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Abstract—Lately, it has been proposed to use shortest path first
routing to implement Traffic Engineering in IP networks. The idea
is to set the link weights so that the shortest paths, and the traffic
thereof, follow the paths designated by the operator. Clearly, only
certain shortest path representable path sets can be used in this set-
ting, that is, paths which become shortest paths over some appro-
priately chosen positive, integer-valued link weights. Our main ob-
jective in this paper is to distill and unify the theory of shortest
path representability under the umbrella of a novel flow-theoretic
framework. In the first part of the paper, we introduce our frame-
work and state a descriptive necessary and sufficient condition to
characterize shortest path representable paths. Unfortunately, tra-
ditional methods to calculate the corresponding link weights usu-
ally produce a bunch of superfluous shortest paths, often leading
to congestion along the unconsidered paths. Thus, the second part
of the paper is devoted to reducing the number of paths in a rep-
resentation to the bare minimum. To the best of our knowledge,
this is the first time that an algorithm is proposed, which is not
only able to find a minimal representation in polynomial time, but
also assures link weight integrality. Moreover, we give a necessary
and sufficient condition to the existence of a one-to-one mapping
between a path set and its shortest path representation. However,
as revealed by our simulation studies, this condition seems overly
restrictive and instead, minimal representations prove much more
beneficial.

Index Terms—Linear programming, shortest path routing,
traffic engineering.

I. INTRODUCTION

TRAFFIC Engineering (TE, [1]) is concerned with the
performance optimization of operational networks. Its

main objective is to reduce the congestion and improve resource
utilization across the network through carefully managing the
traffic distribution on network links. In the traditional approach,
the so-called Overlay Model [2], TE is delegated to a dedicated
connection-oriented infrastructure, like MultiProtocol Label
Switching (MPLS) or Asynchronous Transfer Mode (ATM).
Tunnels are set up to carefully map traffic to the physical
topology and a full-meshed virtual IP network is overlayed on
top of the tunnels. While this method allows service providers
to fine-tune the distribution of traffic in the network, it also
raises certain scalability and network management issues [2].

Drifting more and more into the focus of the research
community recently there is an alternative approach, the
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so-called Peer Model. In this model, TE is implemented right
at the IP level. IP routers traditionally forward traffic along
the shortest path(s) towards the destination, where the path
length is computed in terms of an administrative weight as-
sociated with network links. If multiple shortest paths exist,
the optional Equal-Cost-MultiPath (ECMP) load balancing
technique allows to split traffic roughly evenly amongst them.
In the Peer Model, a suitable Traffic Engineer participates
in the signaling of the Open Shortest Path First (OSPF, [3])
or Intermediate-System-to-Intermediate System (IS-IS, [4])
routing protocol. Based on the routing information gathered
from the network, link weights are computed such that the
resultant shortest paths manifest some sophisticated TE goal,
and these link weights are then distributed back to the routers.
Henceforward, the basic operation of OSPF/IS-IS remains the
same but the traffic in the network will follow the paths as-
signed by the traffic engineer. Since this process basically boils
down to the careful manipulation of OSPF link weights aiming
towards balanced traffic distribution and reduced congestion,
it is usually referred to as OSPF Traffic Engineering [5] in the
literature.

On one hand, OSPF TE eliminates the connection-oriented
layer all together from the network architecture leading to a
more economical approach. On the other hand, OSPF TE is
fundamentally restricted, because it dictates that all traffic must
follow the shortest paths in the network. A crucial question yet
remains to be answered is how stringent the limitations of the
shortest path forwarding paradigm in effect turn out. Should
it impose too much restriction in choosing paths for traffic in-
stances in the network, OSPF TE would be doomed to remain
yet another unfulfilled promise. If, in contrast, the shortest path
forwarding paradigm proves itself flexible enough to accommo-
date a wide range of path assignment strategies, then OSPF TE
may easily become the tool for “poor man’s traffic engineering.”
OSPF routers are omnipresent and OSPF TE can readily be de-
ployed without even the slightest modification of the legacy net-
work infrastructure.

This paper is dedicated to an essential problem that inherently
underlies OSPF TE: shortest path representation. A path set is
said to be shortest path representable, if there exist positive link
weights based on which it becomes a set of shortest paths. We
assume that the TE algorithm has a priori knowledge on the
set of source-destination pairs. We further assume that the set
of paths to be assigned for the source-destination pairs is also
given, but we are not concerned with the question of how to
efficiently select these designated paths (see [6] for a discussion
on the complexity of this problem). This approach allows us to
maintain a sharp focus on the central problem of this paper:
how to map a given set of paths to shortest paths as precisely
as possible.

1063-6692/$25.00 © 2007 IEEE
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A. Related Works

The foundations of OSPF TE are laid down by [7]. In an un-
published work [8] the same authors show that it is NP-hard
to compute link weights, which assure the optimal distribution
of the resultant shortest paths (see [9] for a different treatment).
The proposed local search heuristic algorithm achieves near-op-
timal routing in some cases. For further discussion the reader
is referred to [5], [10] and [11]. Another approach to OSPF
TE is the so-called two-phase method [9]. In the first phase,
the traffic engineer determines an optimal traffic distribution in
the network by assigning paths for the traffic instances. In the
second phase, the task is to find positive, integer-valued OSPF
link weights, over which these paths are all shortest paths. Ob-
viously, setting these weights in the OSPF routers yields the re-
quired routing pattern that was determined by the traffic engi-
neer in the first phase. The emergent shortest path representa-
tion problem stands as the question of main interest in this paper.

An interesting approach to solve the shortest path representa-
tion problem was given in [12]. Thinking of the problem as the
inverse of the traditional shortest path problem allowed Faragó
et al. to invoke the elaborated toolset of inverse optimization
(see [13] and references therein) to tackle it. Their most impor-
tant result is that the inverse shortest path routing problem is—in
theory—tractable in polynomial time. Another intriguing treat-
ment is presented in [14]. The unique power of their algebraic
description permits the authors to provide a thorough charac-
terization of path selection algorithms that produce loop-free
paths and prove that a number of popular routing algorithms,
such as for example the widest-shortest-path algorithm [15], are
amongst them. Nevertheless, it seems that the most promising
approach to tackle the shortest path representation problem is a
flow-theoretic one. Notably, the set of designated paths can be
turned into path-flows, and the problem can be stated as a special
case of the path-flow formulation of multicommodity flow prob-
lems. The authors in [9] take just this route. This work seems to
be the first one to anticipate the deep embedment of this problem
in the theory of linear programming. A good summary of the re-
lated results can be found in [16].

