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Node Virtualization for IP Level Resilience
Máté Nagy, János Tapolcai , and Gábor Rétvári

Abstract— For Internet protocol (IP) to evolve into a true
carrier-grade transport facility, it needs to support fast resilience
out-of-the-box. IP-level failure protection based on the IP fast
reroute/loop-free alternates (LFA) specification has become indus-
trial requirement recently. The success of LFA lies in its inherent
simplicity, but this comes at the expense of letting certain
failure scenarios go unprotected. Realizing full failure coverage
with LFA so far has only been possible through completely re-
engineering the network around LFA-compliant design patterns.
In this paper, we show that attaining high LFA coverage is
possible without any alteration to the installed IP infrastructure,
by introducing a carefully designed virtual overlay on top of the
physical network that provides LFAs to otherwise unprotected
routers. Our main contribution is formulating the corresponding
resilient IP overlay design problem and providing constructions
that can achieve full failure coverage against single link failures
by adding at most four virtual nodes to each physical one.
We also show that the problem of finding the minimal number of
virtual nodes achieving full failure coverage is NP-hard, and thus
propose heuristic algorithms that are guaranteed to terminate
with a fully protected topology in polynomial time. According to
the numerical evaluations the performance of our algorithm is
on par with, or even better than, that of previous ones, lending
itself as the first practically viable option to build highly resilient
IP networks.

Index Terms— IP fast reroute, loop free alternates, resilience,
network optimization.

I. INTRODUCTION

THE Internet is quickly becoming the main bearing plat-
form for converged telecom services. For the Internet

Protocol (IP) suite to become a real carrier-grade transport
infrastructure, however, it needs to deliver five-nines availabil-
ity, the key to which is fast convergence from link and device
failures. Historically, the IP control plane adopts a sluggish
restoration mechanism to handle outages, according to which
the Interior Gateway Protocol (IGP), upon detecting a topology
change, advertises the altered network state throughout the
routing domain, re-computes shortest paths at each router,
and then downloads the new forwarding state into the data
plane. This process, while robust and easy to configure, is
lengthy.
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Focusing on this problem IETF founded the IP Fast
Re-Route Framework (IPFRR) [3], which is based on two
principles, local re-routing and the use of pre-computed sec-
ondary next-hops. This allows to eliminate the most time-
consuming parts of the IGP recovery process: flooding of
routing information throughout the network. Instead, when a
network element fails, the neighbors immediately switch to
the backup routes while the IGP converges in the background.
During this transient state we say the failure is protected if
the packets will reach its destination because of such backup
switching at the neighboring nodes. Unfortunately, IPFRR
today does not come equipped with a practical and deploy-
able implementation that would provide an all-out solution.
What the basic IPFRR specification recommends instead, and
what most router vendors implement [4]–[8], is Loop-Free
Alternates (LFA, [9], [10]), whereby the IGP attempts to
find a secondary next-hop (i.e. LFA) that protects against a
single link or node failure on the default shortest path. The
main reason behind LFA’s popularity is it’s simplicity. First,
it does not require any protocol modification that makes it
easier to deploy. From the operator’s perspective the imple-
mentation is rather easy too, and after upgrading all the
routers the network itself can remain intact. The price of this
simplicity is, however, moderate protection level; in general,
LFA protects only 50-80% of single link failures and node
protection is poorer [11]–[13]. Alternatives to LFA that would
provide 100% protection against single link failures [11]–
[19], unfortunately, could not yet gain sufficient adoption from
standardization bodies, router vendors, and network operators,
due to the implied management burden and the breaking of
the incremental deployment path.

In order to realize high protection coverage with LFA,
currently operators need to change the very physical network
topology or straight out rebuild it from scratch [20], [21]
or, alternatively, re-engineer the default forwarding paths by
re-computing the IGP link costs [22], [23]. Both of these
approaches, unfortunately, require significant network opera-
tions and management intervention and conflict with long-term
traffic engineering goals. Meanwhile the IETF has published
a tunnel-based extension of the basic LFA method, called
Remote LFA (rLFA) [24] that increases LFA efficiency but
still does not guarantee full protection. Consequently, there
is a compelling industrial motivation to find LFA-based net-
work optimization techniques, which promise with boosting
LFA failure case coverage with minimal or no alterations
to the installed IP infrastructure, until more efficient IPFRR
mechanisms eventually become commonly available.

In this paper, we show that improving LFA failure case
coverage is feasible without touching the physical topology
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and the forwarding paths in any ways, or requiring any new
features from the IP data and the control planes that are
essentially fixed by what is available in commercial network
gear today. The idea is to intervene at the management plane
by taking advantage of router virtualization, a technique for
sharing a single IP routing device between multiple virtual
routing instances. Instead of altering the original network itself
the idea is to create virtual nodes over the physical substrate,
a so called resilient IP overlay, to provide “virtual LFAs”
for the physical nodes that would go unprotected otherwise.
Thanks to today’s router design, logical instances can easily
share the same physical hardware and can behave like com-
pletely different devices. Adding virtual (also called “fake”)
nodes and links to an underlying link-state routing protocol is
a well recognized technique to implement new functionalities,
such as to enable better load balancing, traffic engineering, and
backup routes [25]. Our resilient IP overlays also borrow from
the tunnel-based IPFRR mechanisms and LFA extensions [15],
but instead of defining a new control plane protocol we rather
only “emulate” tunnels, by a suitably provisioned overlay,
intervening solely at the management plane.

The significance of this delegation of the responsibility
for IP fast resilience optimization from the control plane
to the management plane is not to be dismissed; current
IP devices come with the control plane protocols deeply
embedded into the hardware and software and despite ongoing
efforts to separate the two, like in Software-defined Network-
ing [26] or the ForCES framework [27], this will continue
to be the case for the coming years in many transport and
service provider networks. Therefore, most efforts to modify
basic IP control protocols have gone unsuccessful for years
due to network operators being reluctant to ditch expensive
IP network gear (the phenomenon often referred to as “the
ossification of the Internet” [28]).

Since LFA does not inherently provide perfect protection,
our main goal is to provision a virtual overlay over the physical
topology in a way as to maximize the level of protection,
called LFA coverage. This is calculated as the ratio of pro-
tected vs. all source-destination pairs in the network. Besides,
special attention must be paid to leave the default forwarding
paths, often carefully engineered beforehand to reflect crucial
operational concerns [29]–[31], intact. In addition, as a failure
of a physical link or node results the failure of its virtual
links or nodes we also need to account for local Shared Risk
Link Groups (SRLGs), collections of out-links at each node
which are likely to fail jointly, for which LFA currently has
scarce support for.

As the main contributions of the paper, we formulate the
resultant Resilient IP Overlay Design problem as a network
optimization problem in a concise mathematical framework
and we provide upper bounds on the amount of virtual devices
needed and close most of the related algorithmic questions.

• We show the problem is always feasible for 2-connected
topologies and full LFA coverage can always be achieved
by adding virtual nodes.

• We provide constructions to achieve full LFA coverage
in 4- (and 2)-connected graphs by adding 2 (or 4) virtual
nodes to each physical node.

• We show that even this sub-problem of adding a single
virtual router while maximizing LFA coverage is already
NP-complete.

• We propose a greedy optimization strategy that in each
step inserts a single, or a small set of, virtual routers into
the network that improves LFA protection the most.

• We propose several heuristic solutions as well, which,
depending on a configuration parameter, are either opti-
mal in each greedy step or guaranteed to terminate in
polynomial time, and we show that it is possible to
efficiently balance between the two according to the
preferences of the operator.

