
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Compressing IP Forwarding Tables: Towards Entropy
Bounds and Beyond

Gábor Rétvári, Member, IEEE, János Tapolcai, Member, IEEE, Attila Kőrösi, András Majdán, and
Zalán Heszberger

Abstract—Lately, there has been an upsurge of interest in
compressed data structures, aiming to pack ever larger quantities
of information into constrained memory without sacrificing the
efficiency of standard operations, like random access, search, or
update. The main goal of this paper is to demonstrate how data
compression can benefit the networking community by showing
how to squeeze the IP Forwarding Information Base (FIB), the
giant table consulted by IP routers to make forwarding decisions,
into information-theoretical entropy bounds, with essentially zero
cost on longest prefix match and FIB update. First, we adopt
the state of the art in compressed data structures, yielding a
static entropy-compressed FIB representation with asymptotically
optimal lookup. Then, we redesign the venerable prefix tree, used
commonly for IP lookup for at least 20 years in IP routers, to also
admit entropy bounds and support lookup in optimal time and
update in nearly optimal time. Evaluations on a Linux kernel pro-
totype indicate that our compressors encode an FIB comprising
more than 440 K prefixes to just about 100–400 kB of memory,
with a threefold increase in lookup throughput and no penalty on
FIB updates.

Index Terms—Data compression, IP forwarding table lookup,
prefix tree.

I. INTRODUCTION

D ATA compression is widely used in processing large vol-
umes of information. Not just that convenient compres-

sion tools are available to curtail the memory footprint of ba-
sically any type of data, but these tools also come with theo-
retical guarantee that the compressed size is indeed minimal, in
terms of some suitable notion of entropy [2]. Correspondingly,
data compression has found its use in basically all aspects of

Manuscript received February 05, 2014; revised September 02, 2014;
accepted September 08, 2014; approved by IEEE/ACM TRANSACTIONS ON
NETWORKING Editor A. Bremler-Barr. The work of G. Rétvári was supported
by the OTKA/PD-104939 grant. This work is an extended and corrected ver-
sion of the manuscript “Compressing IP Forwarding Tables: Towards Entropy
Bounds and Beyond,” which originally appeared at the ACM SIGCOMM 2013
[1]. The present paper contains a number of crucial revisions to the original
text, in particular, a correct statement of the information-theoretical bounds
(Proposition 1 and 2), an updated form of the XBW-b transform, improved
space bounds, and complete proofs.
G. Rétvári, J. Tapolcai, and A. Majdán are with the MTA-BME Future In-

ternet Research Group, High-Speed Networks Laboratory (HSNLab), Depart-
ment of Telecommunications and Media Informatics, Budapest University of
Technology and Economics, 1117 Budapest, Hungary (e-mail: retvari@tmit.
bme.hu; tapolcai@tmit.bme.hu; majdan@tmit.bme.hu).
A. Kőrösi and Z. Heszberger are with the MTA-BME Information Systems

Research Group, Department of Telecommunications and Media Informatics,
Budapest University of Technology and Economics, 1117 Budapest, Hungary
(e-mail: korosi@tmit.bme.hu; heszi@tmit.bme.hu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNET.2014.2357051

computation and networking practice, ranging from text or mul-
timedia compression [3] to the very heart of communications
protocols [4] and operating systems [5].
Traditional compression algorithms do not admit standard

queries, like pattern matching or random access, right on the
compressed form, which severely hinders their applicability. An
evident workaround is to decompress the data prior to accessing
it, but this pretty much defeats the whole purpose. The alter-
native is to maintain a separate index dedicated solely to nav-
igate the content, but the sheer size of the index can become
prohibitive in many cases [6], [7].
It is no surprise, therefore, that the discovery of compressed

self-indexes (or, in the context of this paper, compressed data
structures) came as a real breakthrough [8]. A compressed data
structure is, loosely speaking, an entropy-sized index on some
data that allows complete recovery of the original content as
well as fast queries on it [3], [6]–[13]. What is more, as the
compressed form occupies much smaller space than the original
representation, and hence is more friendly to CPU cache, the
time required to answer a query is often far less than if the data
had not been compressed [3], [11]. Compressed data structures,
therefore, turn out one of the rare cases in computer science
where there is no space–time tradeoff.
Researchers and practitioners working with big data were

quick to recognize this win–win situation and came up with
compressed self-indexes, and accompanying software tools, for
a broad set of applications; from compressors for sequential data
like bitmaps (RRR), [12]) and text documents (CGlimpse [8],
wavelet trees [13]); compression front ends to information
retrieval systems (MG4J [14], LuceneTransform [15]) and
dictionaries (MG [16]); to specialized tools for structured data,
like XML/HTML/DOM (XGRIND [17], XBZIPINDEX [18]),
graphs (WebGraph [19]), 3-D models (Edgebreaker [20]),
genomes and protein sequences (COMRi [21]), multimedia,
source and binary program code, formal grammars, etc. [16].
With the advent of replacements for the standard file compres-
sion tools (LZgrep [22]) and generic libraries (libcds [9]),
we might be right at the verge of seeing compressed data
structures go mainstream.
Curiously, this revolutionary change has gone mostly unno-

ticed in the networking community, even though this field is
just one of those affected critically by skyrocketing volumes
of data. A salient example of this trend is the case of the IP
Forwarding Information Base (FIB), used by Internet routers to
make forwarding decisions, which has been literally deluged by
the rapid growth of the routed IP address space lately. Conse-
quently, there has been a flurry of activity to find space-efficient
FIB representations [23]–[42], yet very few of these go beyond

1063-6692 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

ad hoc schemes and compress to information-theoretic limits,
let alone come with a convenient notion of FIB entropy. Taking
the example of compressing IP FIBs as a use case, our aim in
this paper is to popularize compressed data structures to the net-
working community.

A. FIB Compression

There are hardly any data structures in networking affected
as compellingly by the growth of the Internet as the IP FIB.
Stored in the line card memory of routers, the FIB maintains
an association from every routed IP prefix to the corresponding
next-hop, and it is queried on a packet-by-packet basis at line
speed (in fact, it is queried twice per packet, considering reverse
path forwarding check). Lookup in FIBs is not trivial either, as
IP’s longest prefix match rule requires the most specific entry
to be found for each destination address. Moreover, as Internet
routers operate in an increasingly dynamic environment [43],
the FIB needs to support hundreds of updates to its content each
second.
As of 2013, the number of active IPv4 prefixes in the Default

Free Zone is more than 440 000 and counting, and IPv6 quickly
follows suit [44]. Correspondingly, FIBs continue to expand
both in size and management burden. As a quick reality check,
the Linux kernel’s fib_trie data structure [25], when filled
with this many prefixes, occupies tens of megabytes of memory,
takes several minutes to download to the forwarding plane, and
is still heavily debated to scale tomultigigabit speeds [45]. Com-
mercial routers suffer similar troubles, aggravated by the fact
that line card hardware is more difficult to upgrade than soft-
ware routers.
Many have argued that mounting FIB memory tax will,

sooner or later, present a crucial data-plane performance
bottleneck for IP routers [46]. Yet even if the scalability bar-
rier will not prove impenetrable [47], the growth of the IP
forwarding table still poses compelling difficulties. Adding
further fast memory to line cards boosts silicon footprint, heat
production, and power budget, all in all, the CAPEX/OPEX
associated with IP network gear, and forces operators into
rapid upgrade cycles [48], [49]. Large FIBs also complicate
maintaining multiple virtual router instances, each with its own
FIB, on the same physical hardware [50] and build up huge
control-plane-to-data-plane delay for FIB resets [51].
Several recent studies have identified FIB aggregation as

an effective way to reduce FIB size, extending the lifetime of
legacy network devices and mitigating the Internet routing scal-
ability problem, at least temporarily [48], [49]. FIB aggregation
is a technique to transform some initial FIB representation
into an alternative form that, supposedly, occupies smaller
space but still provides fast lookup. Recent years have seen an
impressive reduction in FIB size: From the initial 24 B/prefix
(prefix trees [37]), use of hash-based schemes [27], [42],
path- and level-compressed multibit tries [25], [26], [39],
tree-bitmaps [32], etc., have reduced FIB memory tax to just
about 2–4.5 B/prefix [29], [40], [41]. Meanwhile, lookup
performance has also improved [25].
The evident questions “Is there an ultimate limit in FIB

aggregation?” and “Can FIBs be reduced to fit in fast ASIC
SRAM/CPU cache entirely?” have been asked several times
before [26], [29], [31], [39]. In order to answer these ques-
tions, we need to go beyond conventional FIB aggregation

to find new compressed FIB data structures that encode to
entropy-bounded space and support lookup and update in
optimal time. We coined the term FIB compression to mark
this ambitious undertaking [52]. Accordingly, this paper is
dedicated to the theory and practice of FIB compression.

