
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/356747808

Data Plane Cooperative Caching with Dependencies

Article  in  IEEE Transactions on Network and Service Management · December 2021

DOI: 10.1109/TNSM.2021.3132275

CITATIONS

0
READS

75

6 authors, including:

Some of the authors of this publication are also working on these related projects:

FP7 CONGAS View project

Quality on the provision of digital content View project

Ori Rottenstreich

Technion - Israel Institute of Technology

116 PUBLICATIONS   1,500 CITATIONS   

SEE PROFILE

Ariel Kulik

CISPA

25 PUBLICATIONS   312 CITATIONS   

SEE PROFILE

Jennifer Rexford

Princeton University

440 PUBLICATIONS   37,178 CITATIONS   

SEE PROFILE

Daniel S. Menasché

Federal University of Rio de Janeiro

149 PUBLICATIONS   1,307 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Daniel S. Menasché on 12 March 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/356747808_Data_Plane_Cooperative_Caching_with_Dependencies?enrichId=rgreq-4a8a4300a965e527379e60ee140ca26d-XXX&enrichSource=Y292ZXJQYWdlOzM1Njc0NzgwODtBUzoxMTMyODg0MTEwOTA5NDQzQDE2NDcxMTIwMjgxNzA%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/356747808_Data_Plane_Cooperative_Caching_with_Dependencies?enrichId=rgreq-4a8a4300a965e527379e60ee140ca26d-XXX&enrichSource=Y292ZXJQYWdlOzM1Njc0NzgwODtBUzoxMTMyODg0MTEwOTA5NDQzQDE2NDcxMTIwMjgxNzA%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/FP7-CONGAS?enrichId=rgreq-4a8a4300a965e527379e60ee140ca26d-XXX&enrichSource=Y292ZXJQYWdlOzM1Njc0NzgwODtBUzoxMTMyODg0MTEwOTA5NDQzQDE2NDcxMTIwMjgxNzA%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Quality-on-the-provision-of-digital-content?enrichId=rgreq-4a8a4300a965e527379e60ee140ca26d-XXX&enrichSource=Y292ZXJQYWdlOzM1Njc0NzgwODtBUzoxMTMyODg0MTEwOTA5NDQzQDE2NDcxMTIwMjgxNzA%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-4a8a4300a965e527379e60ee140ca26d-XXX&enrichSource=Y292ZXJQYWdlOzM1Njc0NzgwODtBUzoxMTMyODg0MTEwOTA5NDQzQDE2NDcxMTIwMjgxNzA%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ori-Rottenstreich?enrichId=rgreq-4a8a4300a965e527379e60ee140ca26d-XXX&enrichSource=Y292ZXJQYWdlOzM1Njc0NzgwODtBUzoxMTMyODg0MTEwOTA5NDQzQDE2NDcxMTIwMjgxNzA%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ori-Rottenstreich?enrichId=rgreq-4a8a4300a965e527379e60ee140ca26d-XXX&enrichSource=Y292ZXJQYWdlOzM1Njc0NzgwODtBUzoxMTMyODg0MTEwOTA5NDQzQDE2NDcxMTIwMjgxNzA%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technion-Israel_Institute_of_Technology?enrichId=rgreq-4a8a4300a965e527379e60ee140ca26d-XXX&enrichSource=Y292ZXJQYWdlOzM1Njc0NzgwODtBUzoxMTMyODg0MTEwOTA5NDQzQDE2NDcxMTIwMjgxNzA%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ori-Rottenstreich?enrichId=rgreq-4a8a4300a965e527379e60ee140ca26d-XXX&enrichSource=Y292ZXJQYWdlOzM1Njc0NzgwODtBUzoxMTMyODg0MTEwOTA5NDQzQDE2NDcxMTIwMjgxNzA%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ariel-Kulik?enrichId=rgreq-4a8a4300a965e527379e60ee140ca26d-XXX&enrichSource=Y292ZXJQYWdlOzM1Njc0NzgwODtBUzoxMTMyODg0MTEwOTA5NDQzQDE2NDcxMTIwMjgxNzA%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ariel-Kulik?enrichId=rgreq-4a8a4300a965e527379e60ee140ca26d-XXX&enrichSource=Y292ZXJQYWdlOzM1Njc0NzgwODtBUzoxMTMyODg0MTEwOTA5NDQzQDE2NDcxMTIwMjgxNzA%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ariel-Kulik?enrichId=rgreq-4a8a4300a965e527379e60ee140ca26d-XXX&enrichSource=Y292ZXJQYWdlOzM1Njc0NzgwODtBUzoxMTMyODg0MTEwOTA5NDQzQDE2NDcxMTIwMjgxNzA%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jennifer-Rexford?enrichId=rgreq-4a8a4300a965e527379e60ee140ca26d-XXX&enrichSource=Y292ZXJQYWdlOzM1Njc0NzgwODtBUzoxMTMyODg0MTEwOTA5NDQzQDE2NDcxMTIwMjgxNzA%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jennifer-Rexford?enrichId=rgreq-4a8a4300a965e527379e60ee140ca26d-XXX&enrichSource=Y292ZXJQYWdlOzM1Njc0NzgwODtBUzoxMTMyODg0MTEwOTA5NDQzQDE2NDcxMTIwMjgxNzA%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Princeton_University?enrichId=rgreq-4a8a4300a965e527379e60ee140ca26d-XXX&enrichSource=Y292ZXJQYWdlOzM1Njc0NzgwODtBUzoxMTMyODg0MTEwOTA5NDQzQDE2NDcxMTIwMjgxNzA%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jennifer-Rexford?enrichId=rgreq-4a8a4300a965e527379e60ee140ca26d-XXX&enrichSource=Y292ZXJQYWdlOzM1Njc0NzgwODtBUzoxMTMyODg0MTEwOTA5NDQzQDE2NDcxMTIwMjgxNzA%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel-Menasche?enrichId=rgreq-4a8a4300a965e527379e60ee140ca26d-XXX&enrichSource=Y292ZXJQYWdlOzM1Njc0NzgwODtBUzoxMTMyODg0MTEwOTA5NDQzQDE2NDcxMTIwMjgxNzA%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel-Menasche?enrichId=rgreq-4a8a4300a965e527379e60ee140ca26d-XXX&enrichSource=Y292ZXJQYWdlOzM1Njc0NzgwODtBUzoxMTMyODg0MTEwOTA5NDQzQDE2NDcxMTIwMjgxNzA%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Federal-University-of-Rio-de-Janeiro2?enrichId=rgreq-4a8a4300a965e527379e60ee140ca26d-XXX&enrichSource=Y292ZXJQYWdlOzM1Njc0NzgwODtBUzoxMTMyODg0MTEwOTA5NDQzQDE2NDcxMTIwMjgxNzA%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel-Menasche?enrichId=rgreq-4a8a4300a965e527379e60ee140ca26d-XXX&enrichSource=Y292ZXJQYWdlOzM1Njc0NzgwODtBUzoxMTMyODg0MTEwOTA5NDQzQDE2NDcxMTIwMjgxNzA%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel-Menasche?enrichId=rgreq-4a8a4300a965e527379e60ee140ca26d-XXX&enrichSource=Y292ZXJQYWdlOzM1Njc0NzgwODtBUzoxMTMyODg0MTEwOTA5NDQzQDE2NDcxMTIwMjgxNzA%3D&el=1_x_10&_esc=publicationCoverPdf