• Furthermore, we present experimental evidence that the
proposed techniques are efficient in improving LFA cov-
erage in many common ISP topologies by adding a few
virtual routers only.

The rest of this paper is organized as follows. In Section II
we walk through existing IPFRR proposals and identify the
main barriers for deployment. After a brief introduction to
LFA in Sec. III we present the problem formulation in Sec. IV.
In Sec. V we show the corresponding network design problem
is NP-hard, and show feasibility conditions and constructive
bounds on the number of virtual nodes needed for full cov-
erage. In Sec. VI we provide heuristics solving the problem
by introducing a greedy optimization strategy. Afterwards in
Sec. VII we provide numerical results and finally Sec. VIII
concludes the paper.

II. RELATED WORK

One of the earliest proposals for immediate recovery tech-
niques use MPLS with the Resource Reservation Protocol-
Traffic Engineering (RSVP-TE) [32] extension to reroute the
traffic along a precomputed alternate path. Although this pro-
vides a standardized and broadly implemented fast protection
scheme, there are many operators that have not deployed
MPLS at all, or not using RSVP-TE for distributing label
information. In addition, RSVP-TE does not bring along a
simplified solution as the operator has to explicitly define
each LSPs and links to protect. This usually requires either
to develop the own set of scripts, or to purchase expensive
commercial software tools. Besides, MPLS FRR needs addi-
tional signaling that may consume valuable bandwidth and
processing capacity [33].

Instead, to be able to recover within hundreds of mil-
liseconds in native IP networks, the networking community
turned to the IPFRR framework. There is a colorful spectrum
of approaches that intend to give more and more efficient
propositions for achieving perfect protection, but the majority
of them require non-standard IP level functionality or addi-
tional management burden, which prevents them to become a
real offer for network operators. One example is interface-
based forwarding [14] that breaks the traditional IP for-
warding principle where the next-hop is solely defined by
the destination address. Instead, based on the interface on
which the packet arrives, the router can decide if there is
a fault in the network and it can find an alternate next-hop
to the destination. However, the proposed implementation of
FIFR requires an additional forwarding table, together with a



1252 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

so-called backwarding table, for each router interface, which
poses a substantial resource burden on routers with many
interfaces per line card. This concept was further improved
in [34], which simplifies FIFR so that no additional forwarding
table is needed; in turn the router must tediously check if
the packet is arrived from a link opposite with the primary
next hop during forwarding. Unfortunately the current legacy
IP devices do not support changing IP’s destination-based
forwarding [35]–[37] or introducing some forms of signaling
to indicate that a packet is on a detour. What is worse, they
do not support out-of-band failure signaling either [38], or use
invaluable extra bits in the IP header [39], or adding special
information to it for in-band signaling [17]. Nevertheless, with
the spread of SDN/openflow devices this might change in the
future.

Other proposals use tunneling to route around the failed
component [13], [18], [19], [40]. However, these require the
encapsulation of the re-routed packets using an additional IP
header, which may lead to hard-to-debug MTU issues. The
Failure-carrying Packets (FCP [41]) method also uses the
packet header to carry information about the failing links that
the packet has hit along it’s way to the router; correspond-
ingly, FCP can protect against multiple simultaneous failures.
Nevertheless, the computational overhead that is required
to process the incoming link set and the necessity of an
update protocol to maintain routers’ consistent view of the
network may become significant deployment barriers in the
long term.

The Multiple Routing Configurations (MRC, [16]) approach
calculates a small set of backup network configurations offline
and, if a link or node fails in the network, the identifier of the
proper recovery configuration is marked in the packet header.
This marking enables the routers to switch the packet to the
overlay that is free from the failing component. O2 routing
[42] keeps track of two alternate next-hops towards each
destination so that, in case of a link failure, traffic can be
immediately switched to the other one. Unfortunately this
concept breaks shortest-path-based routing. Fibbing [25] is a
concept very similar to ours, whereby routers are “tricked”
by using virtual routers into sending traffic into the desired
direction. However, Fibbing requires the presence of a central-
ized SDN controller, whereas our proposal remains completely
within the conventional distributed IP routing model.

The concept of Farside Tunneling [43] is pretty close to
the key idea of our paper. If a router detects a link failure, it
leads the packets into a tunneled detour that ends at the far
side of the failure. However, IP tunneling usually comes with
noticeable performance drop and, if the additional header does
not fit into the MTU, packet fragmentation can even worse the
situation. Therefore our virtual network design relies solely
on the legacy IP stack, and can be interpreted as an improved
version of Farside Tunnels. In contrast to the specification of
Farside, our methodology provides a clear decision mechanism
on the tunnels to be established.

The Topology Independent LFA (TI-LFA [44]) is a recent
approach for providing local protection with the help of
Segment Routing (SR) [45], [46]. Here, there are two types of
segments: nodal and adjacency. While the former is globally

Fig. 1. Sample network and edge costs. The network is undirected; however,
on the figures we often direct edges to highlight the shortest paths to one node
drawn with gray background. The (red) dotted links are possible LFA links (of
the physical nodes) for the same destination node. The “virtual” nodes and
links are drawn with (blue) dashed line. (a) The physical topology. (b) The
virtual topology after adding the virtual router a1 to a.

unique and assigned to routers, the latter one is local and it
is used to mark the links of a specific router. When a packet
arrives to the first SR router, it adds an ordered list of segments
to the packet that is interpreted as a set of instructions for
other SR nodes along the path. The path computation is done
by a centralized external entity (PCE), and label information
is distributed with an extended version of IGP. Upon a failure,
the packet is sent to a detour that is computed by the point of
local repair (PLR). Consequently, TI-LFA requires SR to be
deployed that comes along with IGP extensions and software
upgrades that may potentially makes it unpleasant to certain
operators. Besides, it is still not standardized and commercially
not available at all device vendors.

In conclusion, the aforementioned solutions are struggling
with complexity and management issues; unsurprisingly, LFA
has been the only IPFRR method that has been deployed and
gained widespread adoption amongst network operators.

III. ROUTER VIRTUALIZATION AND

LOOP-FREE ALTERNATES

Loop-Free Alternates is the barebones IP Fast ReRoute
specification. To understand LFA in operation, consider the
sample network in Fig. 1a. Initially, all shortest paths are
calculated by some IGP routing protocol in the background.
Consequently, the distance on a shortest path between a node
x and y is given by dist(x, y), e.g. dist(a, d) = 3. On Fig. 1a
the (primary) next hops at each node towards destination d are
drawn with solid lines and arrows. Note that in the example
each node has a single (primary) next hop, which is not
common in real networks. Let us suppose now that node a
is willing to send a packet to node d. Normally, this occurs
via the single shortest a → d path a → f → d. However,
when a’s link to its next-hop f fails, a looses connectivity
to d until the IGP restoration process is completed. At this
point IPFRR comes in handy, and instead of waiting for the
sluggish IGP recovery, we can instantly switch the traffic to a
pre-computed secondary next-hop that still has an intact path
to the destination. In our example, e is such a neighbor for
a → d as it is guaranteed that e does not loop the packets back
to a, i.e., it is not upstream of a. Thus, we say that e is an LFA
(Loop-Free Alternate) from a to d, or loosely speaking “e is
an a → d LFA”. Note, that if node e has multiple (primary)
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next hops towards d, we also need to specify the next hop link
for which e is “an LFA”.

