maintains a set D of “critical” demand
matrices (DMs) and iteratively tries to find DAGs that, when
distributing traffic using ECMP, yield low link utilization
across these DMs. COYOTE’s non-equal splitting ratios can
allow even lower utilization of links. In each iteration, the fol-
lowing steps are executed: (1) Compute shortest-path DAG
DAGt to each destination t ∈ V for the current link weights
w (line 6), (2) Compute the DM that produces the highest
link utilization over the resulting routing (see [16] for a math-
ematical program that captures this task), (3) Add this DM
to D (lines 7 and 8), and (4) Recompute weights w inducing
DAGs that are simultaneously good with respect to each DM
in D (line 10). Specifically, use the tabu search technique
due to Fortz and Thorup [6], which iteratively tries to reduce
utilization at the most congested node by increasing the path
diversity locally. The heuristic terminates when maximum link
utilization reduces below some pre-configured bound B.

The above heuristic modifies [6] and [16] to better fit
COYOTE’s design, namely, (i) the OSPF-TE cost-optimization
heuristics of Fortz and Thorup scale link utilizations through a
non-linear function Φ to penalize heavily loaded links whereas
our heuristic optimizes for maximum link-utilization (as obliv-
ious routing optimizes for max link-utilization); (ii) when

optimizing DAGs with respect to multiple DMs, Fortz and
Thorup use the average of the scaled link utilizations over the
DMs while we do simple maximum; and (iii) our local search
algorithm is fine-tuned to COYOTE by carefully selecting the
parameters governing the heuristic search process.

APPENDIX B
REVISITING THE RUNNING EXAMPLE

Recall the simple example in Fig. 1. We now show how to
to compute its optimal in-DAG traffic splitting ratios φ. The
input DAG is depicted by dashed arrows in the figure.

As discussed in Section IV-A, we can focus, without loss
of generality, only on those demand matrices that are non-
dominated vertices of the polyhedron representing the set of
DMs that can be routed without exceeding the edge capacities.
In our example, the set of demand matrices that can be routed
without exceeding the edge capacities is {(ds1t, ds2t)|ds1t +
ds2t = 2}, and the only two non-dominated vertices are
D1 = {(ds1t, ds2t) = (2, 0)} and D2 = {(ds1t, ds2t) =
(0, 2)}. Let PERF (e, φ, {D1, D2}) denote the worse-case
link utilization of an edge e when using a PD routing φ to
route DMs D1 or D2. Henceforth, for brevity, {D1, D2} shall
remain fixed and is thus omitted from the arguments involving
PERF .

Given any routing φ, observe that PERF ((s1, v), φ) ≤
PERF ((v, t), φ) and PERF ((s2, v), φ) ≤ PERF ((v, t), φ)
since link (v, t) carries the incoming flows from (s1, v) and
(s2, v). We hence restrict our focus to PERF ((s1, s2), φ),
PERF ((v, t), φ), and PERF ((s2, t), φ). As for D1, the most
utilized edge must be either (s1, s2) or (v, t) since (s2, t)
carries no more traffic than (s1, s2). This implies that

PERF ((s1, s2), φ) ≥ 2φ(s1, s2) and (4)

PERF ((v, t), φ) ≥ 2(1− φ(s1, s2)) + 2φ(s1, s2)

× (1− φ(s2, t))

≥ 2(1− φ(s1, s2)φ(s2, t)) (5)

Regarding DM D2, observe that the most congested edge
is either (s2, t) or (v, t), such that:

PERF ((s2, t), φ) ≥ 2φ(s2, t) (6)

PERF ((v, t), φ) ≥ 2(1− φ(s2, t)) (7)

As for PERF ((v, t), φ), observe that 2(1 −
φ(s1, s2)φ(s2, t)) ≥ 2(1−φ(s2, t)), for any 0 ≤ φ(s2, t) ≤ 1,
which means that inequality (7) is redundant.