1

Data Plane Cooperative Caching with Dependencies
Ori Rottenstreich, Ariel Kulik, Ananya Joshi, Jennifer Rexford, Gábor Rétvári and Daniel S. Menasché

Abstract—Caching is at the core of most modern communication
systems, where caches are used to store content and traffic
classification rules. While network components can leverage
caching in a cooperative manner, one important aspect of such
systems concerns possible dependencies among stored items. A
major use case of such dependencies appears in rule placement
across software-defined networks (SDNs).

Despite the tremendous success of SDNs in datacenters, their
wide adoption still poses a key challenge: the packet-forwarding
rules in switches require fast and power-hungry memories. Rule
tables, which serve as caches, are of limited size in cheap and
energy-constrained devices, motivating novel solutions to achieve
high hit rates. We leverage device connectivity in the fast data
plane, where delays are in the order of few milliseconds, and
propose multiple switches to work together to avoid accessing the
control plane, where delays are orders of magnitude greater. As a
low priority rule in a cache entails caching higher priority rules,
we pose the problem of cooperative caching with dependencies.
We provide models and algorithms accounting for dependencies
among rules implied by existing switch memory types, and lay
the foundations of cooperative caching with dependencies.

Index Terms—Cooperative caching, Software defined network-
ing

I. INTRODUCTION

SOFTWARE defined networks (SDNs) have been tremen-
dously successful in simplifying the management of data

centers, enabling dynamic and efficient network configuration
and fast failover. In an SDN, a controller enforces fine-grained
policies by installing rules in switches that dictate how each
switch handles incoming packets. Each rule consists of a
match and an action. The match portion typically matches
on multiple packet header fields, including wildcards, for
classification. The actions can modify header fields, forward
to a particular output port, or drop the packet. In addition,
each rule has a priority that disambiguates between rules with
overlapping match patterns (overlapping rules). Commodity
switches implement rule tables using special hardware like
Ternary Content Addressable Memory (TCAM) that checks a
packet against all installed rules in parallel.

Flexible match-action processing is desirable across a range
of settings, including IoT networks [2]–[7]. However, the
adoption of SDNs outside of data-center networks still faces
a fundamental problem: rule tables require fast and power-
hungry memories [8]–[13], but TCAMs must be of limited
size in cheap and energy constrained devices [14]–[16]. To
guarantee classification correctness a switch cannot simply

This manuscript is an extended version of a paper presented at IEEE
CloudNet 2020 [1]. Ori Rottenstreich is with the Technion - Israel Institute of
Technology, Israel. Ariel Kulik is with CISPA Helmholtz Center for Information
Security, Germany. Ananya Joshi is with Carnegie Mellon University, PA.
Jennifer Rexford is with Princeton University, NJ. Gábor Rétvári is with
Budapest University of Technology and Economics, Hungary. Daniel Menasché
is with Federal University of Rio de Janeiro, Brazil.