In general, for some source s, destination d, and next-hop
t, a neighbor n �= t of s is a link-protecting LFA if [9]:

dist(n, d) < dist(n, s) + dist(s, d), (1)

The condition ensures that the n → d shortest path does not
traverse s, so in case of the failure of link (s, t) packets will
eventually reach d.

By continuing our example we find that a is not a f → d
LFA, because if f passed packets to a when (f, d) had failed
then those packets would eventually loop back to it along the
a → d shortest path (recall that a is not aware of the failure).
In fact, f does not have an LFA to d in this configuration at
all, leaving the network vulnerable to the failure of link (f, d).
Overall, there are 30 source destination pairs in this six-node
network, from which the followings are not protected by LFA:
d → f , d → e, c → e, f → d, c → b, a → b and c → a,
resulting a 77% LFA coverage.

In summary, a node does not have an LFA if all its neighbors
except the next-hop are upstream. However, if we somehow
provision a new neighbor that is not upstream to it, then this
neighbor will provide a suitable LFA. In this paper, we propose
to achieve this by adding a “virtual router” to the physical
router, duplicating some of its physical links as virtual links,
and assigning costs to these links in a way as to ensure that
the new neighbor is no longer upstream. Since a virtual router
has a separate routing table and it runs its own instance of the
IGP, it will show up as an individual entity in the routing state
of its neighbors and hence is eligible as an LFA. This makes
it possible to provide LFA to otherwise unprotected routers.

The virtual network obtained by adding a virtual router a1

to a is depicted in Fig. 1b. The key idea of the paper is
that, we can set the IGP costs on the virtual links of a1 so
that the shortest path to d traverses e as next-hop, then a1

will provide an LFA to f → d. Such an IGP cost setting is
c(b, a1) = c(f, a1) = c(c, a1) = 10 and c(a1, e) = 2, where c
denotes edge cost. Not just that a1 is now an LFA from f to
d, but it also protects several more node pairs too that were
unprotected in the default topology. In particular, a1 provides
LFA for c → e as well, increasing LFA failure coverage from
77% to 83%.

We emphasize that the same effect could not have been
achieved by layer-3 tunnels (as of [24]), because IP and
MPLS/LDP tunnels must follow shortest paths. In contrast,
router virtualization allows to establish essentially any tunnel
we want, by provisioning consecutive layer-2 virtual links
through a series of physically adjacent virtual routers.

There are many appealing aspects of leveraging router
virtualization to improve LFA coverage. The isolation of
routing contexts provided by virtual routers gives a flexible
way to improve the level of protection by designing a virtual
topology around the physical network. Major vendors all
support virtualization in hardware in off-the-shelf routers,
capable to handle hundreds of virtual contexts [47], [48].
Therefore, our proposal is deployable right away with minimal
management effort. Improved resilience, however comes at a
price, in the form of moderately larger IGP signaling load,

Fig. 2. A sample network with a possible LFA loop. Note that in larger
networks such LFA loops can appear in more hidden ways. Here LFA is
defined by (1) without the use of local SRLGs.

IP address management burden, and growing IP forwarding
tables at routers. Nevertheless, today’s IP routers are powerful
enough to let ISPs run hundreds of IGP instances in a single
area, and so this price seems negligible for better network
robustness and service availability.

The decision of how to provision the virtual overlay is by
far a non-trivial one. There are the natural requirements that
are already difficult enough to fulfill, like the need to minimize
the number of virtual instances executing on a router side by
side. But there are much more subtle issues to consider as
well, like the curious fact that a careless intervention might
very well decrease LFA coverage instead of increasing it.
We find that inadvertent virtualization decision might easily
end up corrupting existing LFAs and decreasing LFA-coverage,
instead of increasing it. To demonstrate how this can happen,
we give a virtual topology in Fig. 2 where the spurious LFA
provisioned at the virtual router a1 may replace the legitimate
LFA a → d. Naturally, such cases must be avoided at all costs.

IV. MODEL AND PROBLEM FORMULATION

Router virtualization opens up a broad range of new
LFA-optimization strategies. In this section, we narrow this
wealth of options to a well-defined, practically motivated
subset. The main goal is to minimize interference with the
normal operation of the network, and only involve virtual
routers in packet forwarding when absolutely necessary. This
guarantees that packets do not take excess detours, helps break
down management complexity, and eases debugging data plane
misconfigurations. The requirements are as follows.

A. Assumptions on Physical and Virtual Topology

1) Problem Inputs: We are given the physical network, or
substrate, as an undirected1 graph GS = (VS , ES) and IGP
link costs cS : ES �→ Z

+. We assume that the substrate
consists of point-to-point links only (i.e., no LANs, NBMA
media, etc.). Our task is to construct a virtual topology GV =
(VV , EV ) with link costs cV : EV �→ Z

+ in a way as to
maximize LFA coverage in GV . In fact, GS is a subgraph of
GV in our model.

1For sake of simplicity and without loss of generality we assume each link
is bi-directional, and every link cost is symmetric.
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There is a Default Routing and Forwarding Layer GS:
We assume that associated with each physical router there
is a default context, holding the interface (and loopback
IP addresses of the physical router), running the common
control and management protocols a router usually runs, and
originating and terminating all traffic entering or leaving
the network at that router. Nodes in GV \ GS are called
virtual nodes or contexts and links are called virtual links.
Mark the default context for a physical router v ∈ VS and
denote its virtual nodes by vi ∈ VV \ VS for i = 1, . . . , kv

where kv denotes the number of virtual instances running on
the particular physical router. Let kmax denote the maximal
number of virtual instances a router may have. In addition,
denote the set of neighbors of some node v ∈ VS in GS

by NS(v). Similarly, NV (v) denotes the neighbors of some
v ∈ VV in GV .

Traffic Flows in the Default Layer Along the Default
Shortest Paths: There is no restriction on Equal Cost Multi-
paths (ECMPs), but in this case we seek an alternate for each
next-hops. Traffic only enters a virtual router when a failure
shows up, and so virtual routers serve exclusively as LFAs for
nodes not protected in the physical topology. This minimizes
the disruptions under error-free conditions and ensures that
in normal operations the virtual topology distributes load as
efficiently as the underlying physical network. To achieve this,
the cost of virtual links is set so that they never appear in any
u → v shortest path in GV for any (u, v) ∈ VS × VS , u �= v.

Virtual Links Connect Physically Connected Nodes: Virtual
links are provisioned between nodes that are adjacent in the
substrate, or inside the same the physical router:

∀(vi, uj) ∈ EV \ ES : {(v, u) ∈ ES or v = u)}, (2)

where i = 1, . . . , kv and j = 1, . . . , ku. The reasons for this
assumption are manifold. First, as virtual links never span
multi-hop paths, they are easy to provision as layer-2 virtual
links (say, Ethernet VLANs). Such connections often do not
even require distinct IP addresses. This minimizes impact
on the IP layer and eliminates much of the configuration
overhead and MTU issues that plague tunnel-based IPFRR
mechanisms [13], [19]. Additionally, layer-2 connections are
free from the limitations of layer-3 tunnels, which are bound
to shortest paths. Finally, two virtual links now belong to the
same SRLG if and only if they share the same physical link,
which would not hold over multi-hop tunnels.

Single Link Failures in the Physical Network: As single
link failures have been shown to constitute the major portion
of unplanned outages in operational networks [49], we con-
centrate on this case and we also ignore node failures; these
cases can be incorporated into the model with little extra effort.
We observe, however, that even a single physical link failure
usually manifests itself as multiple simultaneous failures in
the virtual topology, because not just the default link but all
the virtual links provisioned on it also go down.