Although several different frameworks for shortest path rep-
resentation have appeared in the literature recently [12], [16],
[17], the first in-depth exposition of the concept is due to Wang
et al. [18]. Building on an arc-flow formulation, first they argue
that a number of traffic engineering optimization criteria—like
for instance minimizing the cost of the routing or minimizing the
maximal link utilization—give rise to a linear programming for-
mulation that, by nature, produces shortest paths. This finding
leads Wang et al. to the main result of their paper: a path set is
either shortest path representable, or otherwise it contains cer-
tain directed cycles they call loops. Eliminating these loops in
turn gives a shortest path representable path set. This work was
the last one in a sequence of papers that helped to disprove the
common misbelief that shortest path first routing is, by nature,
useless to traffic engineering. It also induced a number of deriva-
tives, see for example [19]. Moreover, this work is the main
driving force behind our unified framework presented below.
However, our framework differs significantly from that of Wang
et al. and the other ones available in the literature. Once, our

framework is not confined to find one feasible shortest path rep-
resentation, but it instead goes for finding the most precise rep-
resentation possible. We take special care to assure that the pro-
posed algorithms for computing the offending link weights al-
ways retain polynomial tractability. This assures modest exe-
cution time and predictable storage requirements. Finally, our
framework assures that the emergent link weights are always in-
teger-valued—an important built-in requirement of routing pro-
tocols of our days.

B. Mathematical Model

Given a graph that describes a real physical entity, such as
a telecommunications network, and some designated paths se-
lected carefully in advance, the task is to 1) decide whether or
not there exist positive-valued link weights over which the des-
ignated paths become shortest paths and 2) to actually compute
such link weights. The mathematical model to cope with this
problem is as follows.

Let be a simple directed graph, formed by the set of
nodes and the set of edges . An
( , , ) path of length is defined by its
consecutive edges:

. We assume that a path does not contain cycles
and repeated edges (however, the proposed framework does not
impose this restriction). Alternatively, one can employ a vector-
representation of paths, which will be referred to as the support.
The support of is a column -vector , such that the
component corresponding to link is 1 if and
zero otherwise. One might also think of as a special subgraph

of .
In shortest path first routing there is an additive, positive

valued weight associated with each network link ,
which may represent a real physical quantity (e.g., the delay on
the link) or some other administrative policy set by the network
operator. For a path , the weight of over the link weights

is defined as .
To simplify the notation, we gather s into a row -vector

. The entry of in the position corresponding to link is
. In vector notation, the weight of a path can be expressed

as the scalar product of and the support of , say, , i.e.,
.

Now, suppose that we are given a set of source-destination
pairs (or sessions) and, for each a set
of paths . Note that we require that all s are dis-
tinct, which assures that a separate entry is maintained for each
session in the IP routing table (see [19] for a discussion on how
to adapt a network configuration to this requirement). Then, the
support of is defined as . In an-
other interpretation, is simply a union of the subgraphs corre-
sponding to the paths in it, that is,

. This interpretation allows us to easily compare two
path sets: we say that a set of paths is equiva-
lent to another set of paths , that is, , if

. Similarly, is broader than, or equals ,
that is, , if . For a weight set , we
denote the set of shortest paths over by .

Next, we extend the notation to path sets that contain paths for
multiple different source-destination pairs. Let ,
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respectively , be two sets of paths with respect to
some set of sessions . Then, if
and similarly, , if . Additionally,
for a weight set the set of shortest paths over with respect
to the source-destination pairs is denoted by

.
Lastly, we introduce the notion of path-graphs, which capture

some (but not all) important structural properties of a path set.
The path-graph is defined as the subgraph of spanned by
the nodes of and the edges that show up in at least one path
in . Throughout this
paper, we shall usually restrict the network to without
causing any loss of generality. We shall assume that the weight
of the links outside of the path-graph is eventually set to a suit-
ably large value, assuring that all shortest paths circumvent these
links.

C. Problem Formulation

The focal problem we investigate in this paper is, given a set
of paths , to compute a link weight set as to assure that
all designated paths are shortest paths over . In this case, we
say that is a shortest path representation (SPR) of and

implements a shortest path representation of or is an
SPR link weight with respect to . Furthermore, is shortest
path representable (again SPR) if such weight set exists. More
formally:

Definition 1: A path set is shortest path representable
(SPR), if there exists a positive weight setting , such that

.
Consider the sample network depicted in Fig. 1, which we

adopted from [18]. In this setting,1 there are three source-desti-
nation pairs: , and . We are given the path
set marked by dashed black arrows in the figure and the task
is to either compute a proper SPR weight set or conclude that
no such weights exist. It is relatively easy to see that the latter
case holds. Observing that subpaths of shortest paths must
again be shortest paths, we have that

since former is a subpath of the
latter, since both
are required to be shortest paths and thus

is
a contradiction. Nevertheless, the decision is not so trivial for
more complex path sets, therefore, the first part of the paper,
Section II, is devoted to this problem. We define a universal
framework and then we state a sufficient and necessary condi-
tion to shortest path representability. This theorem has broad
implications in the field of OSPF TE, as revealed in the rest of
Section II. We also enumerate the most appealing techniques
to compute SPR link weights.

It is timely to call the attention of the reader to a subtlety
in Definition 1, which will play a crucial role in the sequel.
Namely, we do not require the equivalence of the designated
path set and its shortest path representation . We only
demand to be a subset of . This weak definition allows

to contain more paths than , and in fact, this is usually

1Note that, for the sake of simplicity, we shall use undirected networks in our
examples. However, the theory will be formulated for directed networks later
on, which models the real case more thoroughly.

Fig. 1. Sample topology and path set.

the case. In [6] we pointed out that traffic routed to the additional
paths that were not taken into account in the course of network
dimensioning may introduce adverse interference. Therefore, it
is essential to reduce the number of extraneous paths in the rep-
resentation to the minimum. Such minimal representations con-
stitute the topic of the second part of the paper, Section III. We
provide a thorough characterization of the paths in the minimal
representation and give a polynomial time algorithm to compute
the corresponding link weights. Finally, we investigate when a
one-to-one mapping between a path set and its shortest path rep-
resentation exists. While there have already been some sporadic
attempts in the literature (see [9] for an approach based on suc-
cessive linear programming and [17] for some necessary con-
ditions), as far as we know, this is the first time that a concise
necessary and sufficient condition is given.

Real-life routing protocols impose a number of restrictions
on the range link weights can take their values from. Link
weights must be positive to avoid routing loops (oddly enough,
IS-IS allows for zero-valued link weights). Furthermore,
routing protocols can not cope with fractional link weights.
For example, OSPF allocates 16 bits to store the weight and
handles this quantity as an unsigned integer. Thus the need to
restrict the computed weight set to integral values naturally
arises. In order to simplify the development, for the most part
of the paper we relax this integrality requirement, which might
easily turn out to be disastrous in the long run. The workhorse
in computing SPR weights is linear programming, for which
general polynomial time algorithms exist. However, at the
point when one imposes integrality criteria on some variables,
the well-conditioned linear programming problem turns into a
mixed integer linear programming problem, which is in general
in co-NP. Therefore, our result that an integral SPR weight set
can always be found (provided it exists) in polynomial time
may have substantial practical relevance. This is the topic of
main interest in Section IV.