B. Our Contributions

Our contributions on FIB compression are twofold: Based on
the labeled tree entropy measure of Ferragina et al. [18], we
specify a compressibility metric called FIB entropy, then we
propose two entropy-compressed FIB data structures.
Our first FIB encoder, XBW-b, is a direct application of the

state of the art in compressed data structures to the case of
IP FIBs. XBW-b compresses a contemporary FIB to the en-
tropy limit of just 100–300 kB and, at the same time, provides
longest prefix match in asymptotically optimal time. Unfortu-
nately, it turns out that the relatively immature hardware and
software background for compressed string indexes greatly con-
strain the lookup and update performance of XBW-b. Therefore,
we also present a practical FIB compression scheme, called the
trie-folding algorithm.
Trie-folding is in essence a “compressed” reinvention of

prefix trees, a commonly used FIB implementation in IP
routers, and therefore readily deployable with minimal or no
modification to router ASICs [53]. We show that trie-folding
compresses to within a small constant factor of FIB entropy,
supports lookup in strictly optimal time, and admits updates in
nearly optimal time for FIBs of reasonable entropy (see later
for precise definitions). The viability of trie-folding will be
demonstrated on a Linux prototype and an FPGA implemen-
tation. By extensive tests on real and synthetic IP FIBs, we
show that trie-folding supports tens of millions of IP lookups
and hundreds of thousands updates per second, in less than
150–500 kB of memory.

C. Structure of the Paper

This paper is organized as follows. In Section II, we survey
standard FIB representation schemes and cast compressibility
metrics. In Section III, we describe XBW-b, while in Section IV
we introduce trie-folding and establish storage size bounds.
Section V is devoted to numerical evaluations and measure-
ment results, Section VI surveys related literature, and finally
Section VII concludes the paper.

II. PREFIX TREES AND SPACE BOUNDS

Consider the sample IP routing table in Fig. 1(a), storing ad-
dress-prefix-to-next-hop associations in the form of an index
into a neighbor table, which maintains neighbor specific infor-
mation, like next-hop IP address, aliases, ARP info, etc. Asso-
ciate a unique label from the alphabet with each next-hop in
the neighbor table. We shall usually treat labels as positive inte-
gers, complemented with a special invalid label to mark
blackhole routes. Let denote the number of entries in the FIB,
and let be the number of next-hops. An IP router does
not keep an adjacency with every other router in the Internet,
thus . Specifically, we assume that is
or , which is in line with reality [54], [55]. Finally, let
denote the width of the address space in bits (e.g., for
IPv4).
To actually forward a packet, we need to find the entry that

matches the destination address in the packet on the greatest

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RÉTVÁRI et al.: COMPRESSING IP FORWARDING TABLES 3

Fig. 1. Representations of an IP forwarding table: (a) tabular form with ad-
dress in binary format, prefix length, and next-hop address label; (b) prefix tree
with state transitions marked; (c) ORTC-compressed prefix tree; (d) level-com-
pressed multibit trie; and (e) leaf-pushed trie.

number of bits, starting from the MSB. For the address 0111,
each of the entries /0 (the default route), 0/1, 01/2, and 011/3
match. As the most specific entry is the last one, the lookup
operation yields the next-hop label 1. This is then used as an
index into the neighbor table, and the packet is forwarded on
the interface facing that neighbor. This tabular representation
is not really efficient, as a lookup or update operation requires
looping through each entry, taking time. The storage size
is bits.1

Binary prefix trees, or tries [37], support lookup and update
much more efficiently; see Fig. 1(b). A trie is a labeled ordinal
tree, in which every path from the root node to a leaf corresponds
to an IP prefix and lookup is based on successive bits of the des-
tination address: If the next bit is 0, proceed to the left subtrie,
otherwise proceed to the right, and if the corresponding child is
missing, return the last label encountered along the way. Prefix
trees generally improve the time to perform a lookup or update
from linear to steps.
A prefix tree representation is usually not unique, which

opens the door to a wide range of optimization strategies to
find more space-efficient forms. For instance, the prefix tree in
Fig. 1(c) is forwarding equivalent with the one in Fig. 1(b) in
that it orders the same label to every complete -bit-long key,
yet contains only three labeled nodes instead of seven (see the
ORTC algorithm in [31] and [40]). Alternatively, level-com-
pression [25], [26], [39] is a technique to remove excess levels
from a binary trie to obtain a forwarding equivalent multibit
trie that is substantially smaller; see Fig. 1(d).
A standard technique to obtain a unique, normalized form of

a prefix tree is leaf-pushing [31], [39], [50]: In a first pre-order
traversal, labels are pushed from the parents toward the chil-
dren, and then in a second post-order traversal, each parent with
identically labeled leaves is substituted with a leaf marked with
the children’s label; see Fig. 1(e). The resultant trie is called a
leaf-labeled trie since interior nodes no longer maintain labels,
and it is also a proper binary trie with nice structure: Any node
is either a leaf node, or it is an interior node with exactly two
children. Updates to a leaf-pushed trie, however, may be ex-
pensive; modifying the default route, for instance, can result in
practically all leaves being relabeled, taking steps in the
worst case.

A. Information-Theoretic Limit

How can we know for sure that a particular prefix tree
representation, from the many, is indeed space-efficient? The
first verifiable cornerstone of a space-efficient data structure is
whether its size meets the information-theoretic lower bound,

1The notation is shorthand for .

corresponding to the minimum number of bits needed to
uniquely identify any instance of the data. For example, there
are exactly strings of length on an alphabet of size ,
and to be able to distinguish between any two, we need at
least bits. In this example, even a naive string
representation meets the bound, but in more complex cases,
attaining it is much more difficult.
This argumentation generalizes from strings to leaf-labeled

tries as follows (see also Ferragina et al. [18]).
Proposition 1: Let be a proper, binary, leaf-labeled trie

with leaves on an alphabet of size . The information-theoretic
lower bound to encode is bits.2

The bound is easily justifiedwith a simple counting argument.
The number of proper binary trees on leaves is the th
Catalan number , therefore we need at
least bits to encode the tree itself
[56]; storing the label map defined on the leaves of requires
an additional bits; and assuming that the two are indepen-
dent, we need bits overall.
A representation that encodes to within the constant factor of

the information-theoretic lower bound (up to lower-order terms)
and simultaneously supports queries in optimal time is called a
compact data structure, while if the constant factor is 1, then it
is also a succinct data structure [56].

B. Entropy Bounds

A succinct representation very often contains further redun-
dancy in the form of regularity in the label mapping. For in-
stance, in the sample trie of Fig. 1(e), there are three leaves with
label 2, but only one with label 1 or 3. Thus, we could save space
by representing label 2 on fewer bits, similarly to how Huffman
coding does for strings. This correspondence leads to the fol-
lowing notion of entropy for leaf-labeled tries (on the traces of
Ferragina et al. [18]).
Proposition 2: Let be a proper, binary, leaf-labeled trie

with leaves on an alphabet , let denote the probability that
some symbol appears as a leaf label, and let denote
the Shannon entropy of the probability distribution

(1)

Then, the zero-order entropy of is bits.3

Intuitively speaking, the entropy of the tree structure corre-
sponds to the information-theoretic limit of bits as we do not
assume any regularity in this regard. To this, the leaf labels add
an extra bits of entropy.
The entropy of a trie depends mainly on the size of the under-

lying tree and the distribution of labels on it. This transforms to
FIBs quite naturally: The more prefixes go to the same next-hop
and the more the FIB resembles “a default route with few ex-
ceptions,” the smaller the Shannon entropy of the next-hop dis-
tribution and the tighter the space limit. Accordingly, we shall
define the notions FIB information-theoretic lower bound and
FIB entropy as those of the underlying leaf-pushed prefix tree.
Both space bounds are well defined as the normalized form is
unique. Note, however, that in contrast to general trees, IP FIBs

2In the original manuscript [1], the information-theoretic lower bound is
wrongly set to bits instead of . The difference is due to
erroneously taking the number of trees on nodes, instead of leaves.
3The claim is revised from [1], where the entropy wrongly appears as
. See previous note for an explanation.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 2. Leaf-pushed trie and its XBW-b transform.

are of bounded height, so the real bounds should be somewhat
smaller. Additionally, for the purposes of this paper, our space
bounds involve binary leaf-labeled tries only. We relax this re-
striction in [52] using the generic trie entropy measure of [18].