The LFA specification introduces local SRLGs as the mini-
mum requirement for conforming implementations [9]. A local
SRLG at node v is defined as a set of output ports, i.e. links
adjacent with the node, with the semantics that a conforming
IGP will never install an LFA through a link that shares

a local SRLG with the primary next-hop. Associated with each
link (u, v) ∈ ES we define local SRLGs at both end nodes
composed of all the links provisioned on the same physical
link as e, formally

• SRLG at v is S(v,u) = {(v, u), (v, u1), . . . , (v, uku)},
• SRLG at u is S(u,v) = {(u, v), (u, v1), . . . , (u, vkv )}.

Local SRLG support is easy to deploy as it does not
need network-wide configuration and dissemination mecha-
nisms [50], [51], but it is also quite limited in that routers will
only spot non-SRLG-disjoint paths at the first hop.

LFA is Disabled for Virtual Nodes: Fig.2 shows an example
where, after a failure, a virtual node forwards the packet to its
LFA. Our experience suggests that such “cascade LFAs” are
the primary origin of LFA loops and can be omitted without
any perceptible degradation in the resultant LFA coverage.
Correspondingly, we assume a packet can be deflected to an
LFA only at most once during its journey from the source to
the destination.

B. Problem Formulation

First, we present an augmented LFA definition that accounts
for local SRLGs and rules out LFA loops.

Definition 1: For source s, destination d, and s → d
next-hop t, node n is an s → d LFA if

LFA-1 n ∈ NV (s) and n �= t, and
LFA-2 dist(n, d) < dist(n, s) + dist(s, d), and
LFA-3 (s, n) /∈ Ss,t (local SRLG condition), and
LFA-4 dist(n, d) < dist(n, si) + dist(si, d) for

i = 1, . . . , ks.

Here, LFA-4 requires that n is an LFA with respect to
all virtual neighbors.2 Since current LFA implementations are
restricted to LFA-1, LFA-2, and LFA-3, our virtual overlay
construction algorithms need to be designed so that LFA-4
automatically fulfill.

Next, we define the following metric for LFA failure case
coverage in the virtual topology. Let IE(s, d) be an indicator
function, taking the value 1 if (s, d) is protected (has an LFA
node n according to Def. 1) and zero otherwise, where s,
d ∈ GS × GS . Using this definition, the LFA coverage is
defined as

η(GV , cV ) =

∑
(s,d)∈VS×VS

IE(s, d)

|VS |(|VS | − 1)
. (3)

With these notations in place, we can now pose the Resilient
IP Overlay Design (RIOD) problem. Here, the task is to
compute the overlay that maximizes LFA-coverage, using only
a given number of virtual routers. In addition, we also allow
to limit the set of routers that can host virtual instances.

Definition 2: RIOD(GS , cS , U, k, ηmin): given a graph
GS = (VS , ES), link costs cS , node set U ⊆ V , and positive
integer k, design a graph GV = (VV , EV ) and link costs cV

so that:

2Note that in [1] instead of LFA-4 the following weaker condition was
given: LFA-4∗ each n → d shortest path is SRLG-disjoint from e.
We chose this stricter version of the LFA condition, because in very rare
situations the original weaker condition caused LFA loops when many virtual
nodes are added (see [2, Sec. III.A] for an example and further discussion).



NAGY et al.: NODE VIRTUALIZATION FOR IP LEVEL RESILIENCE 1255

• VS ⊆ VV and virtual nodes provisioned only inside U ,
• ES ⊆ EV and virtual links are only between physically

connected routers, see Eq. (2),
• shortest paths between node pairs in VS do not

change (the substrate is unaltered),
• |VV \ VS | ≤ k (no more than k virtual instances), and
• η(GV , cV ) ≥ ηmin (the LFA coverage is a least ηmin).

One ultimate goal is to build an entire virtual topology in
one step so that each node-pair in the substrate becomes LFA-
protected. We also focus on a somewhat less ambitious task
RIOD(GS , cS , {v}, 1, ηmin) to add a single virtual router to
a selected node v, and our objective is merely to maximize LFA
coverage along the way instead of aiming for full coverage.
We shall refer to this useful special case of RIOD as the LFA
Virtual Router Augmentation Problem LFAVirt(GS , cS , v).

V. COMPLEXITY AND UPPER BOUNDS

Next, we address the problem of building an LFA-optimized
overlay under the model assumptions introduced above. The
model basically asks for augmenting a physical topology with
virtual routers and set the cost on the resultant virtual links in
a way as to maximize LFA coverage.

First, we will show that full LFA coverage can always be
achieved but we show that finding the fewest virtual nodes
to achieve this is NP-hard; however, we will provide con-
structions to achieve full LFA coverage in 4- and 2-connected
graphs by adding limited number of virtual nodes.

A. Conditions to Reach Full Failure Coverage

Theorem 1: For a given 2-connected graph GS with posi-
tive costs cS there always exists an overlay GV and cost setting
cV that solves RIOD(GS , cS , VS ,∞) with η(GV , cV ) = 1.

Proof: We show that, given any unprotected node-pair
s → d, there is a proper set of virtual nodes whose addition
will create a link-protecting SRLG-disjoint s → d LFA.
It follows that if we apply this step to each unprotected node-
pair, then full LFA-coverage eventually reaches. We protect
the s → d pair by provisioning a “virtual tunnel” between s
and d that provides a detour for s bypassing its failed next-
hop (Fig. 3a). Let s−q− . . .−r−d be an s → d path disjoint
from the s → d next-hop (such a path is guaranteed to exist
as GS is 2-connected). Create a virtual node for each node
between q and r and denote the new virtual router on q by q1

and the one on r by r1. Connect s to q1 and r1 to d and set
the link cost on (s, q1) “high” (say, larger than the length of
the longest shortest path) and at the rest of the virtual links
to the lowest possible. As one easily checks, q1 is now an
s − d LFA. We still need to show that LFA-4 holds, but this
is guaranteed as there are only two entry points to the virtual
tunnel, q1 and r1, and q1 is protected by the local SRLG at s
(as of LFA-3) and r1 is never an LFA due to its low cost.

B. Complexity Analysis

The first question we ask is whether the RIOD problem is
tractable. Consider the below characterization.

Theorem 2: LFAVirt(GS , cS, v) is NP-complete.

Fig. 3. A sample network with a “virtual tunnel” or “virtual layer”.
(a) A “virtual tunnel” between s and d. (b) A “virtual layer”.

Note that this implies that RIOD(GS , cS , U, k, ηmin) is
NP-complete. The main idea of the proof is constructing
a special substrate and designating a node in a way that
virtualizing the node opens up a plethora of LFA-options.
Deciding on which LFA to choose means fixing cV , which
is then shown to solve arbitrary instances of the minimum
feedback arc set problem, a well-known NP-complete problem
[52, GT8, p. 192]. For the complete proof, refer to the
Appendix A.

C. Constructions to Achieve Full LFA Coverage by Adding
Fix Number of Virtual Nodes per Physical Nodes

Let us introduce some constructions.
Definition 3: Let GS be a connected graph and T a span-

ning tree, and K be a constant larger than the longest shortest
path between any two nodes in GS . Adding a kth virtual layer
with distance K means we add a virtual node vk to each
physical node v, where virtual nodes uk and vk are connected
if and only if (u, v) ∈ T . The cost of cV (uk, vk) = ε, where
ε is a small positive number (smaller then the smallest cost
edge of ES divided by |VS |). For each node v we also add
virtual edge (v, vk) with cost cV (v, vk) = K (See Fig. 3b).