Having laid down the essential theoretical foundations, in
Section V we present the results of some related simulation
studies to compare different concepts of SPR. Finally, in
Section VI, we summarize our contributions.

Throughout the paper we shall repeatedly point out the deep
embedment of our focal problem into the theory of network
flows and linear programming. Where appropriate, we shall call
the attention of the reader to the broader interpretations and
generalizations of our results reaching far beyond the scope of
mere OSPF TE. Most of the proofs are indispensable to get a
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good understanding of the mathematical backgrounds and con-
cise enough to be presented in line with the text.

II. SHORTEST PATH REPRESENTABILITY

In this Section a unified framework for shortest path rep-
resentability is presented. Suppose that we are given a single
source node and a single destination node and some set of

paths provisioned between and . In the broad litera-
ture dealing with shortest path problems of similar kind (see for
example [20], [21]), a common practice is to associate distance
labels, or node potentials with the nodes of the graph and de-
scribe the shortest paths in terms of the node potentials. Hence,
for any node the node potential is a label, which sig-
nifies an upper bound on the shortest distance from the source
node to over .

Proposition 1 (Shortest Path Optimality Conditions [20]):
and together satisfy

(1)

Furthermore, a path is a shortest path over if and only if
(1) is satisfied with strict equality at all links of :

Now, one can directly apply Proposition 1 and conclude that
represents the designated paths as

shortest paths if and only if there exist proper node potentials
, which solve the following linear system:

(2)

(3)

(4)

In the usual setting, we are given the weight set and the
task is to compute the shortest paths (or at least one such
path). This can easily be solved by for instance Dijkstra’s algo-
rithm in strictly polynomial time. However, in the case of OSPF
TE the task is just the inverse: given a set of designated paths ,
compute an appropriate weight set , which satisfies (2)–(4).

Now, we make the following revision to (2)–(4). First, we
describe the system in terms of the support of . Recall that

counts the number of paths in that use a par-
ticular link . Thus, implies that is not used
by any of the designated paths, while indicates that

is used by at least one path in . Therefore, the shortest
path optimality condition must hold with strict
equality at such links. We also associate a slack variable

with each inequality (3). Observe that induces that
, which yields for each link . Finally, we

observe that is required to be strictly positive. Such strict in-
equalities tend to be notoriously hard to consider in linear feasi-
bility problems, because they restrict the search into the closure
of the feasible region. We tackle this difficulty by associating a
strictly positive initial cost with each link, which separates

away from zero. Thus, we shall seek the link weights in the
form with . Note that the choice of the

initial costs is completely optional, the only requirement is that
must be positive (see later). We shall use the setting

for each link throughout this paper.
Hence, the SPR problem can be posed as, given a set of des-

ignated paths (with support ), compute link weights
and node potentials , such that

(5)

(6)

(7)

Observation 1: If solves the SPR problem (5)–(7) for
some set of paths , then the weight set
is strictly positive and represents as shortest paths. If, on the
other hand, the system does not have a feasible solution for any
choice of , then is not shortest path representable.

In the foregoing discussions, it will be more convenient to
use a vector formulation of the SPR problem. Let denote the
node-arc incidence matrix. Each row in this matrix corresponds
to a node and each column corresponds to an arc. Each column
has exactly two non-zero entries. The column corresponding to
arc has a 1 in the row and a 1 in the row and a
zero corresponding to all other rows. Let . Fur-
thermore, gather the node potentials into a -dimensional row
vector , and link weights, slack variables and initial costs into

-dimensional row vectors , and , respectively. Then the
SPR problem can be written as

(8)

(9)

(10)

In practice, usually we are given multiple source-destination
pairs , and between each one of these source-
destination pairs some set of paths (with support ) is pro-
visioned. Let , let denote the number of
sessions and denote the number of paths for session .
We extend (8)–(10) to this setting by assigning a separate node
potential vector and a separate vector of slack-variables
for each session . Then, the full-fledged multicommodity
formulation of the SPR problem can be stated as

(11)

(12)

(13)

Note that Observation 1 readily generalizes to the multicom-
modity SPR problem.

The most familiar approach to solving linear feasibility prob-
lems of similar kind is to convert them to a linear program (LP)
and use some sophisticated LP solver to obtain a solution. No-
tably, the SPR problem lends itself perfectly to such a conver-
sion. Consider the following LP formulation:

(14)
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(15)

(16)

It is not particularly hard to deduce that a path set is
shortest path representable, if and only if the optimal objective
value of the above LP is zero. If the objective is zero, then
condition (11) is immediately satisfied (recall that both
and ). Together with the constraints (15), (16) this
yields a feasible solution to the SPR problem. Otherwise, if the
optimal objective is greater than zero (it can not be less), then
for some session and for some link . This
implies that the shortest path optimality conditions do not hold
for some path in , so is not shortest path representable (at
least, for the present choice of ), because a valid SPR weight
set would induce a super-optimal solution to the above LP.
However, not just that the LP (14)–(16) generates the SPR link
weights (provided that such weights exist), but the reverse is
also true: any optional set of link weights, which happens to im-
plement a shortest path representation of immediately gives
an optimal feasible solution to the above problem. Since this
LP is so closely coupled with the shortest path representability
of , we call it the dual formulation of the fundamental LP
of : D-LP . Without causing too much notational abuse,
the solutions of D-LP will be
abbreviated as throughout this paper.

Next, we show that the primal formulation of the fundamental
LP is basically a multicommodity network flow problem. Let

be an -dimensional column-vector of the dual variables
corresponding to the constraints (15). Using this notation, we
obtain the following dual of (14)–(16), the so-called Multicom-
modity Improvement Problem:

(17)

(18)

(19)

(20)

Curiously, the dual variables behave just like arc-flows
in conventional multicommodity flow problems. This relation
becomes even more obvious if we substitute into
the improvement problem. First, we observe that defines a
valid flow, where the supply/demand coincides with the number
of designated paths for session , . Let be an -vector that
describes the demands

if
if
otherwise.