III. ATTAINING ENTROPY BOUNDS

We present our first compressed FIB data structure, the Bur-
rows–Wheeler transform for binary leaf-labeled tries (XBW-b).
This data structure is a stripped down version of MBW, the
Multibit Burrows–Wheeler transform from [52], and the XBW-l
transform from [1], which in turn build on the succinct level-in-
dexed binary trees of Jacobson [56] and the XBW transform due
to Ferragina et al. [18]. In contrast to XBW-b that is binary only,
the original MBW and XBW-l transforms support level-com-
pressed tries as well, at the price of encoding to a slightly larger
representation and missing the information-theoretical storage
size bounds defined above.
The basis for the XBW-b transform is a normalized, binary,

proper leaf-labeled trie. Let be a binary tree on nodes, let
be the set of leaves with , and let be a mapping

specifying for a node either that does not have a
label associated with it (i.e.,) or the corresponding
label . If is proper, binary, and leaf-labeled, then the
following invariants hold.
P1) Either , or has 2 children.
P2) .
P3) and so .
The main idea in XBW-b is serializing into a bitstring
that encodes the tree structure and a string on the al-

phabet encoding the labels, and then using a sophisticated
lossless string compressor to obtain the storage size bounds.
Correspondingly, the XBW-b transform is defined as the tuple

, where:
• is a bitstring of size with zero in position if the
th node of in level-order is an interior node, and 1
otherwise.

• is a string of size on the alphabet encoding the leaf
labels.

For our sample FIB, the leaf-pushed trie and the corre-
sponding XBW-b transform are given in Fig. 2.

A. Construction and IP Lookup

In order to generate the XBW-b transform, one needs to fill
up the strings and , starting from the root and traversing
in a breadth-first-search order. Meanwhile, two counters are

maintained; is used to enumerate the nodes and index into ,
while counts the leaves and indexes . For every node, we
decide whether it is interior, in which case the corresponding
entry of is set to zero, or a leaf. In the latter case, is set to
1, and the leaf label is appended to .

1: ;
2: BFS-TRAVERSE (node , integer , integer)
3: if then
4: else ; ;
5:

The following statement is now obvious.
Lemma 1: Given a proper binary, leaf-labeled trie on

nodes, can be built in time.
The transform has some appealing properties. For

instance, the children of some node, if the exist, are stored on
consecutive indices in and . In fact, all nodes at the same
level of are mapped to consecutive indices.
The next step is to actually compress the strings. This

promises easier than compressing directly as , being
a sequential string representation, lacks the intricate structure
of tries. An obvious choice would be to apply some standard
string compressor (like the venerable gzip(1) tool), but
this would not admit queries like “get all children of a node”
without first decompressing the transform. Thus, we rather use
a compressed string self-index [12], [13], [18], [56] to store

, which facilitates efficient navigation immediately on
the compressed form.
The way string indexers usually realize navigability is to im-

plement a certain set of simple primitives in constant time
in place. Given a string on alphabet , a symbol ,
and integer , these primitives are as follows:
• : return the symbol at position in ;
• : return the number of times symbol occurs
in the prefix ;

• : return the position of the th occurrence of
symbol in .

Curiously, these simple primitives admit strikingly complex
queries to be implemented and supported in optimal time. In
particular, the IP lookup routine on takes the following
form.

1: lookup (address)
2: ,
3: while
4: if then
5: return
6:
7:
8: ;

The code first checks if the actual node, encoded at index
in , is a leaf node. If it is, then tells how
many leaves were found in the course of the BFS traversal be-
fore this one, and then the corresponding label is returned from
. If, on the other hand, the actual node is an interior node, then
tells how many interior nodes precede this one. Note that, as
one easily checks, in a level-ordered tree traversal the children
of the th interior node are encoded from position [56]. Next,
we obtain the index of the child to be visited next from the ad-
dress to be looked up, we set the current index to , and
then we carry on with the recursion.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RÉTVÁRI et al.: COMPRESSING IP FORWARDING TABLES 5

B. Memory Size Bounds

First, we show that XBW-b is a succinct FIB representation,
in that it supports lookup in optimal time and encodes to
information-theoretic lower bound.
Lemma 2: Given a proper, binary, leaf-labeled trie with
leaves on an alphabet of size , can be stored on

bits so that lookup on terminates
in time.

Proof: Encode on bits using the RRR succinct
bitstring index [12], which supports select and rank in .
In addition, even the trivial encoding of needs only another

bits and provides access in . Thus, every iteration of
lookup takes constant time, hence the result.
Next, we show thatXBW-b can take advantage of regularity in

leaf labels (if any) and encode below the information-theoretic
bound to zero-order entropy.
Lemma 3: Let be a proper, binary, leaf-labeled trie with
leaves on an alphabet of size , and let de-

note the Shannon entropy of the leaf-label distribution. Then,
can be stored on bits so that lookup

on terminates in time.
Proof: can be encoded as above, and can be stored

on bits using generalized wavelet trees so that
access is , under the assumption that the alphabet size is

[13].
Interestingly, the above zero-order entropy bounds can

be easily upgraded to higher-order entropy. A fundamental
premise in data compression is that elements in a data set often
depend on their neighbors, and the larger the context, the better
the prediction of the element from its context and the more
efficient the compressor. Higher-order string compressors can
use the Burrows–Wheeler transform to exploit this contextual
dependency, a reversible permutation that places symbols
with similar context close to each other. This argumentation
readily generalizes to leaf-labeled tries; simply, the context of
a node corresponds to its level in the tree and because XBW-b
organizes nodes at the same level (i.e., of similar context)
next to each other, it realizes the same effect for tries as the
Burrows–Wheeler transform for strings (hence the name).
Deciding whether or not such contextual dependency is present
in real IP FIBs is well beyond the scope of this paper. Here,
we only note that if it is, then XBW-b can take advantage of
this and compress an IP FIB to higher-order entropy using the
techniques in [18] and [52].
In summary, the XBW-b transform can be built quickly, sup-

ports lookup in asymptotically optimal time, and compresses to
within entropy bounds. Updates, however, may be expensive.
Even the underlying leaf-pushed trie takes steps in the
worst case to update, after which we could either rebuild the
string indexes from scratch (again in) or use a dynamic
compressed index that supports updates to the compressed form
efficiently. For instance, [10] implements insertion and deletion
in roughly time, at the cost of slower rank and se-
lect. The other shortcoming of XBW-b is that, even if it supports
lookups in theoretically optimal time, it is just too slow for line
speed IP lookup (see Section V-C). In Section IV, therefore, we
discuss a somewhat more practical FIB compression scheme.

IV. PRACTICAL FIB COMPRESSION

The string indexes that underly XBW-b are pointerless,
encoding all information in compact bitmaps. This helps
squeezing XBW-b into higher-order entropy bounds, but also
causes that we need to perform multiple rank and select oper-
ations just to, say, enter a child of a node. Even though these
primitives run in , the constants still add up, building
up delays too huge for line speed IP lookup. In contrast, a
traditional pointer machine, like a prefix tree, can follow a
child pointer in just a single indirection with only one random
memory access overhead. The next compressed FIB data
structure we introduce is, therefore, pointer-based.
The idea is to essentially reinvent the classic prefix tree,

borrowing the basic mechanisms from the Lempel-Ziv (LZ78)
string compression scheme [2]. LZ78 attains entropy by
parsing the text into unique substrings, yielding a form that
contains no repetitions. Tree threading is a generalization of
this technique to unlabeled trees, merging isomorphic subtrees
into a directed acyclic graph (DAG) [35], [50], [57], [58]. In
this paper, we apply this idea to labeled trees by taking into
account both the underlying tree structure and the labels when
merging subtries [59], [60]. If the trie is regular, then this will
eliminate all recurrent substructures, producing a representation
that contains no repetitions and hence, so the argument goes,
admits entropy bounds like LZ78.
The below equivalence relation serves as the basis of our trie-

merging technique.
Definition 1: Two leaf-labeled tries are identical if each of

their subtries are pairwise identical, and two leaves are identical
if they hold the same label.
We call the algorithmic manifestation of this recursion the

trie-folding algorithm and the resultant representation a prefix
DAG. Fig. 3(a) depicts a sample prefix tree, Fig. 3(b) shows the
corresponding leaf-pushed trie, and Fig. 3(c) gives the prefix
DAG. For instance, the subtries that belong to the prefix 0/1 and
11/2 are equivalent in the leaf-pushed trie and are thus merged
into a single subtrie that is now available in the prefix DAG
along two paths from the root. This way, the prefix DAG is sig-
nificantly smaller than the original prefix tree as it contains only
half the nodes.
For the trie-folding algorithm, it is essential that the under-

lying trie be normalized; for instance, in our example it is easy to
determine from the leaf-pushed trie that the two subtries under
the prefixes 00/2 and 10/2 are identical, but this is impossible to
know from the original prefix tree. Thus, leaf-pushing is essen-
tial to realize good compression but, at the same time, makes
updates prohibitive [50].
To avoid this problem, we apply a simple optimization. We

separate the trie into two parts; “above” a certain level , called
the leaf-push barrier, where subtries are huge and so common
subtries are rare, we store the FIB as a standard binary prefix
tree in which update is fast; and “below” , where common
subtries most probably turn up, we apply leaf-pushing to ob-
tain good compression. Then, by a cautious setting of the leaf-
push barrier, we simultaneously realize fast updates and en-
tropy-bounded storage size.
The prefix DAGs for and are depicted in