“cache” the most popular rules due to rule dependencies [17]–
[19]. For two rules with overlapping match patterns, caching
the lower-priority (dependent) one entails caching the other
with higher priority, even if caching the higher-priority rule
does not contribute much to the total hit rate [17], [18], [20].

When a packet arrives at a switch and does not match any
of its cached rules, it is common practice to assume that the
default rule is to forward the packet to the control plane (or to
a slower data path, like in Open vSwitch [21], [22]). A major
challenge consists in coping with the control-plane delay, which
is typically an order of magnitude larger than forwarding in
the fast data plane. Hence, SDN faces a major performance
challenge of needing to achieve a high hit rate despite the small
rule tables. We believe this challenge can be met if multiple
switches can cooperatively work together to achieve a high
overall hit rate, benefiting from the data plane performance.

We pose the following question: how to leverage cooperation
among switches to improve caching performance? Conceptually,
the answer is simple: switches can forward unmatched packets
to other switches in the fast data plane, e.g., by configuring
default rules and a time-to-live (TTL) counter which is
decremented at every hop before relying on the control
plane when its value reaches zero. Under pairwise switch
cooperation, for instance, the TTL of unmatched packets is
set to one. Even though such a simple idea, which poses no
additional complexity regarding system design, may lead to
significant gains in terms of delay reduction, it also poses novel
challenges in the realm of cooperative placement of objects
with dependencies among them. We aim to lay the foundations
of cooperative caching with dependencies.

Prior art. Cooperative caching [23] is a well-studied
approach comprising the coordination of a distributed caching
system to achieve a common goal, such as increasing the
total system hit rate. Cooperative caching networks have been
considered for a wide variety of applications, including cellu-
lar [24]–[26] and IoT networks [27], CDNs [28]–[30], social
networks [31], [32], and distributed operating systems [23].
In the realm of SDNs, it has already been noted that a slight
increase of load among switches may correspond to a significant
reduction in communication costs across the control plane [8],
[12], [13]. Bauer and Zitterbart [33] suggested moving rules
from a loaded switch to a switch with spare capacity. Such rules
can refer to traffic processing as well as for flow monitoring
but has not considered potential dependencies among rules
implied by rule aggregation.

Recently, additional works tried to extend data plane
functionality and deal with the scarcity of flow tables in
various forms: TableVisor [34] describes a proxy layer between
the SDN controller and hardware. It supports data plane
device aggregation to reduce overhead for heterogeneous SDN
switches with various types of flow tables and capabilities.
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? Data plane S1 Rule Table: S2 Rule Table:
R1 : (000*) → a1 (0.18) R7 : (00**) → a7 (0.20)
R3 : (010*) → a3 (0.16) R5 : (10**) → a5 (0.32)
R6 : (11**) → a6 (0.45) R6 : (11**) → a6 (0.23)
R2 : (001*) → a2 (0.04) R8 : (010*) → a8 (0.07)
R4 : (011*) → a4 (0.02) R9 : (011*) → a9 (0.18)
R5 : (10**) → a5 (0.15)

S1 Rule Table: S2 Rule Table:
R1 : (000*) → a1 (0.18) [S1] R7 : (00**) → a7 (0.20) [S2]
R3 : (010*) → a3 (0.16) [S1] R9 : (011*) → a9 (0.18) [S2]
R6 : (11**) → a6 (0.45+0.23) [S1,S2] R5 : (10**) → a5 (0.32+0.15) [S1,S2]

(a) Traditional rule caching (b) Cooperative rule caching (c) Classification delays

Figure 1. (a) Traditional Rule Caching: Each switch maximizes its (local) cache hit rate while considering rule dependencies. Each rule is characterized by its
matching field DST IP and its popularity. Cached rules appear above the line. Unclassified traffic is served in the control plane. (b) Cooperative Rule Caching:
A switch can store rules of other switches and serve their traffic. (c) Classification delays: TL ≤ TD < TC for local classification, by another switch in the
data plain or in the controller.

Similarly, Maple++ is a framework for encoding policies over
heterogeneous switches in a pipeline-based tables [35]. This
provides a programming API to network designers generating
small rules tables with the support policy updates.

In this paper, we build on such previous works, considering
cooperative caching with dependencies.

Contributions. Our main contributions are twofold.
(1) Cooperative rule-caching model: We propose an

analytical model to analyze cooperative caching solutions,
accounting for rule-dependencies (Section III).

(2) Caching solutions: Leveraging the proposed model, we
design algorithms for the cooperative caching problem under
different types of rule dependencies (Sections IV-VII).

We see the proposed caching algorithms as being run
periodically by the SDN controller.

II. SYSTEM DESCRIPTION AND RESULTS

Rule caching [17], [18], [36] allows maintaining a large set
of rules within an hierarchy of two memory levels: A subset of
the rules, typically those accessed frequently, are maintained
in a fast but small memory while remaining rules are kept
in a slower larger memory level. For a particular traffic, the
classification is completed within a short time if a matching rule
can be found in the small memory. Otherwise, the classification
takes longer time and requires accessing the slower memory.