Observe that (4) increases w.r.t. φ(s1, s2), (6) increases
w.r.t. φ(s2, t), while (5) decreases w.r.t. both φ(s1, s2) and
φ(s2, t). So, to minimize the worse-case link utilization,
inequalities (4), (6), and (5) must be tight in the optimal
scenario, i.e., PERF ((s1, s2), φ) = PERF ((s2, t), φ) =
PERF ((v, t), φ). Moreover, inequalities (4) and (6) imply
that φ(s1, s2) = φ(s2, t), which allows us to rewrite (5)
as PERF ((v, t), φ) = 1 − φ(s1, s2)2. From (4) and (5),
we have that 2φ(s1, s2) = 2(1−φ(s1, s2)2)→ 1−φ(s1, s2)−
φ(s1, s2)2 = 0, which is an equation of the second order
with solutions

√
5−1
2 and

√
5+1
2 . Only the first of these two

solutions (i.e., the inverse of the golden ratio) is feasible

CHIESA et al.: OBLIVIOUS ROUTING IN IP NETWORKS 1303

in our formulation. The optimal splitting ratios are therefore
φ(s1, s2) = φ(s2, t) =

√
5−1
2 . Traffic splitting accordingly

guarantees that the worse-case link utilization on D is never
greater than

√
5− 1 ∼ 1, 23.

APPENDIX C
DUALIZATION AND GEOMETRIC PROGRAMMING

We explained in Section V-C how the optimal traffic split-
ting ratios within a DAG (given as input) can be computed
is the specific scenario considered. Can the optimal traffic
splitting ratios always be computed in a computationally-
efficient manner? While this remains an important open ques-
tion (see Section IX), it seems impossible to accomplish within
the familiar mathematical toolset of TE, namely, integer and
linear programming. We found that a different approach for
generating good in-DAG traffic splitting is, however, feasible:
casting the optimization problem described in Section III as a
mixed-linear geometric program [22]).

We observed in Section V-C that two difficulties arise when
computing in-DAG traffic splitting over a set of possible DMs:
(i) the cardinality of the DMs set can possibly be infinite
and (ii) modeling per-destination routing involves a product
of unknowns. To address (i), we build upon the standard
dualization techniques for efficiently optimizing over infinite
sets of DMs. We adapt these techniques to the restriction
that routing be destination-based. We refer the reader to [15]
for additional details about this approach. To address (ii),
we leverage Geometric Programming (GP) for approximating
non-convex constraints involving products of unknowns with
convex constraints. We refer the reader to [22] for a detailed
exposition of GP. We next dive into the details.

We define each DAG rooted at a vertex t ∈ V as a set
of directed edges Et and let E = {Et1 , . . . , Etn} for each
ti ∈ V , with i = 1, . . . , n. As observed in Section V-C,
since the performance ratio is invariant to any proportional
rescaling of the DMs or link capacities, we can reformulate
our optimization problem as follows:

min α

(φ, f) is a PD routing in E
∀ edges e = (u, v) :
∀ DMs D ∈ D with λ > 0 such that:
OPTU(D) = 1 and ∀i, j λdmin

st ≤ dst ≤ λdmax
st :

(8)∑

(s,t)
dstfst(u)φt(e)/c(e) ≤ α (9)

Variable λ is used to scale each DM D in D so that
OPTU(D) = 1. In addition, we force each φt to be routed
within the given DAGs that are defined in E .

Recall that whenD is the set of all possible DMs, the perfor-
mance ratio is referred to as the oblivious performance ratio.
In this case, for each demand dst, we simply replace in (8)
the λdmin

st ≤ dst ≤ λdmax
st inequality with 0 ≤ dst.

Reducing the Number of Constraints via Duality Trans-
formations: To simplify exposition, we first explain in detail
how to apply the dualization technique only for the scenario
that the demand matrix set is unbounded, i.e., any traffic
matrix is possible. We will later discuss the scenario that

the demand matrix set is constrained. Recall the formulation
of OBLIVIOUS IP ROUTING, as described in Section III.
Observe that the constraints at equation (9) can be tested by
solving, for each edge e = (u, v), the following “slave Linear
Problem (LP)” and checking if the objective is ≤ α.

max
∑

(st)

dstfst(u)φt(e)/ce

∀t ∈ V, ∀s �= t ∈ V :∑

a∈(OUT (s)∧Et)

gt(a)−
∑

a∈(IN(s)∧Et)

gt(a)− dst ≤ 0

(10)
∀a ∈ E :

∑
t∈V gt(a) ≤ ca

∀s, t ∈ V : dst ≥ 0, ∀t ∈ V, ∀a ∈ E : gt(a) ≥ 0
(11)

Given a fixed routing (φ, f), the objective function is
maximizing the link utilization of e by exploring the set of
DMs that can be routed within the link capacities of the
given DAGs. Variable gt(a) is a PD routing that represents the
amount of absolute flow to t that traverses edge a. Eq. (10)
captures the standard flow conservation constraints, where dst

is a variable represeting the s→ t demand. Eq. (11) guarantees
that g can be routed within the link capacities.