Fig. 3(e) and (f). The size is somewhat larger, but updating, say,
the default route now only needs setting the root label without
having to cycle through each leaf.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

A. Construction and IP Lookup

We are given a binary trie (not necessarily proper and leaf-
pushed) of depth , labeled from an alphabet of size . Let

be the set of nodes and be
the set of leaves. Without loss of generality, we assume that
does not contain explicit blackhole routes. Then, the trie-folding
algorithm transforms into a prefix DAG , on nodes
and leaves , with respect to the leaf-push barrier .
The algorithm itself is a simple variant of trie threading [57]:
Assign a unique ID to each subtrie that occurs below level and
merge two tries if their IDs are equal (as of Definition 1). The
algorithm actually works on a copy of and always keeps an
intact instance of available. This instance, called the control
FIB, can exist in the DRAM of the line card’s control CPU as
it is only consulted to manage the FIB. The prefix DAG itself
is constructed in fast memory. We also need two ancillary data
structures, the leaf table and the subtrie index, which can also
live in DRAM.
The leaf table will be used to coalesce leaves with identical

labels into a common leaf node. Accordingly, for each ,
the leaf table stores a leaf node (no matter which one)
with that label. Furthermore, the subtrie index will be used
to identify and share common subtries. is in fact a reference
counted associative array, addressed with pairs of IDs

as keys and storing for each key a node whose children
are exactly the subtries identified by and . supports the
following primitives.
• : If a node with key exists in , then in-
crease its reference count and return it, otherwise generate
a new ID in , store at key with reference count 1,
and return .

• : Dereference the entry with key and delete
it if the reference count drops to zero.

In our code, we used a hash to implement , which supports
the above primitives in amortized time.
Now, suppose we are given a node to be subjected to trie-

folding and a leaf-push barrier . First, for each descendant
of at depth , we normalize the subtrie rooted at using label

as a “default route,” and then we call the compress rou-
tine to actually merge identical leaves and subtries below ,
starting from the bottom and working upwards until we reach .
Consider the following pseudocode for the main trie_fold
routine.

1: trie_fold (node , integer)
2: each -level child of do
3: if then
4: else
5: POSTORDER-TRAVERSE-AT- (compress)
6:
7: compress (node)
8: if then ;
9: else
10: if then repointer the parent of to ;

Here, is the left child and is the right child for
, and is the ID of . As trie_fold visits each node
at most twice and compress runs in if is , we
arrive to the following conclusion.

Lemma 4: Given a binary trie on nodes, can be
constructed in time.
Lookup on a prefix DAG goes exactly the same way as on a

conventional prefix tree: Follow the path traced out by the suc-
cessive bits of the lookup key and return the last label found. We
need to take care of a subtlety in handling invalid labels, though.
Namely, in our sample FIB of Fig. 3(a), the address 000 is asso-
ciated with label 1 (the default route), which in the prefix DAG
for [Fig. 3(e), derived from the trie on Fig. 3(d)] would
become if we were to let leaf nodes’ labels override labels
inherited from levels above . This problem is easy to over-
come, though, by removing the label from the leaf . By
our assumption, the FIB contains no explicit blackhole routes,
thus every traversal yielding the empty label on terminates in

on and, by the above modification, also gives an
empty label.
That being said, the last line of the trie_fold algorithm

renders standard trie lookup correct on prefix DAGs. Since
this is precisely the lookup algorithm implemented in many IP
routers on the ASIC [53], we conclude that prefix DAGs can
serve as compressed drop-in replacements for trie-based FIBs
in many router products (similarly to, e.g., [40]).
Lemma 5: The lookup operation on terminates in

time.
In this regard, trie-folding can be seen as a generalization of

conventional FIB implementations: For , we get good
old prefix trees, and for smaller settings of , we obtain increas-
ingly smaller FIBs with exactly zero cost on lookup efficiency.
Correspondingly, there is no memory size versus lookup com-
plexity “space–time” tradeoff in trie-folding.

B. Memory Size Bounds

The tries that underlieXBW-b are proper and leaf-labeled, and
the nice structure makes it easy to reason about the size thereof.
Unfortunately, the tries that prefixDAGs derive from are of arbi-
trary shape, and so it is difficult to infer space bounds in the same
generic sense. We chose a different approach, therefore, in that
we view trie-folding as a generic string compression method,
and we compare the size of the prefix DAG to that of an input
string given to the algorithm. The space bounds obtained this
way transform to prefix trees naturally, as trie entropy itself is
also defined in terms of string entropy (recall Proposition 2).
Instead of being given a trie, therefore, we are now given a

string of length on an alphabet of size and zero-order
entropy . Supposing that equals some power of 2 (which
we do for the moment), say, , we can think as if the
symbols in were written to the leaves of a complete binary
tree of depth as labels. Then, trie-folding will convert this
tree into a prefix DAG , and we are curious as to how
the size of relates to the information-theoretic limit for
storing , that is, bits, and the zero order entropy
(see Fig. 4). Note that every FIB has such a “complete binary
trie” representation, and vice versa.
The memory model for storing the prefix DAG is as fol-

lows. Above the leaf-push barrier , the children of a node are
arranged on consecutive memory locations, and so each node
holds a single node pointer of size to be determined later plus
a label index of bits. At and below level , nodes hold two
pointers but no label, plus we also need an additional bits
to store the coalesced leaves.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RÉTVÁRI et al.: COMPRESSING IP FORWARDING TABLES 7

Fig. 3. (a) Binary trie for a sample FIB. (b) Same trie when leaf-pushing is applied from level . (c) Prefix DAG for leaf-push barrier . (d) Trie and
(e) prefix DAG for . (f) Prefix DAG for . Dashed lines indicate the leaf-push barrier , and the invalid label was removed from the corresponding
leaf nodes in the prefix DAGs.

Fig. 4. Trie-folding as string compression: (a) a string, (b) the complete bi-
nary trie, and (c) the compressed DAG. The third character can be accessed by
looking up the key .

Now, we are in a position to state the first space bound. In par-
ticular, we show that attains information-theoretic lower
bound up to some small constant factor, and so it is a compact
data structure. Our result improves the constant factor from 5
(as of [1]) to 4.
Theorem 1: Let be a string of length on an al-

phabet of size and set the leaf-push barrier as

(2)

where denotes the Lambert -function. Then, can
be encoded on at most bits.
Note that the Lambert -function (or product logarithm)

is defined as . The detailed proof, based
on a counting argument, is deferred to the Appendix.
Next, we show that trie-folding compresses to within a con-

stant factor of the zero-order entropy bound, subject to some
reasonable assumptions on the alphabet. Furthermore, the con-
stant term is improved from 7 (as of [1]) to 6.
Theorem 2: Let be a string of length and zero-order en-

tropy , and set the leaf-push barrier as

(3)

Then, the expected size of is at most
bits.

Again, refer to the Appendix for the proof.
It turns out that the compression ratio depends on the

specifics of the alphabet. For reasonable , say,
or , the error is very small, and the
bound gradually improves as increases, to the point that
at maximum entropy , we get precisely . For
extremely small entropy, however, the error can
become dominant as the overhead of the DAG outweighs the
size of the very string in such cases.

C. Update

What remained to be done is to set the leaf-push barrier in
order to properly balance between compression efficiency and

update complexity. Crucially, small storage can only be attained
if the leaf-push barrier is chosen according to (3). Strikingly, we
found that precisely this setting is the key to fast FIB updates as
well.4

Herein, we only specify the update operation that changes
an existing association for prefix of prefix length to the new
label or, within the string model, rewrites an entire block of
symbols at the lowest level of the tree with a new one. Adding
a new entry or deleting an existing one can be done in similar
vein.

update (address , integer , label , integer)
;

while
if then
if then else

if then ; return
; repointer the parent of to ;

POSTORDER-TRAVERSE-AT- :

for each parent of : do
decompress (node)

;
if then
else ;

re-pointer the parent of to ; return

First, we walk down and decompress the DAG below along
the path traced out by the successive bits of until we reach
level . The decompress routine copies a node out from the
DAG and removes the reference wherever necessary. At this
point, if , then we simply update the label and we are
ready. Otherwise, we replace the subtrie with a new copy of
the corresponding subtrie from , taking care of calling get
on the descendants to remove dangling references, and we set
the label on the root of the new copy to . Then, we recom-
press the portions of the prefix DAG affected by the change
by calling trie_fold and then calling compress on all the
nodes along the upstream path towards to root.
Theorem 3: If the leaf-push barrier is set as (3), then up-

date on terminates in time.
Proof: If , then updating a single entry can be done

in time. If, on the other hand, , then update

4Note that (3) transforms into (2) at maximum entropy.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE I
RESULTS FOR XBW-b AND TRIE-FOLDING ON access, core, AND SYNTHETIC (syn.) FIBS: NAME, NUMBER OF PREFIXES , AND NEXT-HOPS ; SHANNON ENTROPY

OF THE NEXT-HOP DISTRIBUTION ; FIB INFORMATION-THEORETIC LIMIT , ENTROPY , AND XBW-b AND PREFIX DAG SIZE (pDAG,)
IN KILOBYTES; COMPRESSION EFFICIENCY ; AND BITS/PREFIX EFFICIENCY FOR XBW-b AND TRIE-FOLDING

visits at most nodes, using that
whenever is as (3).