Traditionally, rule caching is performed independently for
each switch, considering the implemented policy and the local
traffic distribution. Fig. 1(a) illustrates an example of two
switches implementing two different policies with six and
five rules in Switches 1 and 2, respectively. For simplicity,
the rules match disjoint traffic patterns and, as such, have no
dependencies. The limited capacity of each switch enables
caching three rules, as illustrated by the dashed lines. Each
rule is associated with a matching probability based on the
switch’s workloads. Fig. 1(a) shows traditional rule caching
where in each switch the three most popular rules are cached.

In this work, we focus on the advantages of cooperative
caching for rule caching in SDNs. The centralized control of
SDNs naturally motivates cooperative caching. By allowing
packets to be forwarded to other switches to complete the
classification process within the data plane, the load on the
control plane and the time to resolve requests are reduced.

Under cooperative rule caching, we assume that each switch
locally caches rules, e.g., in its TCAM, indicating to which
switch they apply to. In addition, each switch has a set of
neighbors, to whom it will forward packets in case they need
help to complete their classification. We also assume that all
rules are stored by the controller that can ultimately classify
any packet if needed.

Fig. 1(b) illustrates a cooperative-caching solution leveraging
rule similarity across two switches. In case of a miss in a switch,
there is an attempt to complete the classification by finding a
matching rule in an adjacent switch.

Definition 1. The origin switch of a given packet is the first
switch to handle that packet.

A packet is first handled by its origin switch. If it does not
match any of its rules, it is possibly forwarded to a neighbor
switch before reaching the control plane. Throughout this paper,
except otherwise noted, we consider switches that are matched
in pairs. Each switch relies exclusively on its designated partner
for cooperative caching purposes. We assume that the pairwise
matching of switches is provided as input such that paired
switches should be directly connected. The pairwise matching
of switches may leverage the overlap coefficient or the Jaccard
index between rule sets, aiming to pair switches based on
number of common rules. In case a rule is not matched for a
packet in its origin switch, the packet is forwarded to the paired
switch. If a match is found in the paired switch, the packet is
forwarded back to its origin switch with the information on the
selected action, noting that some particular rule actions, such
as a packet drop, can be executed directly by the paired switch.
Only if the rule to handle the packet cannot be resolved in the
data plane by a switch or its partner, the packet is directed to
the control plane.

The simple setting considered in this paper, accounting for
pairwise switch cooperation, already allows us to appreciate
the benefits and challenges involved in the deployment of
cooperative caching with dependencies. In particular, the
functionalities required for its deployment are already supported
by current SDN architectures.

Each packet stores its corresponding origin switch, and
each switch maintains for each rule in its cache a set of
corresponding origin switches (one or more) to which it is
applicable. In Fig. 1(b), the applicable origin switches are

2



Table I
NEW CACHING POLICY RESULTS (IN BOXED BOLD)

# Switches
single two multiple

(≥ 3)

R
ul

e
D

ep
en

de
nc

ie
s Exact match (no Optimal Optimal Optimal

rule dependencies)
Prefix match Optimal [36], [37] Optimal

H
eu

ri
st

ic
s

Wildcard match Heuristics [17], [18] Heuristics
(NP-hard)

indicated between brackets: R1 and R3 refer to switch 1,
R7 and R9 refer to switch 2, and the other rules refer to
both switches. The local caching in Fig. 1(a) enables local
classification of 0.79 and 0.75 of the traffic in the two switches,
respectively. 0.21 and 0.25 of the traffic is classified in the
slow path. With the same cache sizes, the cooperative caching
(Fig. 1(b)) enables classifying within the data plane (namely,
by one of the switches) 0.94 and 0.93 of the traffic, reducing
the traffic sent to the slow path to 0.06 and 0.07. Fig. 1(c)
shows the various classification times (see Section III).

Implementation details. Note that the headers of packets
considered in the above solution must contain three fields: TTL,
origin switch and matched action. Under pairwise cooperation,
TTL is a binary field. Its value is set to one to indicate that
the packet can still be forwarded in the data plane, and zero
otherwise. The origin switch field stores the switch which first
handled the packet (Definition 1) and is used by a cooperative
neighbor to return the matched action of the matched rule, in
case the neighbor is able to find a rule that matches the packet.
Otherwise, if TTL equals zero and there are no matching rules,
the packet is forwarded to the control plane.

Our approach determines the cached rules in each of the
switches as allowed by its memory capacity while also taking
into account the classifiers with rule dependencies and rule
popularities over other switches.

Summary of results. Our results are summarized in Table I,
where new results are described in boxed bold. We categorize
the problem based on two main properties: (i) rule matching
pattern (exact match, prefixes, wildcards) that affects possible
rule dependencies; (ii) number of switches involved in a caching
decision. We focus on the case of cooperation among pairs of
switches and in Section VII discuss other forms of cooperation
among multiple switches. Our goal is to determine the caches
content to minimize the average classification time while
preserving caching correctness.

We first refer to exact match for which rules have no
dependencies.