By applying duality theory to the slave LP, we can describe
a set of requirements that must be satisfied by a routing φ in
order to guarantee an oblivious performance ratio ≤ α.

Theorem 5: A routing φ has oblivious ratio r if there exist
positive weights πe(h) for every pair of edges e, h, such that:

R1
∑

h∈E πe(h)ch ≤ r, for every edge e ∈ E.
R2 For every edge (u, v) ∈ E, for every demand s → t,

and for every path (a1, a2, . . . , al) from s to t,
where a1, . . . , al ∈ Et, it holds fst(u)φt(u, v) ≤
ce

∑l
k=1 πe(ak).

Proof: Our proof is based on applying simple duality
theory to the slave LP problem. The two requirements are
equivalent to stating that the slave LP has objective ≤ r.

Let φ be a PD routing and πe(h) be weights satisfying
requirements 1-3. Let D be any DM that can be routed within
the edge capacities and let qst(a) and qst(p) be the amount
of the s → t demand that is routed through an edge a and a
path p = (a1, . . . , al) according to any routing that does not
exceed the edge capacities. Let e be an edge in E and denote
fst(u)φt(u, v) by ls,t(u, v). By first multiplying both sides of
R2 by q̄st(p), we obtain

ls,t(u, v)q̄st(p) ≤ ce

∑l
k=1πe(ak)q̄st(p)

and by summing over this inequality for all the paths pi =
(ai

1, . . . , a
i
li
) such that each edge on the path is in Et, we get

∑

pi

ls,t(u, v)q̄st(pi) ≤
∑

pi

ce

li∑

k=1

πe(ai
k)q̄st(pi)

ls,t(u, v)
∑

pi

q̄st(pi) ≤ ce

∑

h∈E

πe(h)
∑

p|p traverses h

q̄st(p)

ls,t(u, v)dst ≤ ce

∑

h∈E

πe(h)qst(h).

1304 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

Now, by summing over all the (s, t) pairs, we get
∑

s,t

ls,t(u, v)dst ≤ ce

∑

h∈E

πe(h)
∑

s,t

qst(h) ≤ ce

∑

h∈E

πe(h)ch

where the last inequality holds since q can be routed without
exceeding the edge capacities. Combining the above inequality
with R1, we finally obtain

∑
s,tls,t(u, v)dst ≤ ce

∑
h∈Eπe(h)ch ≤ cer.

This concludes the statement of the theorem as it shows
that using φ to route any DM that can be routed without
exceeding the edge capacities would not cause any edge to
be over-utilized by a factor higher than r.

Based on the requirements of Theorem 5, the OBLIVIOUS

IP ROUTING formulation can be rewritten as the following
Non Linear Problem (NLP). Let, for each edge e and pair
of vertices i, j ∈ V , the variable pe(i, j) be the length of
the shortest path from i to j according to the edge weights
πe(h) (for all h ∈ E). The introduction of these variables
allows us to replace the exponential number of constraints (for
all possible paths) in Requirement (2) of Theorem 5 with
a polynomial number of constraints. The final formulation
consists of O(|V |2|E|) variables and O(|V ||E|2) constraints.

min α

(φ, f) is a PD routing

∀ edges e ∈ E:
∑

h∈Eπe(h)ch ≤ r (12)

∀ pairs (s, t) : f,t(u)φt(u, v)/ce ≤ pe(s, t) (13)

∀i ∈ V, ∀a = (j, k) ∈ Et :
πe(a) + pe(k, i)− pe(j, i) ≥ 0
∀ h∈E : πe(h) ≥ 0; ∀i, j∈V : pe(i, i)=0, pe(i, j)≥0

(14)

Geometric Programming Transformation: NLP problems
are, in general, hard to optimize. We leverage techniques from
Geometric Programming (GP) to tackle this challenge [22].
A Mixed Linear Geometric Programming (MLGP) is an opti-
mization problem of the form

min f0(x) + aT
0 y

fi(x) + aT
i y + di ≤ 1, i = 1, . . . , m

hj(x) = 1, j = 1, . . . , M

where x and y are variables, fi(x) is a sum of posyno-
mials, i.e., monomials with positive coefficients, hj(x) is a
monomial, and both a and d are vectors of real numbers.
Such problems can be transformed with a simple variable
substitution z = logx into convex optimization problems [22],
thus opening the doors to the usage of efficient solvers such
as the Interior Point Method. Since our problem contains
some constraints that are not posynomials but rather a sum
of monomials with positive and negative coefficients, i.e., a
signomial, the Complementary GP technique [22] is used.
This involves iteratively approximating the non-GP constraints
around a solution point so that the problem becomes MLGP,
solving it efficiently, and repeating this procedure with the
new solution point. We now show how to transform our

original NLP dualized formulation into an iterative MLGP
formulation.