In summary, under mild assumptions on the label distribu-
tion, a prefix DAG realizes the Shannon entropy up to a small
factor and allows indexing arbitrary elements and updates to
any entry in roughly time. As such, it is in fact a dy-
namic, entropy-compressed string self-index. As far as we are
aware, this is the first pointer machine of this kind, as the rest of
compressed string-indexes are pointerless. Regrettably, both the
space bound and the update complexity weaken when the label
distribution is extremely biased, i.e., when is very small. As
we argue in Section V, though, this rarely causes problems in
practice.

V. NUMERICAL EVALUATIONS

At this point, we have yet to demonstrate that the appealing
theoretical properties of compressed FIBs indeed manifest as
practical benefits. For this reason, we conducted a series of nu-
merical evaluations with the goal to quantify the compressibility
of real IP FIBs and see how our compressors fare. It was not our
intention, however, to compare to other FIB storage schemes
from the literature, let alone evince that ours is the fastest or the
most efficient one. After all, information-theoretic space bounds
are purposed precisely at making such comparisons unneces-
sary, serving as analytically justified ground truth. Instead, our
motivation is merely to demonstrate that FIB compression al-
lows to reduce memory tax without any compromise on the ef-
ficiency of longest prefix match or FIB updates.
For the evaluations, we coded up a full-fledged Linux proto-

type, where FIB compression and update run in user space and
IP lookup is performed by a custom kernel module embedded
in the kernel’s IP stack. The code executed on a single core of
a 2.50-GHz Intel Core i5 CPU, with 2x32 kB L1 data cache,
256 kB L2 cache, and 3 MB L3 cache.
Research on IP FIB data structures has for a long time been

plagued by the unavailability of real data, especially from the In-
ternet core. Alas, we could obtain only five FIB instances from
real IP routers, each from the access: taz and hbone are from
a university access, access(d) is from a default and ac-
cess(v) from a virtual instance of a service provider’s router,
and mobile is from a mobile operator’s access (see Table I).
The first three are in the DFZ; the rest contain default routes.
Apart from these, however, what is available publicly is RIB
dumps from BGP collectors, like RouteViews or looking glass
servers (named as* in the data set). Unfortunately, these only

very crudely model real FIBs because collectors run the BGP
best-path selection algorithm on their peers and these adjacen-
cies differ greatly from real next-hops on production routers.
We experimented with heuristics to restore the original next-hop
information (e.g., set next-hop to first AS-hop), but the results
were basically the same. Thus, these FIBs are included only for
reference. All FIBs were collected at various times during 2012.
We also used two randomly generated FIBs, one of 600 000
(fib_600k) and another of 1 million prefixes (fib_1m), to
future-proof our results. These synthetic FIBs were generated
by iterative random prefix splitting and setting next-hops ac-
cording to a truncated Poisson distribution with parameter 3/5
(,).

A. Update Complexity

First, we set out to determine a good setting for the leaf-push
barrier . Recall that was introduced to balance between the
compression efficiency and update complexity (also recall that
no such compromise exists between compression and lookup).
Our theoretical results provide the essential pointers to set [see
(2) and (3)], but these are for compressing strings over complete
binary trees. IP FIBs, however, are not complete.
We exercised the memory footprint versus update complexity

tradeoff by varying between 0 and 32. The update time was
measured over two update sequences: a random one with IP pre-
fixes uniformly distributed on [] and prefix lengths
on [0, 32], and a BGP-inspired one corresponding to a real
BGP router log taken from RouteViews. Here, we treated all
BGP prefix announcements as generating an FIB update, with
a next-hop selected randomly according to the next-hop distri-
bution of the FIB. The results are mean values over 15 runs of
7500 updates, each run roughly corresponding to 15 min worth
of BGP churn.
Herein, we only show the results for the taz FIB instance

in Fig. 5. The results suggest that standard prefix trees (repro-
duced by the setting), while pretty fast to update, occupy
a lot of space. Fully compressed DAGs , in contrast,
consume an order of magnitude less space but are expensive
to modify. There is a domain, however, at around ,
where we win essentially all the space reduction and still handle
about 100 000 updates per second (that is roughly 2.5 h of BGP
update load). What is more, the space–time tradeoff only exists
for the synthetic, random update sequence, but not for BGP up-
dates. This is because BGP updates are heavily biased toward

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RÉTVÁRI et al.: COMPRESSING IP FORWARDING TABLES 9

Fig. 5. Update time versus memory footprint on taz for random and BGP
update sequences.

longer prefixes (with a mean prefix length of 21.87), which im-
plies that the size of leaf-pushed subtries needed to be repacked
per update is usually very small, and hence update complexity
is relatively insensitive to . Based on these considerations, we
set for the rest of the evaluations.

B. Storage Size

Storage size results are given in Table I. Notably, real FIBs
that contain only a few next-hops compress down to about
60–150 kB with XBW-b at 1–2 bits/prefix efficiency, and
only about 2–3 times more with trie-folding. This is chiefly
attributed to the small next-hop entropy, indicating the presence
of a dominant next-hop. Core FIBs, on the other hand, exhibit
considerably larger next-hop entropy, with XBW-b transforms
in the range of 100–300, and prefix DAGs in 330–700 kB.
Recall, however, that these FIBs exhibit unrealistic next-hop
distribution. Curiously, even the extremely large FIB of 1 mil-
lion prefixes shrinks below 300 kB (800 kB with trie-folding).
In contrast, small instances compress poorly, as it is usual in
data compression. Finally, we observe that many FIBs show
high next-hop regularity (especially the real ones), reflected
in the fact that entropy bounds are 20%–40% smaller than
the information-theoretic limit. XBW-b very closely matches
entropy bounds, with trie-folding off by only a small factor.
We also studied compression ratios on synthetic FIBs, whose

entropy was controlled by us. In particular, we regenerated the
next-hops in access(d) according to Bernoulli distribution:
A first next-hop was set with probability and another with
probability . Then, varying in [0, 1/2] we observed the
FIB entropy, the size of the prefix DAG, and the compression
efficiency , i.e., the factor between the two (see Fig. 6). We
found that the efficiency is around 3 and, in line with our theoret-
ical analysis, degrades as the next-hop distribution becomes ex-
tremely biased. This, however, never occurs in reality (see again
Table I). We repeated the analysis in the string compression
model: Here, the FIB was generated as a complete binary trie
with a string of 2 symbols written on the leaves, again chosen
by a Bernoulli distribution, and this was then compressed with
trie-folding (see Fig. 7, with XBW-b omitted). The observations
are similar, with compression efficiency again varying around 3
and the spike at low entropy more prominent.

C. Lookup Complexity

Finally, we tested IP lookup performance on real software and
hardware prototypes. Our software implementations run inside
the Linux kernel’s IP forwarding engine. For this, we hijacked
the kernel’s network stack to send IP lookup requests to our
custom kernelmodule, working from a serialized blob generated
by the FIB encoders. Our XBW-b lookup engine uses a kernel

Fig. 6. Size and compression efficiency over FIBs with Bernoulli distributed
next-hops as the function of parameter .