Claim 1: Let GS be a connected graph and T a spanning
tree which is added as a virtual layer with distance K . This
cannot decrease the LFA coverage, and the shortest path
between virtual node vk and physical node d is T (vk − d),
where T (x − y) denotes the path between x and y in tree T .

Proof: First we show that adding a new virtual layer with
distance K cannot decrease the LFA coverage. One can verify
that Claim 2 can be applied recursively: start with any node
and add its neighbors in the tree one by one.

Next we show that the shortest path between vk and d is
T (vk − d). Note that any path from vk to d is at least K
because it should traverse between the layers and thus through
a link (uk, u) at some node u. The path in tree T between vk

and dk is unique and, traversing along the virtual nodes, its
cost is h · ε where h is the number of hops. The total cost if
u = d is K + h · ε, while any other path would have larger
cost as it should traverse an edge with cost K and a physical
edge with cost larger than h · ε.

Theorem 3: For a given 4-connected graph GS with posi-
tive costs cS there always exists an overlay GV and cost setting
cV that solves RIOD(GS , cS , VS ,∞) with η(GV , cV ) = 1
and kmax = 2.

Proof: A corollary of Tutte-Nash-Williams Theorem
[53, Th. 4.4.4] is that an undirected graph GS = (VS , ES)
contains 2 pairwise edge-disjoint spanning trees if it is
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Fig. 4. A graph where LFA coverage cannot be increase by adding a single
virtual node.

4-edge-connected. Let T1 and T2 denote such pairwise edge-
disjoint spanning trees of the input topology GS . Let us add
T1 and T2 to GS as two virtual layers with distance K .

In this case, for any node pair n and d the short path from n1

to d and from n2 to d are two disjoint paths, by using Claim 1
and that T1 and T2 are pairwise edge-disjoint spanning trees.
Therefore every node s has an LFA s1 or s2 having a shortest
path to d that is disjoint from the failed next hop.

Theorem 4: For a given 2-connected graph GS with posi-
tive costs cS there always exists an overlay GV and cost setting
cV that solves RIOD(GS , cS , V,∞) with η(GV , cV ) = 1 and
kmax = 4.

See Appendix B for the proof, which is based on
st-numbering technique of the undirected graph topology
introduced by Itai and Rodeh [54].

VI. HEURISTIC ALGORITHMS TO THE RESILIENT

IP OVERLAY DESIGN PROBLEM

The main idea in our heuristics is to iteratively add new
virtual nodes to the network until full LFA coverage is
achieved.

First, we focus on the special case LFAVirt(GS , cS , v)
where a single virtual node v1 is added to v and the task is
to set the link costs so that LFA coverage increases the most.
We will show a sufficient condition to ensure the LFA coverage
is never decreasing. Recall that in Section V-B we have shown
that even this simple variant is already NP-complete (which
immediately sets the complexity of the one-step optimization
problem as NP-hard), but it is still complex enough to build
efficient optimization strategies on top of it.

As the next step, we can use LFAVirt(GS , cS , v) as a
building block for a greedy heuristic to solve the fully
fledged RIOD(GS , cS , U, 1, ηmin), whereby iteratively a sin-
gle virtual node is added to the network to increase the
LFA-coverage. This approach would curtails the ensuing com-
putational complexity significantly; on the negative side, as we
show below this simple greedy approach may stuck in a local
maximum in certain cases. Therefore, we shall use a slightly
extended version of LFAVirt as the basic building block of
our algorithms whereby we may instantiate multiple virtual
LFAs in each step if the need arises.

Theorem 5: There are networks with η(GV , cV ) < 1 where
adding a single node cannot increase the LFA coverage.

Proof: We show an example in Fig. 4. One can verify that
the only unprotected node-pair is c → d, so the LFA coverage
of the network is η = 19

20 . Additionally, all the 2-hop neighbors
of c are upstream for d, and because Alg. 1 provisions only
a single virtual router in each step the furthest it can reach

with a virtual tunnel is a, which is also upstream. Hence, any
greedy algorithm that adds only a single node in each step
terminates with η < 1.

It may be tempting to believe that our example is a
pathologic case due to the large cost of the (a, d) link.
This, however, is not the case, as one can easily show unit-
cost counter-examples similar to the one in Fig. 4 (e.g., by
substituting the (a, d) link with a long chain of unit-cost links).

A. Basic Heuristic

As it turns out, augmenting the graph with only a single
virtual node in each iteration might be too restrictive. Instead,
one might try to instantiate two virtual routers when adding
only a single one did not help, then try three virtual routers at
once, etc. This observation is reflected in the below definition
of connected l-sets.

Definition 4: For a graph GS , call a set of nodes in Ul ∈ VS

a connected l-set if the induced subgraph of GS spanned by
Ul is connected and |Ul| = l.

Claim 2: Adding a set of nodes Ul ∈ VS the LFA coverage
cannot decrease, if node v′ ∈ Ul does not appear in any u → w
shortest path in GV for any (u, w) ∈ VV × VV , u �= w.

Proof: To decrease the LFA coverage there must be a
source s, destination d, and s− d next-hop t, which had LFA
through node n before v′ was added, however adding v′ this
LFA is not valid any more. This can only happen if the shortest
path from node v′ to d has changed, which is not possible
according to the condition in the claim.

Our heuristic is then based on simply trying increasingly
larger connected sets of virtual nodes until LFA-coverage
eventually improves. Note that, by Theorem V-A, there is a
sufficiently large connected l-set for which at least one node-
pair will gain a new LFA, and therefore this modification
to the algorithm implies optimal termination. Algorithm 1
implements these ideas.

Algorithm 1 Greedy alg. for RIOD(GS , cS , VS ,∞, ηmin)
while ηmin > η(GS , cS) do

foreach l = 1, . . . , k do
foreach connected l-set Ul ⊆ U do

(cUl , ηUl)← solve LFAVirt(GS, cS , Ul)

(U ′, η′)← choose UL ∈ U that maximizes ηUl

if η′ > η then
add U ′ to GV and set costs to cU′
break

Note that the algorithm is parametrized on an integer k,
which allows to set an upper bound on the maximum size of
the connected l-sets examined, and hence on the running time.

There still remains the problem of how to solve the gen-
eral form of the LFA Virtual Router Augmentation prob-
lem LFAVirt(GS , cS , Ul). Here, we need to assign an entire
“island of virtual nodes” on a connected set Ul. Let neigh(Ul)
denote the neighbors of nodes in Ul that are outside Ul.
Suppose that we are about to solve LFAVirt(GS , cS , Ul) by
provisioning a set of virtual routers U ′

l on Ul, with each u ∈ Ul

hosting a single virtual instance u′.
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Fig. 5. Illustration for escape nodes.

The main idea of our heuristics is to set a single exit point
for the virtual nodes in U ′

l , that is, to let all traffic that enters
U ′

l through LFAs leave via a single exit link (v′, g). Thus,
we create a virtual router at each node of Ul and we connect
these to each other with small cost, plus we connect these
nodes to all nodes in neigh(Ul) with a large cost except for
the virtual link to the exit link (v′, g) which is again set to
low cost, just like in Fig. 1b. It is now trivial to check that this
setting indeed yields that U ′

l has a single exit node: g. In this
way the LFA coverage never decreases by Claim 2.