Routing variables f and φ are GP variables as they are
multiplied with each other in the definition of PD routing.
The remaining variables are linear variables. Constraints (12)
and (14) are linear constraints, while Constraint (13) is an
MLGP constraint. As for the flow conservation constraints
defined in Section III of a PD routing, we note that fst(v) ≥∑

e=(u,v)∈Et
fst(u)φt(e) is a GP constraint but the splitting

ratio constraint
∑

(v,u)∈Et
φt(v, u) ≥ 1 is not and we approx-

imate it using monomial approaximation as follows.
Let Svt(φ) =

∑
e=(v,u)∈Et

φt(e), where φ is an array
of all the φt variables in the sum. Let φ(i) the i’th vari-
able in φ. Given a point φ0, we want to approximate Svt

with a monomial k
∏n

i=1(φ(i))a(i). From [22], we have that
a(i) = φ0(i)/

∑
i φ0(i) and k =

∑
i φ0(i)/

∏n
i=1 (φ0(i))a(i).

Hence, each splitting ratio constraint can be rewritten by GP
monomial constraint of the form 1 ≤ k

∏n
i=1(φ(i))a(i).

To summarize the iterative phase: given a feasible routing
solution φ0, for each destination t, we can compute at(u, v)
and kt using the above monomial approximation, which leads
to the following formulation:

min α

∀s, t, v ∈ V : f̃st(v) ≥ log
∑

(u,v)∈Et
ef̃st(u)+φ̃t(u,v)

∀s, t ∈ V : f̃st(s) ≥ 0

∀v, t ∈ V : log kt +
∑

h=(v,u)∈Et

at(h)φ̃t(h) ≥ 0

∀e ∈ E :
∑

h∈Eπe(h)ch ≤ r

∀(s, t) ∈ V : ef̃st(u)+φ̃t(u,v) ≤ cepe(s, t)
∀t∈V, ∀a=(j, k)∈Et : πe(a)+pe(k, t)−pe(j, t)≥0
∀ h∈E : πe(h)≥0; ∀i, j∈V : pe(i, i) = 0 and

pe(i, j)≥0 (15)

When the set of admissible DMs is bounded, as in the
general problem formulation, a similar dualization technique
and MLGP transformation can be applied to the problem.
One has to carefully consider the uncertainty bounds con-
straints during the dualization phase, which will be treated
as (mixed) linear constraints during the MLGP transformation.
Given a feasible routing solution φ0, by following the same
dualization technique presented in [15] we add constraint∑

s,t(d
max
st s+

e (s, t) − dmin
st s+

e (s, t)) ≤ 0 to the above formu-

lation and we replace Constraint (15) with ef̃st(u)+φ̃t(u,v) ≤
cepe(s, t) + s+

e (s, t) − s−e (s, t), where s−e (s, t) ≥ 0,
s+

e (s, t) ≥ 0. The resulting formulation can still be solved
with any solver implementing the Interior Point Method.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers
of the CoNEXT PC and Walter Willinger for their valuable
comments. We thank Francesco Malandrino for useful discus-
sions about the geometric programming approach, and Olivier
Tilmans and Stefano Vissicchio for guiding us through the
Fibbing code. The 1st and 3rd authors are supported by the

CHIESA et al.: OBLIVIOUS ROUTING IN IP NETWORKS 1305

Israeli Center for Research Excellence in Algorithms. The 2nd
author is with the Department of Telecommunications and
Media Informatics, Budapest University of Technology and
Economics.

REFERENCES

[1] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with tra-
ditional IP routing protocols,” IEEE Commun. Mag., vol. 40, no. 10,
pp. 118–124, Oct. 2002.

[2] N. Wang, K. H. Ho, G. Pavlou, and M. Howarth, “An overview of
routing optimization for Internet traffic engineering,” IEEE Commun.
Surveys Tuts., vol. 10, no. 1, pp. 36–56, 1st Quart., 2008.