Fig. 7. Size and compression efficiency over strings with Bernoulli dis-
tributed symbols as the function of parameter .

port of the RRR bitstring index [12] and the Huffman-shaped
WaveletTree [13] from libcds [9]. Trie-foldingwas coded
in pure . We used the standard trick to collapse the first
levels of the prefix DAGs in the serialized format [41], as this
greatly eases implementation and improves lookup time with
practically zero effect on updates. We also experimented with
the Linux-kernel’s stock fib_trie data structure, an adaptive
level- and path-compressed multibit trie-based FIB, as a refer-
ence implementation [25]. Lastly, we also realized the prefix
DAG lookup algorithm in hardware, on a Xilinx Virtex-II Pro
50 FPGA with 4.5 MB of synchronous SRAM representing the
state of the art almost 10 years ago. The hardware implementa-
tion uses the same serialized prefix DAG format as the software
code. All tests were run on the taz instance.
For the software benchmarks we used the standard Linux net-

work micro-benchmark tool kbench [62], which calls the FIB
lookup function in a tight loop and measures the execution time
with nanosecond precision. We modified kbench to take IP
addresses from a uniform distribution on [] or, al-
ternatively, from a packet trace in the “CAIDA Anonymized
Internet Traces 2012” data set [61]. The route cache was dis-
abled. We also measured the rate of CPU cache misses by mon-
itoring the cache-misses CPU performance counter with
the perf(1) tool. For the hardware benchmark, we mirrored
kbench functionality on the FPGA, calling the lookup logic re-
peatedly on a list of IP addresses statically stored in the SRAM,
and we measured the number of clock ticks needed to terminate
the test cycle.
The results are given in Table II. On the software side, the

most important observations are as follows. The prefix DAG,
taking only about 180 kB of memory, is most of the time ac-
cessed from the cache, while fib_trie occupies an impres-
sive 26 MB and so it does not fit into fast memory. Thus, even
though the number of memory accesses needed to execute an IP
lookup is smaller withfib_trie, as most of these go to slower
memory, the prefix DAG supports about three times as many

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE II
LOOKUP BENCHMARK WITH XBW-b, PREFIX DAGS, fib_trie, AND THE
FPGA IMPLEMENTATION ON taz: SIZE, AVERAGE, AND MAXIMUM DEPTH;
AND MILLION LOOKUP PER SECOND, LOOKUP TIME IN CPU CYCLES, AND
CACHE MISSES PER PACKET OVER RANDOM IP ADDRESSES (rand.) AND

ADDRESSES TAKEN FROM THE TRACE [61] (trace)

lookups per second. Accordingly, not just that FIB space re-
duction does not ruin lookup performance, but it even improves
it. In other words, there is no space–time tradeoff involved here.
The address locality in real IP traces helps fib_trie perfor-
mance to a great extent, as fib_trie can keep lookup paths to
popular prefixes in cache. In contrast, the prefix DAG is pretty
much insensitive to the distribution of lookup keys. Finally, we
see that XBW-b is a distant third from the tested software lookup
engines, suggesting that the constant in the lookup complexity
is indeed prohibitive in practice and that our lookup code exer-
cises some pretty pathologic code path in libcds.
The real potential of trie-folding is most apparent with our

hardware implementation. The FPGA design executes a single
IP lookup in just 7.1 clock cycles on average since the prefix
DAG fits nicely into the SRAM running synchronously with the
logic. This is enough to roughly 7 million IP lookups per second
even on our rather ancient FPGA board. On a modern FPGA
or ASIC, however, with clock rates in the gigahertz range, our
results indicate that prefix DAGs could be scaled to hundreds of
millions of lookups per second at a terabit line speed.
We also measured packet throughput using the udpflood

macro-benchmark tool [62]. This tool injects UDP packets
into the kernel destined to a dummy network device, which
makes it possible to run benchmarks circumventing network
device drivers completely. The results were similar as above,
with prefix DAGs supporting consistently 2–3 times larger
throughput than fib_trie.

VI. RELATED WORK

In line with the unprecedented growth of the routed Internet
and the emerging scalability concerns thereof [44], [48], [49],
finding efficient FIB representations has been a heavily re-
searched question in the past and, judging from the substantial
body of recent work [33], [36], [40], [41], still does not seem
to have been solved completely.
Trie-based FIB schemes date back to the BSD kernel imple-

mentation of Patricia trees [37]. This representation consumes
a massive 24 B per node, and a single IP lookup might cost 32
random memory accesses. Storage space and search time can
be saved on by expanding nodes’ strides to obtain a multibit
trie [26]; see, e.g., controlled prefix expansion [35], [39], level-
and path-compressed tries [25], Lulea [29], Tree Bitmaps [32]
and successors [27], [38], etc. Another approach is to shrink

the routing table itself by cleverly relabeling the tree to con-
tain the minimum number of entries (see ORTC and deriva-
tives [31], [40]). In our view, trie-folding is complementary to
these schemes, as it can be used in combination with basically
any trie-based FIB representation, realizing varying extents of
storage space reduction.
Further FIB representations include hash-based

schemes [27], [42], dynamic pipelining [34], CAMs [24],
Bloom filters [30], binary search trees and search
algorithms [28], [41], massively parallelized lookup en-
gines [33], [41], FIB caching [36], and different combinations
of these (see the textbook [23]). None of these comes with
information-theoretic space bounds, although next-hop entropy
itself appears in [40], but no analytical evaluation ensued.
In contrary, XBW-b and trie-folding come with theoretically
proven space limits, and thus predicable memory footprint.
The latest reported FIB size bounds for 400 K prefixes range
from 780 kB (DXR, [41]) to 1.2 MB (SMALTA, [40]). XBW-b
improves this to just 100–300 kB, which easily fits into today’s
SRAMs or can be realized right in chip logic with modern
FPGAs.
Compressed data structures have been in the forefront of

theoretical computer science research [3], [6]–[13], ever since
Jacobson in his seminal work [56] defined succinct encodings
of trees that support navigational queries in optimal time
within information-theoretically limited space. Jacobson’s
bitmap-based techniques later found important use in FIB
aggregation [27], [32], [38]. With the extensive use of bitmaps,
XBW-b can be seen as a radical rethinking of these schemes,
inspired by the state of the art in succinct and compressed data
structures.
The basic idea of folding a labeled tree into a DAG is not par-

ticularly new; in fact, this is the basis of many tree compacting
schemes [57], space-efficient ordered binary decision diagrams
and deterministic acyclic finite state automata [59], common
subexpression elimination in optimizing compilers [60], and it
has also been used in FIB aggregation [35], [50], [58] earlier.
Perhaps the closest to trie-folding is Shape graphs [50], where
common subtrees, without regard to the labels, are merged into
a DAG. However, this necessitates storing a giant hash for the
next-hops, making updates expensive, especially considering
that the underlying trie is leaf-pushed. Trie-folding, in contrast,
takes labels into account when merging and also allows cheap
updates.

VII. CONCLUSION

With the rapid growth of the Web, social networks, mobile
computing, data centers, and the Internet routing ecosystem as
a whole, the networking field is in a sore need of compact and ef-
ficient data representations. Today’s networking practice, how-
ever, still relies on ad hoc and piecemeal data structures for
basically all storage-sensitive and processing-intensive applica-
tions, of which the case of IP FIBs is just one salient example.
Our main goal in this paper was to advocate compressed

data structures to the networking community, pointing out
that space reduction does not necessarily hurt performance.
Just the contrary: The smaller the space, the more data can
be squeezed into fast memory, leading to faster processing.
This lack of space–time tradeoff is already exploited to a great
extent in information retrieval systems, business analytics,
computational biology, and computational geometry, and we

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RÉTVÁRI et al.: COMPRESSING IP FORWARDING TABLES 11

Fig. 8. Shape of the DAG as divided into three parts with bounds on the ex-
pected number of nodes at each level.

believe that it is just too appealing not to be embraced in
networking as well. This paper is intended as a first step in that
direction, demonstrating the basic information-theoretic and
algorithmic techniques needed to attain entropy bounds, on the
simple but relevant example of IP FIBs. Our techniques could
then prove instructive in designing compressed data structures
for other large-scale data-intensive networking applications,
like OpenFlow and MPLS label tables, Ethernet self-learning
MAC tables, BGP RIBs, access rules, log files, or peer-to-peer
paths [63].
Accordingly, this paper can in no way be complete. For

instance, we deliberately omitted IPv6 for brevity, even though
storage burden for IPv6 is getting just as pressing as for
IPv4 [38]. We see no reasons why our techniques could not be
adapted to IPv6, but exploring this area in depth is for further
study. Multibit prefix DAGs also offer an intriguing future
research direction, for their potential to reduce storage space
as well as improving lookup time from to .
On a more theoretical front, FIB entropy lends itself as a new
tool in compact routing research, the study of the fundamental
scalability of routing algorithms. We need to see why IP FIBs
contain vast redundancy, track down its origins, and eliminate
it to enforce zero-order entropy bounds right at the level of
the routing architecture. To what extent this argumentation can
then be extended to higher-order entropy is, for the moment,
unclear at best.