Thus, and the substitution to con-
straint (18) yields that .
Letting and further applying the sub-
stitution to the remaining constraints yields the following primal
formulation of the fundamental LP, P-LP :

(21)

(22)

(23)

(24)

Interestingly, the primal fundamental LP is basically a min-
imum cost multicommodity flow problem (apart from a con-
stant term in the objective function). Observe that constraints
(22) give the flow conservation constraints with respect to the
demands . The so-called bundle constraints (23) restrict the
sum of the arc-flows for each session to remain under on
each link. In fact, acts as some sorts of link capacity. Fi-
nally, arc-flows are required to be non-negative by (24). We have
seen that the prerequisite of the shortest path representability of
a path set is that the optimal objective of the dual fundamental
LP must be zero. By the strong duality-theorem of linear pro-
gramming, we have that in this case the optimal solution of the
primal must also be zero. Observe also that this property does
not depend on the actual choice of : if the objective function
value becomes zero for some choice , then it is zero for
any other strictly positive initial cost vector (this can be seen
by factoring out from (21)). This leads to following important
result:

Theorem 1: Let be some set of designated paths for some
set of sessions . Then, is representable as shortest paths, if
and only if gives an optimal feasible solution
to the primal fundamental LP of . In this case, the optimal
objective is zero. If, in contrast, the optimal objective is positive,
then is not SPR.

In the remaining part of the paper, we shall refer to a solution
of P-LP as for short.

A. Remarks on Theorem 1

The relation between linear programming and inverse
shortest path problems have already been pointed out. Most
notably, in [12] the authors show a SPR method based on the
path-flow formulation of network flow problems. However, the
relatively huge size of the resultant LP makes this formulation
unattractive for practical purposes. Additionally, the relation
of multicommodity flow problems and the SPR problem is
also reported in [18]. What sets apart our development from
previous results is the universal treatment as revealed below in
more detail.

Under the hood, the primal fundamental LP can be interpreted
as the task to reallocate the paths in the network, such that after
the reallocation the number of paths placed on a link does not
exceed the number of paths using that link in the original path
set. If the reallocation can be done so that the aggregate length
of the new path set (in terms of ) is less than that of , then the
path set is not SPR. This sheds more light on the notion of the
multicommodity improvement problem as well. Since, owing
to the constraint , the arc-flows of the improvement
problem form flow circulations (i.e., unions of cycles), the
improvement problem in fact asks for negative cost flow circu-
lations, over which the initial feasible solution of the
primal fundamental LP can be improved. If no negative cost flow
circulations can be found, then is optimal solution to the
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improvement problem, and hence, is an optimal so-
lution to P-LP . Readers familiar with network flow theory
may recognize an interesting extension of the single commodity
Negative Cycle Optimality Conditions [20] to multicommodity
flows here.

The significance of Theorem 1 is that it transforms the SPR
problem from a mostly unknown generic linear feasibility
problem into a convex cost multicommodity flow problem.
Multicommodity flow problems have constituted one of the
most researched fields for at least 40 years now to the point
that even enormously large problem instances have become
effectively solvable with reasonable computational efforts
[22]. Exploiting the special structure of the constraint set,
various decomposition techniques were developed (see [20],
and references therein), such as the column-generation and
basis-partitioning methods [21], to yield precise primal and
dual solutions. Nevertheless, for moderate sized problems even
a generic LP solver, such as the simplex algorithm provides a
viable option.

Finally, it is important to mention that it is not always neces-
sary to solve the SPR problem to optimality. One might trade-off
the precision of the representation for the implied computa-
tional requirements by using some multicommodity flow ap-
proximation technique [23]. In [24] we give a solution tech-
nique based on the Lagrangian-relaxation of the fundamental
LP, which promises to improve a potentially non-SPR path set
towards shortest path representability, while also delivering suit-
able link weights at the same time. Our experiments suggest that
one can obtain a reasonable SPR weight set in a few dozen it-
erations by solving nothing more than simplistic shortest path
problems.

B. Consequences of Theorem 1

Theorem 1 tells whether or not a set of designated paths
is representable as shortest paths and states that this is an
inherent property of the path set. Shortest path representability
is therefore tightly coupled with the structural properties of
a path set , and hence, its path-graph (recall that the
path-graph corresponds to the subgraph spanned by the edges
in ). Consequently, the path-graph was used previously
to make some interesting observations regarding the shortest
path representability of a path set . For example, in [6] the
following was proposed as a quick test for assessing the shortest
path representability of a path set:

Proposition 2: A path set is shortest path representable
if the path graph induced by is acyclic (i.e., it does not
contain any directed cycles).

This can easily be seen as a consequence of Theorem 1,
since, in an acyclic graph constraint (19) always holds with
strict equality (otherwise, would define a directed
cycle). Hence, the objective function value is always zero,
which equals to asserting that the path set is SPR (see [6] for an
alternative proof based on topological ordering). Note that a set
of paths may very well be SPR even if its path-graph contains
directed cycles. Therefore, the above condition is obviously not
a necessary one.

Furthermore, Theorem 1 may also help to get a better under-
standing of some prior results in the field of OSPF TE. For ex-

ample, in light of the theorem we can give a new, more concise
proof to the following result of Wang et al. [18]:

Proposition 3: Let be a set of paths for some set of sessions
. Now, either is shortest path representable or otherwise,

there exists a modified path set , such that:
(i) is SPR;

(ii) is strictly shorter (in terms of the number of edges
traversed) than ;

(iii) can be obtained from by eliminating some redundant
multicommodity flow circulations;

(iv) the eliminated multicommodity flow circulations add up
to directed cycles;

(v) has at least the same capacity (in terms of bottleneck
bandwidth) as .

Proof: It is easy to see that the feasible region of the fun-
damental LP is non-empty, since at least defined by is a
feasible solution. Now, either is optimal (in which case is
SPR) or not. In the latter case, consider a primal optimal feasible
solution to P-LP and let the corresponding dual optimal
solution be . By the Flow Decomposition Principle
[20], the optimal arc-flows for some session can be de-
composed into at most path-flows. Let be such a path, i.e.,

. But is a shortest path over the weight
set , since, by complementary slackness, the corresponding
slack variables are zero. That is,

and this just corresponds to the assertion of the Shortest
Path Optimality Conditions in Proposition 1. Therefore, de-
fines a modified path set , which is, in contrast to , shortest
path representable. This proves (i). Since is not SPR, but the
modified path set defined by is, we have that the objective
function value of P-LP is positive, so

(25)

Letting for each link , we have that (25) in
fact measures the difference of the lengths of and , which
proves (ii). It has already been pointed out that if is not SPR,
then defines flow circulations, which proves (iii).
Any cycles add up to cycles, therefore aggregating into a
“mass-flow” again yields flow circulations. Furthermore,
is directed, since, by (19): . Therefore, all
links are traversed in the reverse direction by the cycles in ,
which proves (iv). Finally, we observe that contains the same
number of paths, , for each session. If the designated path set,
for example, contains 3 paths for some session, then again
contains 3 paths, (yet, the modified paths may overlap). This is
because also satisfies the flow conservation constraints (22)
with respect to just like . This brings us to a broader inter-
pretation of : if denotes the amount of “demand” associated
with each session, then is able to tolerate the same demand
as , which proves (v).