[3] A. R. Curtis et al., “DevoFlow: Scaling flow management for high-
performance networks,” in Proc. SIGCOMM, 2011, pp. 254–265.

[4] J. Moy, OSPF Version 2, document RFC 2328, 1998.
[5] C. Hopps. Analysis of an ECMP Algorithm, document RFC 2992, 2000.

[Online]. Available: www.ietf.org/rfc/rfc2992.txt.
[6] B. Fortz and M. Thorup, “Increasing Internet capacity using local

search,” Comput. Optim. Appl., vol. 29, pp. 13–48, Oct. 2004.
[7] M. Chiesa, G. Kindler, and M. Schapira, “Traffic engineering with equal-

cost-MultiPath: An algorithmic perspective,” IEEE/ACM Trans. Netw.,
vol. 25, no. 2, pp. 779–792, Apr. 2017.

[8] Q. Zhao, Z. Ge, J. Wang, and J. Xu, “Robust traffic matrix estimation
with imperfect information: Making use of multiple data sources,”
SIGMETRICS Perform. Eval. Rev., vol. 34, no. 1, pp. 133–144, 2006.

[9] D. Levi, P. Meyer, and B. Stewart, Simple Network Management
Protocol (SNMP) Applications, document RFC 3413, 2002. [Online].
Available: www.ietf.org/rfc/rfc3413.txt

[10] Y. Vanaubel, P. Mérindol, J.-J. Pansiot, and B. Donnet, “MPLS under
the microscope: Revealing actual transit path diversity,” in Proc. Internet
Meas. Conf. (IMC), 2015, pp. 49–62.

[11] E. Rosen, A. Viswanathan, and R. Callon, Multiprotocol Label Switch-
ing Architecture, document RFC 3031, 2001. [Online]. Available:
www.ietf.org/rfc/rfc3031.txt.

[12] S. Vissicchio, L. Vanbever, and J. Rexford, “Sweet little lies: Fake
topologies for flexible routing,” in Proc. 13th HotNets, 2014, p. 3.

[13] S. Vissicchio, O. Tilmans, L. Vanbever, and J. Rexford, “Central
control over distributed routing,” in Proc. SIGCOMM, 2015,
pp. 43–56.

[14] H. Räcke, “Optimal hierarchical decompositions for congestion mini-
mization in networks,” in Proc. STOC, 2008, pp. 255–264.

[15] D. Applegate and E. Cohen, “Making routing robust to changing traffic
demands: Algorithms and evaluation,” IEEE/ACM Trans. Netw., vol. 14,
no. 6, pp. 1193–1206, Dec. 2006.

[16] A. Altin, B. Fortz, and H. Ümit, “Oblivious OSPF routing with weight
optimization under polyhedral demand uncertainty,” Networks, vol. 60,
no. 2, pp. 132–139, 2012.

[17] P. Kumar et al., “Kulfi: Robust traffic engineering using semi-oblivious
routing,” CoRR, Mar. 2016.

[18] D. Applegate and M. Thorup, “Load optimal MPLS routing with N + M
labels,” in Proc. IEEE INFOCOM, Mar. 2003, pp. 555–565.

[19] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Apr. 2008.

[20] (2010). Internet Topology Zoo. [Online]. Available: www.topology-
zoo.org

[21] (2005). Configuring OSPF Cisco. [Online]. Available: http://www.cisco.
com/c/en/us/support/docs/ip/open-shortest-path-first-ospf/7039-1.html

[22] S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi, “A tutorial
on geometric programming,” Optim. Eng., vol. 8, no. 1, pp. 67–127,
2007.

[23] K. Nemeth, A. Korosi, and G. Retvari, “Optimal OSPF traffic engineer-
ing using legacy equal cost multipath load balancing,” in Proc. IFIP
Netw. Conf., 2013, pp. 1–9.

[24] R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling
Language for Mathematical Programming. Pacific Grove, CA, USA:
Duxbury-Thomson, 2003.

[25] (2015). Mosek ApS. [Online]. Available: www.mosek.com
[26] M. Roughan et al., “Experience in measuring backbone traffic variabil-

ity: Models, metrics, measurements and meaning,” in Proc. Workshop
Internet Meas. (IMW), 2002, pp. 91–92.

[27] R. Hartert et al., “A declarative and expressive approach to control
forwarding paths in carrier-grade networks,” in Proc. SIGCOMM, 2015,
pp. 15–28.