This is a simple yet efficient method, with the main draw-
back that for each u ∈ neigh(Ul) we need to evaluate the LFA
coverage. The LFA coverage is computed according to Eq. (3)
which needs evaluating every edge-node pair: (s, n) ∈ EV

and d ∈ VD . Recall, s ∈ VS , thus the number of possible
(s, n) LFA candidate links are at most kmax|VS |. This is
performed for each node u ∈ neigh(Ul); thus, the process
takes O(kmax|VS |2 · | neigh(Ul)|) steps in total each time
virtual nodes Ul are added.

B. Reducing the Running Time of the Basic Heuristic

Clearly evaluating Eq. (3) is the bottleneck in the running
time as it must be launched each time a virtual node is added.
To speed up the basic heuristic we will incrementally evaluate
Eq. (3). To do so, we keep track the set of eligible node-pairs
L that can gain an LFA. Clearly, a virtual router u′ can provide
LFA only if it is a neighbour of the source node. Let LUl

⊆ L
denote the set of eligible node-pairs with source node adjacent
with Ul, formally LUl

⊆ L|(s, d) ∈ L, s ∈ neigh(Ul). In other
words, the new virtual nodes Ul can provide LFA to node pairs
LUl

; thus
|LUl

|
|VS |(|VS |−1) is the upper bound in the increase of

η(G) after adding Ul. This measure helps in selecting a proper
virtual nodes Ul to add.

Let (s, d) ∈ LUl
be the set of source-destination pairs that

can gain an LFA when new virtual nodes Ul are added to the
physical node v. Note that node s has no LFA, thus it has
a single next hop t = nh(s, d) and all of its neighbours are
upstream to it or a virtual node corresponding to s. We seek
nodes g ∈ neigh(Ul) that can provide LFA to s − d by Ul.

The key idea is to pre-calculate the following set (see
Fig. 5): for each (s, d) ∈ LUl

a set of escape nodes Es→d

consisting of the nodes which, if chosen as the only exit
link of Ul to d, would render a virtual node v′ ∈ Ul an
s → d LFA. Computing Es→d for all (s, d) ∈ LUl

takes
O(| neigh(Ul)| · |LUl

| · kmax) steps in total. Based on this,
we can select optimal g as follows

g = argmax
g′∈neigh(Ul)

|(s, d) ∈ LUl
: g′ ∈ Esd| . (4)

The computational complexity of the improved Alg. 1 is
O(n3 +nk+3). Here, O(n3) comes from the all-pairs shortest
path problem needed be solved to obtain dist(.) and O(nk)
is the number of connected l-sets Ul of size at most k. The
above heuristics solves LFAVirt(GS , cS , Ul) for each Ul also
in O(n3), as L and LUl

contain O(n2) elements and Esd

contain O(n) elements, and each can be calculated in O(n2)
steps.

Correspondingly, Alg. 1 allows to trade-off optimality for
computational complexity through the parameter k. When run-
ning time is of no concern then k can be set to n, in which case
we are guaranteed to obtain a fully-protected overlay in a finite
number of steps. On the other hand, fixing k at a small constant
results strictly polynomial running time. For the rest of this
paper we set k = 3. In this case the theoretical worst-case
complexity of Alg. 1 is O(n6) steps, however, in practice we
found the all-pairs-shortest path problem to dominate running
time and hence O(n3) to be a more reasonable complexity
characterization. Besides, using a reduced set of connected
l-sets for selecting Ul can also improve the performance of
Alg. 1. Such a modification is when we use shortest path slices
of rank l, meaning that only those set of nodes are examined in
each step that are part of an existing shortest path in GS with
a length of l. Thus, O(nk) is reduced to O(n2). As we shall
see in the next section, this setting yields an overlay with close
to perfect LFA-coverage in most practical cases with very fast
running time.

C. Integer Linear Program for LFAVirt(GS , cS , v)

Since the LFAVirt(GS , cS , v) problem is NP-hard, we also
provide an Integer Linear Programming (ILP) that will serve as
the baseline when evaluating the heuristics. The formulation
is based on the definition of escape nodes discussed in the
previous subsection; however, instead of selecting one escape
node, the ILP computes the optimal virtual link costs so
that the most escape nodes become next-hops for the new
virtual node v′ and hence LFA-coverage is maximized when
adding v′.

The ILP is built around the following two constraints
(see Appendix C for details):

1) We want to assign at least one escape node as the next-
hop of v′ towards d, as then v′ will provide a new LFA
to s → d. For this, we need to set link costs cV such that

dist(v′, d) = cV (v′, g) + dist(g, d) for some g ∈ Esd.

(5)

2) Besides we need to ensure the LFA-4 condition holds

dist(v′, d) < cV (v′, si) + dist(si, d)
for all i = 1, . . . , ks. (6)

We shall also evaluate a simple extension of the ILP that
allows to add more than a single node in each step.

VII. SIMULATION RESULTS

We evaluated the performance of different RIOD imple-
mentations in extensive numerical studies. In particular we
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TABLE I

RESULTS OF RIOD(GS , cS , v, 3) USING SHORTEST PATH SLICES: TOPOLOGY NAME, NUMBER OF NODES (|VS |) AND EDGES (|ES |); INITIAL
LFA COVERAGE (η0 ; [%]), ATTAINED LFA COVERAGE (η 1

4 |VS | , η 1
2 |VS | , η|VS |) AND RUNNING TIME (t 1

4 |VS | , t 1
2 |VS | , t|VS | ; [sec]) WHEN

PROVISIONING 25 − 50 AND 100% OF THE PHYSICAL NODES RESPECTIVELY, THE FINAL LFA COVERAGE (η∞) WITH THE REQUIRED

EXECUTION TIME (t∞) AND THE RATIO OF VIRTUAL NODES IN THE FINAL STATE (v∞ ; [%]). VALUES IN PARENTHESES REPRESENT
THE CORRESPONDING DIFFERENCE FROM THE RESULT OF THE ILP: 1) IN CASE OF LFA COVERAGE AND RATIO THE

VALUES ARE GIVEN IN PERCENTAGE (E.G. IF |VS | VIRTUAL NODES ARE ALLOWED, THEN THE ILP OUTPERFORMS

THE HEURISTIC BY 4% BETTER LFA COVERAGE FOR ABILENE, AND REACHES THE PERFECT COVERAGE BY

USING 36% LESS VIRTUAL NODES), WHILE 2) THE EXECUTION TIME OF THE ILP IS GIVEN
AS THE MULTIPLES OF RUNNING TIME NEEDED BY THE HEURISTIC (E.G. FOR REACHING

PERFECT COVERAGE IN ABILENE, THE ILP RUNS 9 TIMES SLOWER

THAN THE HEURISTIC, REQUIRING 13.5 secs.)

developed the ILP and heuristic of Alg. 1 and the 4-layered
construction of Theorem 4. The implementation is available
at [55]. It is written in C++ with the help of the LEMON
graph library [56]. The simulations were run on a Linux PC
with an Intel 3.3GHz CPU and 4G RAM. As an input for
the measurements we used numerous real-life ISP topologies;
namely we used ISP topologies [57] and the Rocketfuel data
set [58], where we set costs randomly where link costs were
not available.

In the first run, we compared the performance of Alg. 1
when the embedded LFAVirt instances were solved with the
heuristic and ILP implementations, respectively. The parame-
ter k was set to 3 (i.e. |Ul| = 3) meaning that the algorithm
tries to provision node sets with size at most 3 in each
step. As we observed in our measurements that there is a
minimal difference in the attained LFA coverage in case of
using shortest path slices instead of all possible connected
l-sets, we settle for using the former one in order to improve
the execution time of our algorithm. The detailed results are
summarized in Table I. Here, the values refer to the LFA
coverage (η) attained by the heuristic as an increasing number
of virtual nodes are provisioned in the network. The deviation
compared to the ILP is shown in parenthesis.