The most notable finding of Proposition 3 is that a non-SPR
path set can always be improved into an SPR one, which is on
one hand shorter and, on the other hand, capable of carrying
the same amount of bandwidth as the original paths. Thus, any
arbitrary set of designated paths is either immediately SPR or
otherwise, it can be substituted by a SPR path set, which lies
entirely within the original paths, provides the same capacity
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Fig. 2. A feasible solution to the improvement problem.

Fig. 3. A modified path set that is shortest path representable.

but uses less links. This finding points out the power of shortest
path forwarding and OSPF TE.

To demonstrate the above discussion, we revisit our previous
counter-example in Fig. 1. A set of paths is not representable
as shortest paths, if there exists a specially structured set of
multicommodity flow circulations (marked by dashed arrows in
Fig. 2), which solve the improvement problem. Starting from
the “bad” paths in Fig. 1 and instantiating one unit of flow along
the flow circulations marked by dashed black arrows in Fig. 2
(which equals to sending 1 amount of flow in the reverse di-
rection as suggested by a negative solution of the improvement
problem), one obtains the optimal path set of Fig. 3. In the re-
sultant setting, it is straightforward to set all link weights to one,
which obviously reproduces the new path set (and, quite regret-
tably, some additional paths too).

Furthermore, the result that the improvement always comes
in the form of directed mass-flow circulations deserves some
special attention here. For example, aggregating the redundant
multicommodity flow circulations of Fig. 2 into a mass-flow
yields the directed cycle that is marked by a thick grey arrow
in Fig. 3. Such directed cycles are generally called loops in the
shortest path first routing terminology and regularly network op-
erators go to any lengths to avoid them. In some respect, the
multicommodity improvement problem can be thought of as the
explicit flow-theoretic declaration that the path-set is loop-free.
The mere fact that the dual problem rising from this declara-
tion immediately delivers the required SPR weights might be
perceived as an unanticipated beauty of network flow theory by
some.

III. TOWARD MORE PRECISE SHORTEST PATH

REPRESENTATIONS

So far, we have used a rather weak definition of shortest path
representability. Namely, we have not required the equivalence
of the designated path set and its shortest path representation

. We have only demanded to be a subset of . In
this section, we treat different “strengthenings” of the definition
in order to obtain more and more accurate shortest path repre-
sentations.

A weak definition of shortest path representability helped us
to state the related theory in the most generic sense possible,
however, it does not prove to be too prosperous in practice. To
see why, consider the sample network of Fig. 4. All edge ca-
pacities equal 1 and we are given four source-destination pairs,

, , and , between which a set of
paths, each of capacity 1, is assigned as indicated in the figure.
The paths were provisioned as to assure that all links are filled
to capacity. Again, the paths are all least-hop paths, so setting
the link weights uniformly to 1 will safely reproduce the desig-
nated paths.

In this example, the “plain” shortest path representation con-
tains significantly more paths than . For instance, in the case
of session not just the designated path, but also three
other paths have become shortest paths. This, according to the
ECMP load-balancing scheme, implies that the traffic of ses-
sion will be distributed evenly at the branching nodes to
the available shortest paths, and the additional traffic directed to
the superfluous paths will substantially overload some of their
links. In [6] we pointed out that the useful throughput of a net-
work might decrease by as much as fifty percent due to the ad-
verse interference caused by the extraneous shortest paths. To
avoid this, it is crucial to eliminate as many extraneous paths
from the representation as possible. Perhaps, the most straight-
forward strengthening of Definition 1 would be the following:

Definition 2: A path set is perfectly shortest path repre-
sentable (pSPR), if there exists a positive weight setting , such
that .

Unfortunately, very often one can not achieve the total equiv-
alence of the designated path set and the representation. Instead,
the best one can hope for is to reduce the number of paths in the
representation to the minimum by dropping as many extraneous
paths as possible. In other words, a minimal shortest path rep-
resentation is constituted of only those paths, which par-
ticipate in all the shortest path representations.

Definition 3: A weight set implements a minimal
shortest path representation (mSPR) of a path set , if for each
weight set . We denote

as .
In Fig. 4, we indicated a possible choice of weights that

implements a minimal representation, and the set of shortest
paths it induces. Observe that we still have superfluous
shortest paths (exactly one for both and ) but,
interestingly, these paths can never be dropped from the
shortest path representation. If we wanted to eliminate, say,
path from the set of shortest paths
of , we would need to increase the weight of either
link or . But in this case, the designated path

would cease to be a shortest path
for session . It is noteworthy that using the minimal
representation we could avoid to overload any of the links in
the network.

In this section we shall argue that the concept of minimal
representations is a remarkably useful one. First, it manifests an
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Fig. 4. A comparison of different concepts of shortest path representability. (a) Sample network topology. (b) Weight and load at each link assuming ECMP
load-balancing. (c) Designated paths and shortest paths.

interesting theoretical lower bound on narrowing a shortest path
representation and, as shall be shown, this lower bound is well-
defined. As a corner case, it contains perfect representations.
Furthermore, a minimal representation can always be obtained
in polynomial time, though, it might pose significantly more
computational burden than in general.

A. Minimal Shortest Path Representations

As suggested by the previous discussions, computing the link
weights that represent a set of paths as shortest paths amounts
to solving a linear program, the fundamental LP. However, this
may introduce a substantial number of extraneous paths into the
set of shortest paths. Below, we show how to eliminate most of
them to finally arrive to the minimal representation. But first, we
need to state some technical Lemmata.

Lemma 1: Let be SPR and let be a feasible solution
of P-LP . Then, is also optimal.

Proof: Since is feasible in P-LP , it satisfies the
bundle constraints (22). Furthermore, by we have that

(26)

Now there are two cases. Either (26) holds with strict inequality,
in which case implies that the objective
function value of P-LP is strictly positive, which, according
to Theorem 1, contradicts the assumption that is SPR. Other-
wise, (26) holds with equality and, again by Theorem 1, is
optimal.

What this Lemma insists is that if some path set is SPR, than
the region of feasible solutions and the optimal solutions of the
primal fundamental LP overlap. This suggests that the funda-

mental LP is indeed quite a special linear program. Next, con-
sider the following application of the Complementary Theorem
of Linear Programming [21] to the fundamental LP:

Lemma 2: Let be an SPR path set. Now for some session
and for some link , for all optimal

feasible solutions of P-LP if and only if for any ,
there exists an optimal feasible solution to D-LP , such that

.
A detailed proof of the Lemma can be found in [25].
Armed with the Lemmata, we are in a position to give a thor-

ough characterization of the paths in a minimal shortest path
representation :

Theorem 2: Let be a shortest path representable path set
and let be a path for some session . Then, the
following statements are equivalent:

(i) ;
(ii) there exists optimal feasible solution to P-LP ,

such that ;
(iii) for any optimal feasible solution of D-LP ,

.
Proof: (i) (ii): assume the contrary, that is, for some

for all optimal feasible solutions to
. Then, by Lemma 2 we have that for some optimal

feasible solution of (in fact, can be
made arbitrarily large). However, from Proposition 1, we have
that is not a shortest path in this case, which contradicts the
minimality of .