[28] M. Roughan, “Simplifying the synthesis of Internet traffic matrices,”
SIGCOMM Comput. Commun. Rev., vol. 35, no. 5, pp. 93–96,
Oct. 2005.

[29] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot,
“Traffic matrix estimation: Existing techniques and new directions,”
SIGCOMM Comput. Commun. Rev., vol. 32, no. 4, pp. 161–174,
Oct. 2002.

[30] D. G. Cantor and M. Gerla, “Optimal routing in a packet-switched
computer network,” IEEE Trans. Comput., vol. C-23, no. 10,
pp. 1062–1069, Oct. 1974.

[31] M. Chiesa, G. Rétvári, and M. Schapira, “Lying your way to better traffic
engineering,” CoRR, Oct. 2016.

[32] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing
OSPF weights,” in Proc. INFOCOM, 2000, pp. 519–528.

[33] S. Fischer, N. Kammenhuber, and A. Feldmann, “REPLEX: Dynamic
traffic engineering based on wardrop routing policies,” in Proc. CoNEXT,
2006, Art. no. 1.

[34] N. Michael and A. Tang, “HALO: Hop-by-hop adaptive link-
state optimal routing,” IEEE/ACM Trans. Netw., vol. 23, no. 6,
pp. 1862–1875, Dec. 2015.

[35] S. Jain et al., “B4: Experience with a globally-deployed software defined
wan,” in Proc. SIGCOMM, 2013, pp. 3–14.

[36] B. Heller, N. Handigol, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible network experiments using container-based emulation,”
in Proc. CoNEXT, 2012, pp. 253–264.

[37] Y. Wang, Z. Wang, and L. Zhang, “Internet traffic engineering without
full mesh overlaying,” in Proc. INFOCOM, 2001, pp. 565–571.

[38] A. Sridharan, R. Guerin, and C. Diot, “Achieving near-optimal traffic
engineering solutions for current OSPF/IS-IS networks,” IEEE/ACM
Trans. Netw., vol. 13, no. 2, pp. 234–247, Apr. 2005.

[39] B. Fortz and M. Thorup, “Optimizing OSPF/IS-IS weights in a changing
world,” IEEE J. Sel. Areas Commun., vol. 20, no. 4, pp. 756–767,
May 2002.

[40] M. Ericsson, M. G. C. Resende, and P. M. Pardalos, “A genetic algorithm
for the weight setting problem in OSPF routing,” J. Combinat. Optim.,
vol. 6, no. 3, pp. 299–333, 2002.

[41] J. Zhou et al., “WCMP: Weighted cost multipathing for improved
fairness in data centers,” in Proc. EuroSys, 2014, Art. no. 5.

[42] D. P. Bertsekas, “Dynamic behavior of shortest path routing algorithms
for communication networks,” IEEE Trans. Autom. Control, vol. AC-27,
no. 1, pp. 60–74, Feb. 1982.

Marco Chiesa received the Ph.D. degree in com-
puter science and engineering from Roma Tre
University in 2014. He is currently an Assistant
Professor with the KTH Royal Institute of Technol-
ogy, Sweden. His research interests include Internet
architectures and protocols, including aspects rang-
ing from network design and optimization to security
and privacy. He received the ICNP Best Paper Award
in 2013 and the Applied Network Research Prize
in 2012.

Gábor Rétvári received the M.Sc. and Ph.D.
degrees in electrical engineering from the
Budapest University of Technology and Economics
in 1999 and 2007, respectively. He is currently a
Senior Research Fellow with the Department of
Telecommunications and Media Informatics. His
research interests include all aspects of network
routing and switching, the programmable data plane,
and the networking applications of computational
geometry and information theory. He maintains
several open-source scientific tools written in Perl,
C, and Haskell.

Michael Schapira was with the Google NYC’s
Infrastructure Networking Group, and was a
Post-Doctoral Researcher with UC Berkeley,
Yale University, and Princeton University. He is
currently an Associate Professor with the School
of Computer Science and Engineering, The
Hebrew University of Jerusalem, and the Scientific
Co-Leader of the Fraunhofer Cybersecurity Center,
Hebrew University. His research interests include
the design and analysis of novel (inter)network
architectures and protocols. He was a recipient of

the Allon Fellowship, the Microsoft Research Faculty Fellowship, IETF/IRTF
Applied Networking Research Prizes, the Hebrew University President’s Prize,
the Krill Prize, a Google Faculty Research Award, and the ERC Starting Grant.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