APPENDIX

Proof of Theorem 1: As is derived from a complete
binary tree, the number of nodes of at level is at most

, and each node at level corresponds to a -long
substring of so . Let denote the intersection
of the two bounds , which gives

(4)

Set the leaf push barrier at
where denotes the Lambert -function. The left side of
Fig. 8 is an illustration of the shape of DAG. Above level , we
have

nodes; at level , we have nodes at maximum; at ,
there are nodes; and finally, below

level , we have an additional nodes at most as levels

shrink as downwards in . Finally, setting
the pointer size at bits and summing up the above yields that
the size of is at most

bits, using the fact that by (4) and
the number of labels stored in the DAG is at most above
the leaf-push barrier and further below it.

Proof of Theorem 2: Let denote the expected
number of nodes at level of the DAG. We shall use the
following bounds on to prove the claim:

(5)

Here, the first and the last bounds are from the proof
of Theorem 1, while the second one is obtained below by
treating the problem as a coupon collector’s problem on
the subtries of at level . Suppose that we are given
a set of coupons , each coupon representing a string of
length on the alphabet of size and entropy ,
and we draw a coupon with probability . Let

, let denote the set
of coupons after draws, and suppose .
Lemma 6: .
Using this lemma, we have that the expected number

of nodes at the th level of is at most
,

which coincides with the second bound in (5). Note that here
is an increasing function of , while both and

are monotone decreasing functions.
Using these bounds, we divide the DAG into three parts

(the “head,” “body,” and “tail”) as illustrated at the right side
of Fig. 8. Let denote the intersection of the first two upper
bounds, let be that of the latter two, and let be the level
where and meet. It is easy to see that the relation be-
tween these three values can only be or .
We discuss these two cases separately.
Case 1:
The three parts of the DAG are as follows (again, see the right

side of Fig. 8):

head for levels ;

body for levels ;

tail for levels .

In the following, we give upper bounds on the expected
number of the nodes in the head, the tail, and the body of the
DAG. Set the leaf-push barrier at .
First, the expected number of nodes in the head is

(6)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

where .
Second, for the size of the tail, we have

(7)

where

which tends to zero if goes to infinity.
Third, for the number of nodes in the body, we write

Lemma 7: The following bounds on , , and apply:

(8)

(9)

(10)

Using (8) and (9) for the body, we write

(11)

where

Choose the pointer size to bits, using that the DAG con-
tains at most nodes at its broadest level. For the head, we
need one pointer for each node, while for the rest we need two.
Summing up with (7), (6), and (11), we get the following bound
on the number of pointers:

We have to store labels above the barrier and at the bottom
level, which is at most labels, hence the average number
of the bits is at most

Using (8) for and (10) for , we have

In summary, for the expected size of the DAG, we get
bits since

.
Case 2:
In this case the DAG contains only the head and tail parts.

According to Theorem 1, we get the upper bound
on the number of bits. As , we have

Hence, the upper bound on the number of re-
quired bits is

.
Proof of Lemma 6: The probability of having coupon

in is and so the expected
cardinality of is .
The right-hand side of the statement of the lemma is

. The claim holds
if

(12)

First, assume . As the right-hand size is a monotone
increasing function of when

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RÉTVÁRI et al.: COMPRESSING IP FORWARDING TABLES 13

Otherwise, if , then let . Note that
. After substituting , we have

which can be reordered as

Taking the power of both sides, we get

Using that and so , we see that the above holds if

Note that is monotone decreasing function, thus the
inequality holds if , but this is true because .
This proves (12) under the assumption . Note also that
there are at most coupons for which (12) cannot be
applied.

Proof of Lemma 7: To prove (8), for level
, we have

For (9), at level ,
we have

Finally, for (10) at level
, we write

ACKNOWLEDGMENT

The authors wish to thank B. Mihálka, Z. Csernátony,
G. Barna, L. Rónyai, A. Gulyás, G. Enyedi, A. Császár,
G. Pongrácz, F. Claude, and S. Gorinsky for their invaluable
assistance. Special thanks go to J. Lu for pointing out the
mistake in [1] regarding FIB entropy.

REFERENCES
[1] G. Rétvári, J. Tapolcai, A. Kőrösi, A. Majdán, and Z. Heszberger,

“Compressing IP forwarding tables: Towards entropy bounds and
beyond,” in Proc. ACM SIGCOMM, 2013, pp. 111–122.

[2] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York, NY, USA: Wiley-Interscience, 1991.

[3] N. Ziviani, E. S. deMoura, G. Navarro, and R. Baeza-Yates, “Compres-
sion: A key for next-generation text retrieval systems,” IEEE Comput.,
vol. 33, no. 11, pp. 37–44, Nov. 2000.

[4] J. Woods, “PPP deflate protocol,” RFC 1979, 1996.
[5] J. Bonwick and B. Moore, “ZFS—The last word in file systems,” Sun

Microsystems, 2004.
[6] W.-K. Hon, R. Shah, and J. S. Vitter, “Compression, indexing, retrieval

for massive string data,” in Proc. CPM, 2010, pp. 260–274.
[7] G. Navarro and V. Mäkinen, “Compressed full-text indexes,” Comput.

Surv., vol. 39, no. 1, p. 2, 2007.
[8] P. Ferragina and G. Manzini, “Opportunistic data structures with ap-

plications,” in Proc. IEEE FOCS, 2000, pp. 390–398.
[9] G. Navarro and F. Claude, “libcds: Compact data structures library,”

2004 [Online]. Available: http://libcds.sourceforge.net
[10] V. Mäkinen and G. Navarro, “Dynamic entropy compressed sequences

and full-text indexes,” Trans. Algor., vol. 4, no. 3, pp. 32:1–32:38,
2008.

[11] E. de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates, “Fast and
flexible word searching on compressed text,” Trans. Inf. Syst., vol. 18,
no. 2, pp. 113–139, 2000.

[12] R. Raman, V. Raman, and S. S. Rao, “Succinct indexable dictionaries
with applications to encoding -ary trees andmultisets,” inProc. ACM-
SIAM SODA, 2002, pp. 233–242.

[13] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro, “Compressed
representations of sequences and full-text indexes,” Trans. Algor., vol.
3, no. 2, p. 20, 2007.

[14] S. Vigna and P. Boldi, “MG4J: Managing gigabytes for Java,” 2007
[Online]. Available: http://mg4j.di.unimi.it

[15] LuceneTransform, “Transparent compression for Apache Lucene,”
2012 [Online]. Available: http://code.google.com/p/lucenetransform

[16] I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes: Com-
pressing and Indexing Documents and Images. San Mateo, CA,
USA: Morgan Kaufmann, 1999.

[17] P.M. Tolani and J. R. Haritsa, “XGRIND: A query-friendly XML com-
pressor,” in Proc. ICDE, 2002, pp. 225–234.

[18] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan, “Com-
pressing and indexing labeled trees, with applications,” J. ACM, vol.
57, no. 1, pp. 1–33, 2009.

[19] WebGraph, “A framework for graph compression,” [Online]. Avail-
able: http://webgraph.di.unimi.it

[20] J. Rossignac, “Edgebreaker: Connectivity compression for triangle
meshes,” IEEE Trans. Visual Comput. Graphics, vol. 5, no. 1, pp.
47–61, Jan.–Mar. 1999.

[21] H. Sun, O. Ozturk, and H. Ferhatosmanoglu, “CoMRI: A compressed
multi-resolution index structure for sequence similarity queries,” in
Proc. IEEE CSB, 2003, p. 553.

[22] G. Navarro and J. Tarhio, “LZgrep: A Boyer-Moore string matching
tool for Ziv-Lempel compressed text,” Softw. Pract. Exper., vol. 35,
no. 12, pp. 1107–1130, 2005.

[23] W. Wu, Packet Forwarding Technologies. New York, NY, USA:
Auerbach, 2008.

[24] A. McAuley and P. Francis, “Fast routing table lookup using CAMs,”
in Proc. IEEE INFOCOM, 1993, pp. 1382–1391.

[25] S. Nilsson and G. Karlsson, “IP-address lookup using LC-tries,” IEEE
J. Sel. Areas Commun., vol. 17, no. 6, pp. 1083–1092, Jun. 1999.

[26] G. Cheung and S. McCanne, “Optimal routing table design for IP ad-
dress lookups under memory constraints,” in Proc. IEEE INFOCOM,
1999, pp. 1437–1444.

[27] M. Bando, Y.-L. Lin, and H. J. Chao, “FlashTrie: Beyond 100-Gb/s
IP route lookup using hash-based prefix-compressed trie,” IEEE/ACM
Trans. Netw., vol. 20, no. 4, pp. 1262–1275, Aug. 2012.

[28] P. Gupta, B. Prabhakar, and S. P. Boyd, “Near optimal routing lookups
with bounded worst case performance,” in Proc. IEEE INFOCOM,
2000, pp. 1184–1192.

[29] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small for-
warding tables for fast routing lookups,” in Proc. ACM SIGCOMM,
1997, pp. 3–14.