(ii) (iii) comes from the complementary slackness of
and .

(iii) (i): condition (iii) basically asserts that is shortest
path over any SPR weight set, and as such, it belongs to the
minimal representation by definition.
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Theorem 2 suggests that the set of paths in the minimal rep-
resentation is spanned by the alternative optimal solutions of
the primal fundamental LP. Suppose that, for some arbitrary

path (designated or not), there exists an optimal
feasible solution of , such that for each link
of . Note that this equals to suitably relocating the
paths in the designated path set, such that is used by session

. In such cases, will be a shortest path in all the represen-
tations, since, by complementary slackness, the corresponding
slack variables are bound to zero in all dual optimal feasible
solutions.

In our example of Fig. 4, the primal fundamental LP has two
optimal feasible solutions (in fact, it has infinitely many, but
these are all convex combinations of these two). The first op-
timal feasible solution corresponds to the case when one
unit of flow is placed to the designated path of each one of the
sessions. The other one, , arises if the subpaths of the desig-
nated path of session and between nodes and
are swapped, and one unit of flow is placed to the modified paths.
Hence, we found an optimal feasible solution in which the
flow corresponding to session is strictly positive at
each link of path . The same applies
to path and session . Therefore,
these paths can never be eliminated, and thus, belong to the
minimal shortest path representation. On the other hand, path

can easily be dropped from the set of
shortest paths of session , since, as easily seen, the primal
fundamental LP has no optimal feasible solution placing flow
on, say, link .

Our experiments with solving the fundamental LP (see
Section V for the related simulation studies) suggest that usu-
ally there arises a large number of alternative optimal solutions,
probably due to highly degenerate nature of the feasible region.
Hence, the best one can hope for is that the minimal represen-
tation does not contain too many unintended paths, but there
is no guarantee that a carefully selected designated path set
will not deteriorate into a bunch of overlapping and interfering
paths in the course of applying SPR. A minimal representation
is an intrinsic property of a path set and there is theoretically
no way to narrow the representation even further.

Instead of characterizing the paths in , the following
complementary formulation of Theorem 2 rather describes the
links, which do not participate in any of the paths in :

Theorem 3: Let be a shortest path representable path set.
Then, for some session and for some link , the
following statements are equivalent:

(i) there is no path in such that ;
(ii) for all optimal feasible solutions to

;
(iii) for any , there exists an optimal feasible solution

of such that ;
(iv) there is an optimal ray in the set of optimal feasible solu-

tions of , such that the entry in corresponding
to is strictly positive.

In the light of the previous discussions, the proof of the the-
orem should be fairly obvious to the reader. The reason why we
are still formulating this result as a theorem is because it gives
a useful idea not only to construct an algorithm to obtain a min-
imal representation (see Section III-C for the discussion of such
an algorithm), but also to prove a number of interesting proper-
ties of perfect representations.

B. Perfect Shortest Path Representations

In a perfect shortest path representation, the set of shortest
paths of some session is completely determined by its own des-
ignated paths, and no additional shortest paths show up owing
to other sessions. Obviously, a prefect representation is what
the network operator would like to achieve eventually, as in
this case no interference can occur along superfluous shortest
paths, which have not been considered upon dimensioning the
network. By using a pSPR path set in which only one path is
assigned to every session even the notorious limitations of the
ECMP equal-splitting requirement can be overcome. Unfortu-
nately, as discussed below and demonstrated later by simula-
tions, a perfect representation is hardly achievable in the vast
majority of practical cases.

Theorem 3 insists that if a path does not belong to for
some session , then it must contain at least one link , so
that there exists an optimal ray with strictly positive surplus
in the position corresponding to . Note that an optimal ray
(or optimal direction) is a vector, such that starting from an
arbitrary optimal feasible solution one can move in the direction
of forever while still remaining within the region of optimal
feasible solutions. Therefore, moving along yields an infinite
number of candidate SPR weight sets. When eventually all those
slack variables are elevated from zero for which such optimal
ray exists, then the current link weights implement a minimal
representation of . If this minimal representation is identical
to , then is pSPR, which supplies the following necessary
and sufficient condition:

Corollary 1: A set of paths is perfectly shortest path rep-
resentable (pSPR) if and only if there exists an optimal feasible
solution to , such that for each and
for each .

As mentioned previously, all alternative optimal solutions of
the primal fundamental LP induce a candidate path set in the
representation. One gets the impression that if the designated
path set itself provides a unique optimal feasible solution of

, then must be perfectly representable. This is be-
cause the paths in can not be relocated to other flow paths in
this case. As it turns out, this idea is almost pertinent: the unique-
ness of the optimal feasible solution of is generally a
sufficient condition to perfect shortest path representability, but
only by imposing some modest restrictions to does it become
necessary as well.

Corollary 2: Let be some set of paths for some set of ses-
sions , and let . Now, if is the unique op-
timal feasible solution of the primal fundamental LP of , then

is perfectly shortest path representable.
The proof of the Corollary is omitted for brevity. It is

tempting to investigate, why the above condition does not
prove to be necessary as well. Take for instance our previously
discussed example of Fig. 4 and, as designated paths, assign
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for session and

for session , respectively. Now, the designated path set
is obviously pSPR, however, the corre-

sponding primal fundamental LP possesses infinite number
of optimal feasible solutions, two of which just happens to
be extremal. One extreme point solution rises when all the 2
units of demand of session is shifted to the flow path

, and all demand of to path . The other one comes
by assigning exclusively to session and to session

. In some respect, the existence of the two extreme point
solutions can be attributed to the fact that both sessions can
use 2 paths, and their flows can be swapped between these two
paths. However, in the case of single-path routing, that is, if
all sessions are restricted to use only one designated path, this
swapping behavior is precluded. Thus, for single-path routing
the uniqueness of the solution of is not only a
sufficient, but also a necessary condition.

Corollary 3: Suppose that some set of designated path set
contains only one path for each distinct .

Now, is the unique optimal feasible solution of the primal
fundamental LP of if and only if is perfectly shortest path
representable.

Proof: Sufficiency has already been discussed, so only ne-
cessity is dealt with. First, suppose that is pSPR and that the
designated path set for all sessions contains only one path .
Then, does not contain cycles in the sense of Theorem 1. In
other words, any cycle in contains at least one link , for
which . Second, suppose that there exists an alternative
optimal feasible solution to , say, , such that for
some . We observe that is a circulation.
So, let denote the links in this circulation:

. Now, contains at least one link , for
which , and by the non-negativity of and the defini-
tion of , . This also means that, by Theorem
2, for some path defined by . This either con-
tradicts the assumption that contains only one path for each
session or that is pSPR. So, for each , which
completes the proof.