The most important observations are as follows. First,
the initial LFA coverage was 70-90% in the examined topolo-
gies and it can be easily boosted up to 95%, just by intro-
ducing a single virtual instance for half of the physical nodes.

Second, the heuristic barely overshoots the ILP in the cases
when the number of virtual nodes is less than, or equal to
|VS |. The last two columns show that if we do not maximize
the amount of virtual nodes the algorithm terminates with
η = 1 in most of the cases, and there are only 3(!) networks
whereby it gets stuck with the setting k = 3. The price
that we pay for reaching this final state is given below as
v∞. As an average the heuristic shows some 19% overhead
compared to the the ILP when adding |VS | virtual nodes,
however it executes 10 times faster. The reason is that the LFA
coverage improvement has a logarithmic trend, so if the goal
is to solely improve LFA protection to a certain level then a
couple of new nodes are usually enough. In contrast, to achieve
full protection, we need to provide alternate tunnels from all
sources to all destinations that can significantly increase the
size of the virtual layer.

This is clearly visible on Figs. 6-7 where we show the
progression of the algorithms. In the first phase there is a
steep increase in the LFA protection and the performance gap
between the algorithms is minimal. We also observe that in
most steps the algorithms prefer to add a single virtual node,
however there are cases (see e.g., Fig. 6c) when both methods
need a tunnel to overcome a certain complex scenario. We also
show a topology (Deltacom) where the ILP with k = 3 does
not perform in acceptable running time; this validates the need
for efficient heuristics. In this special case we relaxed k = 1
for the ILP and kept k = 3 for the heuristic that revealed
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Fig. 6. Progression of LFA coverage in small and middle-sized networks. (a) AS1755. (b) AT&T. (c) BICS.

Fig. 7. Progression of LFA coverage in backbone topologies.
(a) Germany_50. (b) Deltacom.

a 2-3% gain on the ILP side in the first phase, but it got
stuck after all, while the heuristic was still able to improve
the coverage, see Fig. 7b.

Finally, we evaluate the change in the length of the detours
in order to demonstrate that traffic entering the virtual layer
does not spend too much time there and hence it does not
utilize the physical resources extensively. The values provided
in Fig. 8 are the overhead compared to the default paths in
percentage. We observe that Alg. 1 results in a ∼30% of
overhead, whereas using the 4-layer construction of Theorem 4
the increase becomes roughly twofold.

In summary, we see very little performance lag with
our heuristics as compared to the ILP. Both algorithms
can bring small and middle-sized networks close to perfect
LFA-coverage by provisioning just a couple of virtual routers,

Fig. 8. Average path stretch for single link failures.

and in larger backbones we see similar improved protection
coverage just by provisioning roughly one virtual router per
node on average.

VIII. CONCLUSIONS

With the advent of Seamless MPLS, Loop-Free Alternates
for fast IP-level failure protection has become an indispensable
tool in telecom networks. This is despite that LFA was
not designed with carrier-grade requirements in mind, and
therefore it does not provide out-of-the-box protection levels
acceptable to most profit-oriented businesses.

In this paper, we invoked router virtualization, a common-
place feature in contemporary IP devices, to improve the level
of protection provided by LFA. The motivation is to facil-
itate integrating existing operator infrastructure into modern
multiservice MPLS/LDP networks without interfering with the
normal operation of the network, or the network topology
itself, in any ways. Our solution is deployable immediately
with minimum management effort by establishing a Resilient
IP Overlay on top of the physical network, which supplies
“virtual LFAs” to unprotected node-pairs.

Even though the underlying optimization problem is
NP-complete, practice shows that LFA virtual router augmen-
tation can be efficiently solved by heuristics in polynomial
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time up to even full LFA coverage. In extensive numerical
evaluations we found that practically complete protection can
be attained against single link failures just by provisioning
one or two virtual contexts at each IP router.

We again emphasize that this can be realized with existing
IP hardware and software available in off-the-shelf routers
today, with a one time management intervention. We believe
that this finding opens the door for a wider adoption of
Resilient IP Overlays in operational IP networks.

APPENDIX

A. Complexity Proofs

Definition 5 (Minimum Feedback Arc Set Prob-
lem (minFAS, A1.1: GT8, p.192., [52])): Given a digraph
G = (V, A) and a positive integer k ≤ |A|. Find a subset
B ⊆ A with |B| ≤ k such that B contains at least one arc
from every directed cycle in G.

Note that if B is removed from the graph, then all cycles are
broken. Thus, minFAS asks for a minimal set of arcs which,
when removed from the graph, leaves a DAG. The following
problem is therefore equivalent to minFAS:

Definition 6 (Maximum Spanning DAG (maxDAG)):
Given a digraph G = (V, A) and a positive integer k ≤ |A|.
Find a subset B ⊆ A with |B| ≥ k such that the graph (V, B)
is a DAG.

As minFAS is NP-complete, maxDAG is also
NP-complete.

Proof of Theorem 2: LFAVirt(GS , cS , v, k) is in NP, since
LFA coverage can be verified in polynomial time. To prove
it is NP-hard, we (Karp)-reduce it to the maxDAG problem.
Given a maxDAG instance with digraph GD = (VD, A) and
an integer k, we construct a LFAVirt(GS , cS , v, k′) problem
and we show that if, after adding a virtual node v1 to v, there
are k′ LFA-protected (s, d) pairs, then the solution can be
transformed to a solution to the maxDAG instance with k
cardinality.

Next, we show how to construct GS from GD . GS consists
of 2n + |A| + 1 nodes, where n = |VD|. We add two nodes
to GS denoted by vi and wi for i = 1, . . . n, and for each
arc (i, j) ∈ A, we assign a node in GS , denoted by uij .
For simpler arguments v0 or w0 refers to node vn and wn,
respectively. Plus we have an additional node v. The edges of
GS are the followings.

• For each i = 1, . . . n add an edge (vi, wi) with cost 1
and (v, vi) with cost n. Node v is in fact the center of a
star and all its neighbors have degree two.

• For each i = 1, . . . n add an edge (wi, wi−1) of cost n2.
• For each l ∈ VD and (i, j) ∈ A, add an edge (wl, uij)

with cost cV (wj , uij) = n2, cV (wi, uij) = n1 = n2 + 1
2 ,

and otherwise cV (wl, uij) = n2 = n2 + 2n + 1 where
l �= j and l �= i.

Fig. 9 shows an example transformation with shortest paths.
To destination ui,j every node has LFA except node vj .

A node u becomes LFA protected after adding node v1

towards destination d, if the following conditions hold: (i) u
did not have LFA to d; (ii) u is adjacent to v, i.e. u ∈ NS(v);
(iii) the next-hop of v1 to d is a node vi which is not the

Fig. 9. The transformed graph GS , if GD has 3 nodes a, s, and b, and
two arcs 1 → 3 and 2 → 3. (a) The transformed graph GS , The edges are
directed towards the shortest path to node u2→3. (b) The shortest distance
with next-hops to destination ui→j .

next-hop of v; and (iv) the next-hop of vi is node wi, and
not v.