Definition 2. An exact matching rule is a rule with specific
field values (no wildcards).

The optimal caching under exact matching rules for a
single switch encompasses caching the rules with the highest
popularity, noting that all rules are of the same memory size.
For cooperative switches, the optimal rule allocation is the
solution to a linear program (Section IV).

Definition 3. In a prefix matching rule a wildcard can appear
only as a suffix.

Table II
TABLE OF NOTATION

Variable Description
k number of switches
S set of rules
Sj ordered set of rules of switch j
Rr r-th rule, r = 1, . . . , |S|
Rj,ℓ ℓ-th rule at switch j
nj size of cache of switch j
Cj set of rules cached at switch j
λj,r popularity of rule Rr in switch j
M i

R set of origin switches to which rule R stored in i applies to,
M i

R ⊆ {j|R ∈ (Sj ∩ Ci)}
TL delay of local classification
TD delay of data plane non-local classification
TC delay of control plane classification

For prefix matching, we describe an optimal dynamic-
programming algorithm in Section V.
Definition 4. In a wildcard matching rule a wildcard can
appear at any arbitrary position.

For wildcard matching, the optimal rule caching problem is
NP-hard even for a single switch [17], [18], motivating a greedy
heuristic for cooperative switches introduced in Section VI.

III. MODELING COOPERATIVE CACHING

We consider a network of k switches 1, . . . , k. Each switch
i has an ordered set Si of |Si| rules (Ri,1, · · · , Ri,|Si|). A rule
has two parts: a matching pattern and an action. A matching
pattern is composed of 0s and 1s or *s (don’t cares). For
instance, a rule of the form (DST IP = 100*) → a matches
both DST IP values 1000 and 1001 and applies an action
a ∈ A where A is the set of possible actions. A packet is
handled by the first rule it matches, namely, rules are ordered
in decreasing priority. Switch i serves traffic that follows a
local traffic distribution. The distribution determines each rule
popularity in a switch, i.e., its probability to be the first match
of a packet. Notation is summarized in Table II.

Rules and popularities. Let S = {R1, . . . , R|S|} be the set
of distinct rules that appear in one or more switches such that
S =

⋃
j Sj . Let nj be the cache size of switch j. The set of

rules cached at switch j is denoted by Cj , Cj ⊆ S, |Cj | ≤ nj .
A cached rule is marked with an indication to which origin
switches it should be applied to. Let M i

R ⊆ {j|R ∈ (Sj ∩Ci)}
be the set of origin switches to which rule R ∈ S stored at
i ∈ [1, k] should be applied to.

Rule cooperation can take advantage of a partial (or com-
plete) similarity between the rules in the different switches [38],
[39]. Without loss of generality, we do not consider rules that
are never matched in any of the switches. For i ∈ [1, k], let
λi,r be the popularity of rule Rr in switch i, describing the
amount of traffic that matches the rule. In particular, if a rule
Rr appears only in switch 1, we have λi,r = 0 for i ̸= 1.

Latencies and rule dependencies. We refer to the latency
of the classification as the cost of the operation and would like
to minimize the expected classification time. The latency is
highly influenced by the location of classification.

If a packet matches one of the switch cached rules, it is
classified accordingly within a very short time. If a packet does
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not match any of the switch cached rules, then it experiences a
cache miss. In such a case, there are two alternatives where to
find a corresponding rule and determine the required action for
the packet. First, this can always be accomplished by sending
the packet to the controller. Assume the controller keeps an up-
to-date version of the entire set of rules for all switches. In such
a case the packet observes a relatively large delay. Alternatively,
if the required classification information can be found in one
of the other switches, the classification can be performed in
such a switch within the data plane. For simplicity, we assume
that in case of a miss in a switch cache, the classification time
in all other switches is identical. As illustrated in Fig. 1(c),
we refer to these three classifications as Local, in the Control
plane and by cooperation among switches in the Data plane.
We denote their time by TL, TC and TD, respectively, such
that TL ≤ TD < TC . Typically accessing the data plane occurs
after a miss within the local cache such that the data plane
total classification time takes TL + TD. Throughout this work,
we assume that TL, TC and TD are constant, and that TD

includes the time required for sending the packet to other
switch, processing it and sending it back to the origin switch.
Our goal is to determine the content of the nj cached rules in
each switch for minimizing the average classification time.

Let α = (TC −TL−TD)/(TC −TL) = 1−TD/(TC −TL).
The value of α represents the ratio of two time reductions.
The first reduction is that of a data plane classification and
the second reduction is that of a local classification, both in
comparison with the expensive classification in the control
plane. Note that α ∈ (0, 1). Intuitively, for larger values of α
the relative overhead due to a classification in another switch
is small when compared against a classification at the control
plane, and the potential gains due to cooperative rule caching
are more significant.

Latency parametrization. Consider for instance the fol-
lowing values as an estimation for the different delays, which
we obtained in a mininet experiment with the Ryu [40]
controller as the slow path and Open vSwitch (OVS) as the
data plane: TL = 3 ms, TD = 4 ms, TC = 200 ms (see
Section VIII). Although classification in an adjacent switch is
slower than a local classification, it still avoids most of the
latency that occurs while using the controller. This results in a
value of α = (200− 3− 4)/(200− 3) ≈ 0.98, very close to 1.