C. The mSPR Algorithm

At this point of the development, we have all the crucial theo-
retical foundations (mostly supplied by Theorem 3) to construct
a simple algorithm to improve an arbitrary SPR weight set until
it implements a minimal representation.

To obtain a plain SPR weight set, one simply needs to solve
the corresponding fundamental LP. Many of the solution tech-
niques enumerated in Section II-A inherently produce basic
feasible solutions. However, such basic feasible solutions, by
nature, contain a large number of zero valued slack variables,
which calls for the formation of superfluous paths (see the
related simulation results in Section V). What one needs to
do is to, starting from an optimal feasible solution, search

an optimal ray for each slack variable, for which
holds. If such ray happens to exist, then moving along the
ray separates away from zero yielding an alternative SPR
weight set. However, any paths of session , which traverse
link cease to be shortest paths according to Proposition 1,
because now . Furthermore, the above operation can not
decrease the value of any of the slack variables, which assures
that we do not create more superfluous paths by accidently
decreasing a slack variable to zero.

The last question that remained to be answered is how to ob-
tain the optimal rays. Suppose that we are in a position to cal-
culate the optimal ray corresponding to some slack variable .
If some designated path of session traverses link , that
is, , then for all optimal solutions of

, so we can move to the next slack variable. Other-
wise, the question we are asking is, whether or not there exists
a direction of the set of optimal feasible solutions of ,
such that moving along the direction increases . Fortunately,
linear programming Parametric Analysis is concerned with just
this kind of questions.

First, add a constraint to the problem, which restricts the fea-
sible region to the optimal region. For example, adding (11) ex-
plicitly requires that all slack variables corresponding to the des-
ignated paths remain bound to zero. Second, perturb the objec-
tive function vector by setting the coefficient of to some ar-
bitrary positive value and all other coefficients to zero. Finally,
set the direction of the optimization to maximization. Now, ei-
ther the perturbed problem is bounded, in which case no appro-
priate directions exist for , or otherwise it is unbounded. Let
the ray causing the unboundedness of the perturbed problem be

. Notably, has strictly positive surplus in the position corre-
sponding to (otherwise, the problem might not have become
unbounded) and it has non-negative surplus corresponding to
all other slack variables due to the non-negativity constraint
imposed on the slack variables. So, is the ray we have been
searching for, and moving along the ray will separate away
from zero. Repeating this step for each slack variable yields the
mSPR algorithm as described in Fig. 5.

Note that if the designated path set does not prove to be SPR,
then one can restart the mSPR algorithm from the modified
path set defined by the solution of . This, as shown
in Proposition 3, yields a modified path set that is guaranteed
to be SPR and capable to serve the same demands as the des-
ignated path set. Applying this minor modification assures that
the mSPR algorithm produces a reasonable output for any arbi-
trary designated path sets thrown at it as input.

Interestingly, the mSPR algorithm is still a polynomial time
algorithm, since the underlying solution technique remains to
be linear programming. However, upgrading the definition form
plain SPR to mSPR results in a significant complexity penalty:
while computing an SPR weight set generally requires the so-
lution of one multicommodity flow problem instance, mSPR
requires , which may be a tedious task in a large net-
work with many sessions. However, we do not have to solve all
problems from scratch: given an initial optimal feasible solution
we can always start the parametric analysis from this solution,
which, in the case of the two-phase simplex algorithm, elim-
inates all the tedious Phase 1 computations. Our experiments
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Fig. 5. The mSPR algorithm.

suggest that obtaining the optimal rays is usually a matter of
some few dozen simplex pivot operations. Furthermore, it is not
necessary to compute a separate ray for each slack variable, be-
cause very often one ray increases multiple slack variables at
once.

IV. LINK WEIGHT INTEGRALITY

Continuing with our methodology to move from weaker defi-
nitions of shortest path representability to more and more strin-
gent ones, in this section we impose yet another requirement
on SPR link weights: integrality. In practice, the calculated link
weights must always be integer-valued, but we have mostly re-
laxed this requirement up until now.

Since the basic feasible solutions of the minimum cost mul-
ticommodity flow problem are not guaranteed to be integral (in
contrast with the single commodity case, for which they are),
in many practically interesting cases solving the fundamental
LP with a linear program solver yields fractional link weights
[26]. The most plausible approach to overcome this difficulty
would be to solve the fundamental LP as a mixed integer
linear program (MIP) with the side-constraint that are inte-
gral. Unfortunately, applying such a side-constraint generally
transforms the (so far) polynomially tractable SPR problem
into co-NP. This might prevent us from obtaining integral
link weights with reasonable computational efforts in some
cases. However, thanks to the special properties of the dual
fundamental LP, we can always modify any SPR link weight
set until it becomes integral while still retaining the polynomial
tractability of our solution. In order to achieve this goal, we
make the following seemingly self-evident observation:

Observation 2: Let be a set of designated paths and sup-
pose that the weight set implements a
shortest path representation of . Then, for any scalar ,

the weight set is again a SPR weight
set with respect to .

In words, one is free to multiple the weights in some SPR
weight set with the same positive number, and the weight set
still remains to be representing the very same path set. This is
because for any two paths and with ,

remains to be shorter over the modified weight set, since
for any . Along

the same lines, one can prove that equal-cost paths remain to be
equal-cost. Hence, turning a fractional SPR weight set into an
integral one is as easy as multiplying the weights with the least
common multiple (l. c. m.) of their denominators. As a Theorem,
we state the following:

Theorem 4: Let be a path set. Then, either is not SPR or
otherwise, for any rational positive initial cost vector
the weight set implements a minimal shortest path represen-
tation of , where is obtained by the mSPR algorithm
and is the l. c. m. of the denominators in the elements of .
This can be done in polynomial time.

Proof: Since the constraint matrix, the objective function
vector and the right-hand-side of are rational (in fact,
the first two are integral), any optimal basic feasible solution
of and as such, the output of the mSPR algorithm
is rational. Hence, defines a positive-valued, integral mSPR
link weight set with being the l. c. m. of the denominators of
the elements of . Furthermore, since the mSPR algorithm is
of polynomial complexity and Euclidean algorithm to find the
l. c. m. is tractable in polynomial time too, so is the full-fledged
integer mSPR problem.

We have already seen that one is completely free to choose the
initial costs . Theorem 4 in addition implies that it is not even
necessary to choose to be integral as long as it is positive.
Moreover, any element of can be made arbitrarily large and
we can still find proper , which, together with , implements a
shortest path representation.

V. SIMULATION STUDIES

In this section, we present the results of extensive simula-
tion studies with the purpose of comparing different concepts
of shortest path representability.