The new LFAs created through v1 are as follows. Node vj

becomes LFA protected to destination ui,j , if the next-hop
of v1 is exactly vi. This occurs if n2 + 1.5 + cV (vi, v

1) <
n2 + 1 + cV (vj , v

1), from which:

cV (vi, v
1) + 1

2 < cV (vj , v
1), (7)

and for vl : l �= i, j condition n2 + 1.5 + cV (vi, v
1) < n2 +

2n + 1 + cV (vl, v
1) also holds, so:

cV (vi, v
1) + 1

2 < 2n + cV (vl, v
1). (8)

For destinations wj no new LFA is created, because the next-
hop for every vi : i �= j is v. Similar is the case for vj : j ∈ V .
As a summary, new LFAs can only appear between node pairs
vj − ui,j : (i, j) ∈ A, and only if both (7) and (8) hold.

To conclude the proof we show that (i) if there is an
LFAVirt(GS , cS , v, kS + k) solution, where kS is the number
of protected node pairs in GS and k new LFAs are cre-
ated by adding v1, then there is a DAG of k links in G,
and (ii) if there is a DAG of k links in G then there is an
LFAVirt(GS , cS , v, kS + k) solution with k new LFAs.

For (i), suppose there is a cost assignment cV (vi, v
1) : i ∈ V

so that k new LFAs are created. Add an arc (i, j) ∈ A to B if
cV (vi, v

1)+ 1
2 < cV (vj , v

1). By (7) and (8), there are exactly
k such arcs. Note that cV is a topological order of the nodes
in B. Thus, (V, B) is a DAG composed of k arcs.



NAGY et al.: NODE VIRTUALIZATION FOR IP LEVEL RESILIENCE 1261

Fig. 10. Construction for full coverage by adding 4|VS | virtual nodes.

For (ii), suppose there is a DAG of k arcs in G. Find a
topological order of its nodes with ids [1, n] and assign the
order id of node i as cV (vi, v

1). Clearly, vj becomes LFA-
protected to destination ui,j if link (i, j) is part of the DAG
due to (7) and (8), so we have exactly k new LFAs. �

B. Constructions

Proof of Theorem 4: According to Itai and Rodeh
Theorem [54] an undirected graph G = (V, E) with any edge
(s, t) ∈ E has an st-numbering. In st-numbering the nodes
of the graph are assigned by distinct integers from 1 to n,
denoted by Nv for node v, such that Ns = 1, Nt = n, and
every other node v has a neighbor u ∈ NS(v) with smaller
number (Nu < Nv), and a neighbor w ∈ NS(v) with larger
number (Nw > Nv). With st-numbering we can define two
trees T1 and T2 with the following properties:

• the nodes along path T1(s−v) has decreasing st-numbers,
• the nodes along path T2(v−t) has increasing st-numbers,
• (s, t) /∈ T1, and (s, t) /∈ T2.

This ensures that for any node v the paths T1(v − s) and
T2(v − t) are edge disjoint.

In the construction, we add T1 and T2 to G as first
and second virtual layers with distance K , and also for third
and fourth virtual layers with distance 2K . We also add virtual
link (t4, s1) and (s3, t2) both with cost ε (see Fig. 10).

At node v let v → u be a next hop edge (u ∈ nh(v, d)),
we will use case-checking to show there is always an LFA.
If (v, u) = (s, t) we have an LFA through the virtual node v1

(and also v2) according to Claim 1.
If Nv < Nu ≤ Nd we have an LFA through v3, which first

traverses to node s3 along the path T1(v3 − s3) and then
through link (s3, t2) will reach node d along T1(s2−d2).
Note that this path is disjoint with v → u, as the nodes in
T1(v3 − s3) have numbers at most Nv, and T1(s2 − d2)
have numbers at least Nu because Nu ≤ Nd.

If Nv > Nu ≥ Nd for the above reason v4 is an LFA.
If Nv < Nu and Nu > Nd we have an LFA through v1,

as the path T2(s1 − d1) is disjoint with v → u because
the nodes along the path have numbers smaller than Nu.

If Nv > Nu and Nu < Nd for the above reason v2 is an
LFA. �

C. ILP for LFAVirt(GS , cS , w)
The ILP is based on the idea that eligible node pairs and the

respective escape nodes can be pre-computed statically, so L,

Lv, and Esd can be generated offline. Hence, in the course of
the optimization we only need to take care of satisfying (5)
and (6).

The variables of the ILP are as follows:
• The binary variable xn : n ∈ NV (v) tells whether to

provision the virtual link (vk, n): xn = 1 if (vk, n) is a
new virtual link, and zero otherwise.

• The binary variable ys,d : s, d ∈ L marks whether s → d
has obtained an LFA: ys,d = 1 if s → d has LFA after
adding vk, and zero otherwise.

• The binary variable zg,s,d : s, d ∈ L, g ∈ Esd is set so
that zg,s,d = 1 if g is the next-hop of vk, zero otherwise.

• The non-negative real variable cn : n ∈ NS(v) represents
the cost cV (vk, n) of the virtual link (vk, n). We require
that cn ≥ cS(v, n)+ C where C is a problem parameter,
to ensure that paths via vk are longer than the default
shortest paths. In the rest of this paper, we set C = 1.

• Finally, the non-negative real variable δu : u ∈ VS \
{v, vk} denotes the shortest path distance from vk to u.

Consider the ILP below (the role of parameters K and ε
will be made clear soon).

max
∑

s,d∈L
ys,d − ε

∑

n∈NS(v)

(cn + xn) (9)

ys,d ≤ xs, zg,s,d ≤ xg s, d ∈ Lv, g ∈ Esd (10)

ys,d ≤
∑

g∈Esd

zg,s,d s, d ∈ L (11)

δd ≤ dist(g, d) + cg + K(1 − zg,s,d)
s, d ∈ Lv, g ∈ Esd (12)

δd + K(1 − xs) + K(1 − xsi )
≥ dist(g, d) + csi + C s, d ∈ Lv, i = 1, . . . , sk

(13)

cn ≥ cS(v, n) + C n ∈ NS(v) (14)

xn, ys,d, zg,s,d ∈ {0, 1}, cn ≥ 0 (15)

The objective function (9) maximizes the number of LFAs
the new virtual node v′ gives rise to. Parameter ε is a
small constant, which ensures that the optimization favors the
solution with the smallest link costs and the fewest virtual
links. The first constraint in (10) states that v′ can only become
an LFA for s if the virtual link (s, v′) is present. Similarly,
zg,s,d ≤ xg expresses that we can only set g as next-hop for
v′ if the virtual link (v′, g) is provisioned.

Constraints (11) and (12) correspond to the escape node
condition (5) for each s → d pair in Lv. In particular, (12)
will set the shortest path distance from v′ to d according to
whether the escape node g ∈ Esd is chosen as the next-hop
for v′ to d. If zg,s,d = 0, i.e., if g is not the next-hop then the
constraint is inactive, while if zg,s,d = 1 then the constraint is
active and sets δd and cg according to (5). To switch between
the active and inactive states, we use the large constant K �
C+max(s,d)∈VS×VS

dist(s, d). Furthermore, (11) sets an s →
d pair protected, if at least one escape node has been selected
as the next-hop for v′ towards d.

Constraint (13) stands for the LFA-4 condition (6) for
eligible s → d pairs. The constraint is only active when both
(s, v′) and (v′, g) virtual links are present, i.e., xs = 1 and
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xg = 1. In this case, it sets cg to prevent si to become a
next-hop for v′ to d according to (6) for i = 1, . . . , sk.

Finally, the domain of the variables is set in (14)–(15).
After solving the ILP, the virtual topology is constructed

by augmenting the substrate with the virtual node v′ and
the virtual links (v′, n) : xn = 1 with cost cn for all
n ∈ NS(v).
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