Caching gain. Recall that Ci is the rule set cached at switch
i. Consider a scenario with two switches. In comparison with
a scheme without caching, cost reduction following caching
a rule Rr in both switch 1 and switch 2, Rr ∈ C1 ∩ C2, is
λ1,r+λ2,r, in units of TC−TL. We refer to such cost reduction
on top of a scheme with no caching as the caching gain.

A switch benefits from caching of one of its rules in another
switch. The value of caching a rule Rr only in switch 1,
Rr ∈ C1 \C2, is λ1,r +α ·λ2,r, where α ∈ (0, 1], as above, is
determined by the delays of the various classification options.
Symmetrically, a rule Rr cached only in switch 2, Rr ∈ C2\C1,
contributes α · λ1,r + λ2,r. There is no contribution for rules
not cached in any switch.

Rule dependencies and correctness. To guarantee the
correctness of a rule caching, we must ensure that if a rule is
the first to match a packet among a subset of cached rules, the

same rule is the first to match that packet in the complete set
of rules. Consider a switch i ∈ [1, k]. We say that rule R ∈ Si

depends on a rule R′ ∈ Si if R′ has higher priority than R and
their sets of packets intersect. For correctness, caching R on
switch j ∈ [1, k] and marking it applicable for origin switch i,
requires R′ to be cached in either switch i or j, and marked as
applicable for origin switch i. In particular, the condition must
also hold when i = j, entailing that caching R at a switch i
for which rule R applies implies also caching R′ at i.

Formally, consider a caching C1, . . . , Ck with markings M i
R

for rule R ∈ Ci cached in switch i ∈ [1, k].

Definition 5 (Correctness requirement). A rule placement is
correct if for any switch i ∈ [1, k], and any two rules R,R′ ∈
Sj originated in switch i such that R depends on R′, the
following condition is satisfied: if R ∈ Cj for some j ∈ [1, k]
with i ∈ M j

R then at least one of the following holds

• R′ ∈ Ci and i ∈ M i
R′

• R′ ∈ Cj and i ∈ M j
R′ .

Note that in the above definition we allow j = i, i.e., if
R ∈ Ci with i ∈ M i

R then the correctness requirement implies
R′ ∈ Ci with i ∈ M i

R′ – if a rule is cached in a switch for
which it applies, all the rules that have higher priority must
also be stored at that switch.

IV. EXACT RULE MATCHING

We first consider the simplest setup of exact match wherein
rules have no dependencies (Definition 2). Every packet
matches at most one rule. We present two solutions for
computing the optimal rule caching for exact match. The
first uses a linear programming relaxation and applies for an
arbitrary number of switches.1 The second refers to a pair of
switches and is based on maximum graph matching, allowing
us to derive structural properties of the optimal solution.

A. A Linear Programming Approach.

For an arbitrary number of switches, let G(x) be the average
gain in cost reduction when caching x = [xi,r] is deployed,
where xi,r = 1 if Rr is stored in cache Ci (Rr ∈ Ci and
M i

Rr
= {j|Rr ∈ (Sj ∩ Ci)}), and xi,r = 0 otherwise. For

each rule Rr, if Rr is stored in at least one cache, the gain
is at least α

∑
i λi,r. Each cache storing rule Rr experiences

an additional gain of (1− α)λi,r. Denote by xr an indicator
variable, equal to 1 if rule Rr is stored in at least one cache,
and 0 otherwise. We pose the following mixed integer linear
program (MILP),

max G(x) =
∑

r∈[1,|S|]

(
α·xr

k∑
i=1

λi,r+(1− α)

k∑
i=1

xi,r·λi,r

)
(1)

1Note that linear programs are considered to have algorithms which are only
weakly polynomial-time but lack solutions which are strongly polynomial [41].
In practice, there is an ongoing research on bounding the degree of the running
time complexity polynomial [42]. Our second approach, based on maximum
graph matching, guarantees a strongly polynomial running time.
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where ∑
r∈[1,|S|]

xi,r ≤ ni ∀i ∈ [1, k], (2)

xr ≤
∑

i∈[1,k]

xi,r ∀r ∈ [1, |S|], (3)

xr ∈ {0, 1} ∀r ∈ [1, |S|], (4)
xi,r ∈ {0, 1} ∀i ∈ [1, k],∀r ∈ [1, |S|]. (5)

When considering pairwise matchings of switches, we let k = 2
in the above MILP and treat each pair of switches independently.
Constraints (2)-(3) correspond to cache capacities and to the
definition of xr. Next, we present the main result of this section,
whose proof relies on [28], [43], [44].

Theorem IV.1. An optimal cooperative caching with exact rule
matching can be found in (weakly) polynomial time, as the
problem (1)-(3) without constraints (4)-(5) admits an integral
solution.