We chose to develop our SPR software toolkit in Perl,
which—thanks to the unique flexibility and performance—pro-
vides an excellent platform to quickly prototype algorithms.
For solving the fundamental LP we used the GNU Linear
Programming Toolkit, GLPK.2 Although GLPK does not sup-
port network programming, it is reliable, stable and, first and
foremost, open source letting us to integrate the SPR toolkit
very tightly into the simplex solver.3 We used the random
network topology generator, BRITE [27] with the router-level
Waxman-model ( , , ) throughout the
simulations. The source and destination node of the sessions
was provisioned randomly, by selecting two different nodes in
the network with uniform probability. The capacity of the links
(between 10 and 1024 units) was also uniformly distributed.

2http://www.gnu.org/software/glpk/glpk.html.
3See the Math::GLPK project page at http://qosip.tmit.bme.hu/~retvari/Math-

GLPK.html.
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Fig. 6. Average number of paths in the plain shortest path representation.

Selecting the designated paths to achieve optimal OSPF
performance is NP-hard [6]. Therefore, we used quick heuris-
tics to assign one single path to each session and observed the
shortest path representation of the path sets obtained this way.
The first heuristic is the breadth-first-search (BFS) algorithm,
which manifests minimum hop-count routing in our simula-
tions. Secondly, we experienced with shortest path routing
over random weights chosen between 1 and 20 according to a
uniform distribution (SPF_RND). This scenario represents the
case when a network operator chooses the link weights ran-
domly. Finally, we used the widest-shortest-path (WSP, [15])
and the shortest-widest-path (SWP, [28]) algorithms. Here, the
length of the links was always 1 unit. Since SWP paths are not
guaranteed to be SPR [14], we substituted the corresponding
shortest path representation.

One may argue, why would anyone want to compute the
shortest path representation of some paths, which are imme-
diately shortest paths by themselves. For example, setting the
weight of all links to 1 apparently reproduces BFS paths. The
reason is that we want to observe, how many superfluous paths
such a naive representation produces by comparing it with
the corresponding minimal representation. Our methodology
was to generate 30 random graphs with increasing number
of sessions, assign the designated paths, compute the shortest
path representations and finally average the results. The figures
highlight the interval estimate of the average at the level of
significance of 95%. We repeated the simulations for random
graph series of 35 and 45 nodes and the results were quite
similar. Below, we present the results for networks of 45 nodes.

The average number of shortest paths per session in the plain
SPR is depicted in Fig. 6. Note that the SPR link weights were
generated by extreme point solutions of the dual fundamental
LP. Our first observation is that such extreme point solutions
produce shortest path representations with numerous extraneous
paths. For the WSP and the BFS paths (which turned out to
be fairly similar with respect to SPR) the representation con-
tains about one and a half times as much paths as the desig-
nated path set (which contains exactly one) almost irrespec-
tively of the number of sessions. However, the representation
of SPF_RND paths contains more than two paths in average,
while this value is 4 for SWP. We observed exceptional cases
when the representation contained an astonishing number of 8

Fig. 7. Average number of paths in the minimal representation.

paths per session. This suggests that a naive setting of the link
weights can easily turn out to be adverse. Even if the designated
paths were chosen by an algorithm that produces SPR paths,
such naive link weights usually only implement a superposition
of a huge number random paths, and there are no appropriate
mechanisms built into OSPF to select exactly the designated
one from amongst them. One needs to carefully tweak the link
weights to minimize the ambiguity, and this is exactly what the
mSPR algorithm can do for us. As affirmed by Fig. 7, a minimal
representation usually contains only a few superfluous paths up
to the point that, except for SWP, it becomes almost perfect in
most of the cases.

This observation is further confirmed by Fig. 8, which, as
the function of the session number, shows the number of cases
out of the total 30 simulations when the minimal representation
turned out to be perfect as well. Observe that BFS and WSP
paths are almost always pSPR. However, it seems that it is com-
pletely hopeless to expect a SWP path set to be pSPR, espe-
cially as the number of sessions grows close to the range of the
number of nodes in the network. One may argue that this no-
torious trait might be attributed to the intricate manner we ob-
tained these paths (that is, by reducing a non-SPR path set to an
SPR one). However, this reasoning does not seem to be perti-
nent, as, despite of the theoretical issues, SWP paths quite usu-
ally ended up being shortest path representable by themselves
(in more than 20 out of 30 cases in our simulations regardless
of ).

Finally, we compared how much real traffic could be served
over the paths in the designated path set and its plain and
minimal representations. For this, we computed the bottleneck
bandwidth (that is, the smallest capacity along the links of the
path) of every one of the paths in the path sets and depicted
the average in Fig. 9. While this choice omits the interference
amongst the sessions, the average bottleneck bandwidth is in-
deed a good measure of the transmission capacity that is made
available by the network for the sessions. On one hand, SWP
is clearly superior in this regard by providing almost twice as
much capacity as the other path selection schemes. On the other
hand, sharpening the representation apparently improves the
capacity of the paths in the representation (by one and a half
times in the case of SWP). Our results indicate that in smaller
networks the SWP algorithm combined with shortest path
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Fig. 8. Number of cases the minimal representation was perfect as well.

Fig. 9. Average bottleneck bandwidth of the paths.

routing supplies a really promising traffic engineering platform.
Not just that SWP paths can be mapped quite accurately to
shortest paths but, in addition, these paths usually provide an
abundance of capacity at the same time.

VI. CONTRIBUTIONS

In this paper, we investigated one of the most important prob-
lems concerning OSPF Traffic Engineering: the property of a
path set that it can be mapped to shortest paths by positive link
weights. The most important achievements can be highlighted
as follows.

• Starting from the Shortest Path Optimality Conditions
found in every textbook on network flow theory, through a
sequence of easy steps we converted the SPR problem into
one of the best-known type of linear optimization prob-
lems: a multicommodity flow problem. This allowed us
to give efficient algorithms and to derive some interesting
consequences.

• We gave a necessary and sufficient condition to shortest
path representability and we traced back an important prior
result of Wang et al. [18] to our theorem, which states that
practically any path set useful for OSPF TE is shortest path
representable.

• Realizing that a representation might contain extraneous
shortest paths, ruining the performance of OSPF TE, we
characterized all those paths that can be eliminated from

the representation and all those paths that are not. We also
gave a polynomial time algorithm to tackle the problem.

• We gave several necessary and sufficient conditions for a
path set to be perfectly SPR, however, this concept turned
out to be much less beneficial from a practical standpoint
than minimal SPR.

• We defined the first ever provably polynomial time algo-
rithm to compute integer-valued SPR link weights.

Throughout this paper, we have gradually moved from a weak
SPR definition to more and more stringent ones, to eventually
arrive to the conclusion that the problem is tractable in polyno-
mial time in all contexts. We believe that the results presented
in this paper supply both theoretical and empirical evidence to
the potential of OSPF Traffic Engineering to become the tool
for “poor man’s traffic engineering.”
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