[30] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, “Longest prefix
matching using Bloom filters,” in Proc. ACM SIGCOMM, 2003, pp.
201–212.

[31] R. Draves, C. King, S. Venkatachary, and B. Zill, “Constructing op-
timal IP routing tables,” in Proc. IEEE INFOCOM, 1999.

[32] W. Eatherton, G. Varghese, and Z. Dittia, “Tree bitmap: Hardware/soft-
ware IP lookups with incremental updates,” Comput. Commun. Rev.,
vol. 34, no. 2, pp. 97–122, 2004.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

[33] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: A GPU-accel-
erated software router,” in Proc. ACM SIGCOMM, 2010, pp. 195–206.

[34] J. Hasan and T. N. Vijaykumar, “Dynamic pipelining: Making
IP-lookup truly scalable,” in Proc. ACM SIGCOMM, 2005, pp.
205–216.

[35] I. Ioannidis and A. Grama, “Level compressed DAGs for lookup ta-
bles,” Comput. Netw., vol. 49, no. 2, pp. 147–160, 2005.

[36] Y. Liu, S. O. Amin, and L.Wang, “Efficient FIB caching using minimal
non-overlapping prefixes,” Comput. Commun. Rev., vol. 43, no. 1, pp.
14–21, Jan. 2012.

[37] K. Sklower, “A tree-based packet routing table for Berkeley UNIX,”
Berkeley, CA, USA, Tech. Rep., 1991.

[38] H. Song, J. Turner, and J. Lockwood, “Shape shifting tries for faster IP
route lookup,” in Proc. IEEE ICNP, 2005, pp. 358–367.

[39] V. Srinivasan and G. Varghese, “Faster IP lookups using controlled
prefix expansion,” Perform. Eval. Rev., vol. 26, no. 1, pp. 1–10, 1998.

[40] Z. A. Uzmi et al., “SMALTA: Practical and near-optimal FIB aggrega-
tion,” in Proc. ACM CoNEXT, 2011, pp. 1–12.

[41] M. Zec, L. Rizzo, and M. Mikuc, “DXR: Towards a billion routing
lookups per second in software,” Comput. Commun. Rev., vol. 42, no.
5, pp. 29–36, 2012.

[42] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable high
speed IP routing lookups,” in Proc. ACM SIGCOMM, 1997, pp. 25–36.

[43] A. Elmokashfi, A. Kvalbein, and C. Dovrolis, “BGP churn evolution:
A perspective from the core,” IEEE/ACM Trans. Netw., vol. 20, no. 2,
pp. 571–584, Apr. 2012.

[44] G. Huston, “BGP routing table analysis reports,” [Online]. Available:
http://bgp.potaroo.net/

[45] R. Bolla and R. Bruschi, “RFC 2544 performance evaluation and in-
ternal measurements for a Linux based open router,” in Proc. IEEE
HPSR, 2006, p. 6.

[46] D. Meyer, L. Zhang, and K. Fall, “Report from the IAB Workshop on
Routing and Addressing,” Internet Engineering Task Force, RFC 4984,
2007.

[47] K. Fall, G. Iannaccone, S. Ratnasamy, and P. B. Godfrey, “Routing
tables: Is smaller really much better?,” in Proc. ACM HotNets-VIII,
2009.

[48] X. Zhao, D. J. Pacella, and J. Schiller, “Routing scalability: An
operator’s view,” IEEE J. Sel. Areas Commun., vol. 28, no. 8, pp.
1262–1270, Oct. 2010.

[49] V. Khare et al., “Evolution towards global routing scalability,” IEEE
J. Sel. Areas Commun., vol. 28, no. 8, pp. 1363–1375, Oct. 2010.

[50] H. Song, M. S. Kodialam, F. Hao, and T. V. Lakshman, “Scalable IP
lookups using shape graphs,” in Proc. IEEE ICNP, 2009, pp. 73–82.

[51] P. Francois, C. Filsfils, J. Evans, and O. Bonaventure, “Achieving sub-
second IGP convergence in large IP networks,” Comput. Commun.
Rev., vol. 35, no. 3, pp. 35–44, 2005.

[52] G. Rétvári et al., “Compressing IP forwarding tables for fun and profit,”
in Proc. ACM HotNets-XI, 2012, pp. 1–6.

[53] EZChip, Campbell, CA, USA, “NP-4: 100-gigabit network pro-
cessor for carrier ethernet applications,” 2011 [Online]. Available:
http://www.ezchip.com/Images/pdf/NP-4_Short_Brief_online.pdf

[54] R. Teixeira, K. Marzullo, S. Savage, and G. M. Voelker, “In search
of path diversity in ISP networks,” in Proc. ACM IMC, 2003, pp.
313–318.

[55] J. Choi, J. H. Park, P. chun Cheng, D. Kim, and L. Zhang, “Under-
standing BGP next-hop diversity,” in Proc. IEEE INFOCOM Work-
shops, 2011, pp. 846–851.

[56] G. Jacobson, “Space-efficient static trees and graphs,” in Proc. IEEE
FOCS, 1989, pp. 549–554.

[57] J. Katajainen and E. Mäkinen, “Tree compression and optimization
with applications,” Int. J. Found. Comput. Sci., vol. 1, no. 4, pp.
425–447, 1990.

[58] S. Stergiou and J. Jain, “Optimizing routing tables on systems-on-chip
with content-addressable memories,” in Proc. Syst.-on-Chip, 2008, pp.
1–6.

[59] R. E. Bryant, “Symbolic boolean manipulation with ordered binary-
decision diagrams,” Comput. Surv., vol. 24, no. 3, pp. 293–318, 1992.

[60] J. Cocke, “Global common subexpression elimination,” SIGPLAN
Not., vol. 5, no. 7, pp. 20–24, 1970.

[61] P. Hick, K. C. Claffy, and D. Andersen, “CAIDA anonymized Internet
traces,” 2014 [Online]. Available: http://www.caida.org/data/passive

[62] D. S. Miller, “net_test_tools,” 2011 [Online]. Available: https://kernel.
googlesource.com/pub/scm/linux/kernel/git/davem/net_test_tools

[63] H. Madhyastha, E. Katz-Bassett, T. Anderson, A. Krishnamurthy, and
A. Venkataramani, “iPlane Nano: Path prediction for peer-to-peer ap-
plications,” in Proc. USENIX, 2009, pp. 137–152.

Gábor Rétvári (S’03–M’05) received the M.Sc.
and Ph.D. degrees in electrical engineering from the
Budapest University of Technology and Economics
(BME), Budapest, Hungary, in 1999 and 2007,
respectively.
He is now a Senior Research Fellow with the

High Speed Networks Laboratory, Department of
Telecommunications and Media Informatics, BME.
His research interests include any aspects of packet
routing in data networks, particularly the networking
applications of computational geometry, information

theory, and network flows. He maintains several open-source scientific tools
written in Perl, C, and Haskell.

János Tapolcai (M’05) received the M.Sc. degree in
technical informatics and Ph.D. degree in computer
science from the Budapest University of Technology
and Economics (BME), Budapest, Hungary, in 2000
and 2005, respectively, and the D.Sc. degree in en-
gineering science from Hungarian Academy of Sci-
ences (MTA), Budapest, Hungary, in 2013.
Currently, he is an Associate Professor with the

High-Speed Networks Laboratory, Department of
Telecommunications and Media Informatics, BME.
Dr. Tapolcai is a winner of the MTA Lendület Pro-

gram and Google Faculty Award.

Attila Kőrösi received the M.Sc. degree in mathe-
matics from the Budapest University of Technology
and Economics, Budapest, Hungary, in 2007.
He is an Assistant Research Fellow with the

MTA-BME Information Systems Research Group,
Budapest, Hungary. He has experiments in Wolfram
Mathematica, C, JAVA, and Linux. He has published
several papers on P2P-based multimedia services
and their stochastic models. His research interest is
mathematical modeling of routing protocols, FIB
compression, and data centers.

András Majdán received the M.Sc. degree in tech-
nical informatics (majoring in network and services)
from the Budapest University of Technology and
Economics, Budapest, Hungary, in 2012, and is
currently pursuing the Ph.D. degree in telecommuni-
cations and media informatics at the same university.
His research involves the compression of IP

forwarding tables and particle filter-based mobile
positioning.

Zalán Heszberger received the M.Sc. and Ph.D.
degrees in electrical engineering from the Budapest
University of Technology and Economics (BME),
Budapest, Hungary, in 1997 and 2007, respectively.
Currently, he is an Associate Professor with the

Department of Telecommunications and Media
Informatics, BME. His main research interests are
future Internet technologies and complex networks.
Currently, he is working on clean-slate design In-
ternet routing and network management algorithms.