Proof. The proof of the above theorem relies on the relaxed
version of the MILP wherein constraints (4)-(5) are replaced
by the corresponding real constraints 0 ≤ xr ≤ 1 and 0 ≤
xi,r ≤ 1, respectively. As the objective function is convex, the
solution to the relaxed problem can be found in polynomial
time. By showing that the relaxed problem admits an integral
solution, we conclude that the solution to the relaxed problem
is also a solution to the original MILP problem.

The constraints of the relaxed problem can be written in the
form Az ≤ b where matrix A and vector b are all integers and
z is a vector of xi,r and xr. That is since the standard form LP:
max cz s.t. Az ≤ b, z ≥ 0, with integral matrix A, integral
vector b and an arbitrary vector c, has an integral optimal
solution z if its constraint matrix A is totally unimodular [28],
[43], [44]. By the Hoffman sufficient condition (HSC) [45],
matrix A is totally unimodular if it contains no more than one
+1 and no more than one -1 in each column.

Proposition 1 (Hoffman Sufficient Condition). Matrix A is
totally unimodular if it contains no more than one +1 and no
more than one -1 in each column.

It can be readily verified that the HSC holds for the
considered MILP, which completes the proof.

Example. We illustrate below a matrix A accounting for
constraints (2) (first two rows in the matrix) and (3) (last three
rows), for a system with k = 2 caches and |S| = 3 rules.
Clearly, each column contains exactly one element +1 and no
more than one -1, satisfying the conditions of Proposition 1.

A =



x1,1 x1,2 x1,3 x2,1 x2,2 x2,3 x1 x2 x3

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0

−1 0 0 −1 0 0 1 0 0
0 −1 0 0 −1 0 0 1 0
0 0 −1 0 0 −1 0 0 1



B. A Graph Maximum Matching Approach.

We present another approach that applies for a pair of
switches. Recall that the gain of a caching policy is its
reductions in the classification time, in comparison with a
scheme without caching. The gain achieved by a caching policy
is given by the sum of the gains for each of the rules. However,
note that with any level of cooperation (the model assumes
α > 0), the contribution of caching the same rule in two
switches is smaller than the sum of contributions of caching it
in each of the switches. Intuitively, having two copies prevents
taking advantage of the ability for mutual help among switches.
That is the total value of the cached rules is sublinear in the
contributions for the various switches.

To represent the cooperative caching constraints, we rely on
the construction of multiple bipartite graphs. We divide the
unique cached rules (in at least one of the two switches) of a
possible solution into three memory categories. The categories
are M1 - rules cached only in switch 1, M2 - rules cached
only in switch 2, and M1,2 - rules cached in both switches. Let
nc denote the number of shared rules in a solution. Such rules
occupy space in both switches. For a known value of nc ∈
[0,min(n1, n2)], we build a bipartite graph Gnc = (U, V,E)
where the left nodes of U represent the |S| distinct rules
of S. The right nodes in V are composed of three types,
describing the three memory categories of rules M1, M2 and
M1,2. Accordingly, the rules cached in switch 1 are C1 =
M1 ∪M1,2 and those cached in switch 2 are C2 = M2 ∪M1,2.
The number of nodes in the categories are n1−nc, n2−nc, nc,
respectively. The total number of nodes in V is n1 + n2 − nc

that stands for the number of distinct cached rules. An edge
between Rr and Mj (resp., M1,2) indicates that Rr should be
placed in switch j, for j = 1, 2 (resp., in both switches 1 and
2). A matching, i.e., a set of edges without common vertices,
fully characterizes how rules should be cached across switches.
We consider a fully connected bipartite graph, and assign the
weight of an edge between a rule Rr and a memory category
node v ∈ V as the value of caching Rr in switches according
to the category of v. If v is of category M1 (resp., M2) the
weight of edge (Rr, v) is λ1,r+α·λ2,r (resp., α·λ1,r+λ2,r). If
v is of category M1,2, the weight of edge (Rr, v) is λ1,r+λ2,r.

The following lemma simply follows by the linearity of the
value of rule caching solutions with respect to the contributions
of different rules. Intuitively, the total gain is given by the sum
of contributions of the different rules.

Lemma 1. Let Λnc
be the weight of a maximal weight matching

in the bipartite graph Gnc
. A corresponding caching policy

achieves a cost reduction of Λnc in classification time.

The number nc of rules cached in both switches can be
flexible. In the most general case the range for that number
is nc ∈ [0,min(n1, n2)]. Of course, nc cannot exceed the
number of common rules between the switches. These options
are represented by the different bipartite graph instances. We
deduce that the optimal caching policy is described by a
maximal weight matching for one of the instances, namely the
the instance whose maximal matching has the highest weight.
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Figure 2. Exact rule matching (no rule dependencies) for two switches -
Graph matching approach: Illustration of the complete bipartite graph with
|S| = 6 (distinct) rules and switch capacities n1 = 3, n2 = 2.

Theorem IV.2. An optimal caching policy is described by the
matching in one of the bipartite graphs Gnc

that achieves the
highest weight.

To find an optimal caching policy we construct the bipartite
Gnc

for the different values of nc. We find the maximal weight
matching in each instance and select the caching according
to the one with the highest weight over the various nc values.
Finding a maximal weight matching in a bipartite graph can
be done in polynomial time of O(n2 · log(n)) for a graph with
n nodes (see e.g., [46]).

The construction is illustrated in Fig. 2. Here, for the case of
|S| = 6 distinct rules and switch capacities of n1 = 3, n2 = 2.
Three bipartite instances are considered (in (a), (b) and (c))
with number of shared rules nc ∈ [0, 2]. The number of right
nodes in a bipartite instance is n1+n2−nc ∈ [3, 5]. The three
memory categories M1,M2,M1,2 are illustrated as squares,
pentagons and diamonds, respectively.

Time complexity. The algorithm builds the bipartite graph
instance and runs the bipartite weighted matching algorithm
min(n1, n2) + 1 times. The graph has |S| ≤ |S1| + |S2| left
nodes and at most n1+n2 ≤ 2 · |S| right nodes. Thus the total
time complexity is O(min(n1, n2) · |S|2 · log(|S|)).

We derive properties characterizing an optimal caching policy.
Intuitively, in such an optimal caching, there are no changes
in the rules cached in one or more of the switches that would
further increase the gain (i.e., reduce the classification cost).

Theorem IV.3. An optimal caching policy satisfies (i) For
a rule Rr cached according to one of the three categories
M1, M2, M1,2, the value in that category is not smaller than
the value in the same category of any rule not cached in any
of the three categories. (ii) For a rule Rr ∈ M1, the value
(1− α) · λ2,r is not larger than the value α · λ1,r′ + λ2,r′ for
any rule Rr′ ∈ M2 (and vice versa). (iii) For α < 1, there
might exist a rule Rr ∈ M1 with λ1,r = 0 or a rule Rr′ ∈ M2

with λ2,r′ = 0, but there cannot be such rules simultaneously
in both switches.

Proof. We show by contradiction that if one property does not
hold, we can make changes in an optimal caching to further
reduce the cost. In (i), we can replace a rule in one of the three
categories by a rule that is not cached at all and has a larger
value for the specific category. In (ii), for a rule cached in
switch 1, we can also cache it in addition in switch 2 instead
of a rule cached in this switch. In (iii), we can switch between
two rules, each one cached in one of the switches, to achieve
gain of (1− α) of their corresponding rule popularities. Note
that an optimal rule caching solution can include for instance

in switch 1 a rule Rr with λ1,r = 0 when its contribution
α · λ2,r is large enough in terms of rules cached in switch 1
but is relatively low in terms of rules cached in switch 2.

V. PREFIX RULE MATCHING

We study a common case of rule dependencies that appears
for the scenario of prefix matching, known as longest prefix
matching. Its simple dependencies allow us to derive an optimal
caching strategy. Let W be the length in bits of the matching
pattern of a rule. A prefix corresponds to a node in a binary
tree with 2W leaves. A rule is a pair of a prefix and an action
from A. The dependency among rules is illustrated in Fig. 3
where caching a prefix-action pair (P, a) entails caching all
existing rules in the colored subtree.

Challenges. To characterize dependencies due to prefix
rules, one alternative is to add constraints to the MILP of
Section IV-A. Indeed, prefix rules correspond to constraints of
the form xi,r ≤ xi,r′ for every rule r which is a parent of r′

in the prefix tree in switch i. Such additional constraints can
result in non-integral solutions to the relaxed LP. For a concrete
example showing that the relaxed LP accounting for prefix
rules may admit non-integral optimal solutions, it suffices to
consider a single switch. The switch resolves two rules, R1

and R2, matching prefixes 0* and 00, respectively. Matches
to R1 and R2 occur at rates λ1 = 2 and λ2 = 1. If the switch
capacity equals one, the only feasible solution is storing rule
R2. Consider now the MILP with objective of maximizing
the gain as defined in Section IV, max(2x1 + x2), subject
to x1 + x2 = 1 and x1 ≤ x2, where x1, x2 ∈ {0, 1}. The
relaxed version of this MILP has a single fractional solution,
x1 = x2 = 0.5, which does not correspond to a rule placement.

A. An overview on the dynamic programming approach

We propose a dynamic programming algorithm to overcome
the aforementioned challenges. The algorithm facilitates ideas
from the algorithm of [37] for dependent caching on a single
switch. In particular, our algorithm overcomes the difficulties
introduced by cooperative caching over multiple switches. We
define a sub-problem for every combination of prefix P , two
cache sizes m1,m2 such that m1 ≤ n1 and m2 ≤ n2, and a
set of compliance requirements Q, which we later define and
discuss. We refer to each such sub-problem as (P,m1,m2,Q).
An optimal solution to (P,m1,m2,Q) is a correct caching
of the rules in the subtree of P (i.e., all the rules P ′ such
that P is a prefix of P ′) into switches with memory sizes m1

and m2, which adheres to the compliance requirements in Q,
and provides a maximal caching gain. The optimal cooperative
caching is an optimal caching for (Proot, n1, n2, ∅), where
Proot is the empty prefix that stands for the root of the prefix
tree. By definition, an empty requirement set ∅ does not imply
particular requirements.

For a prefix P , the sub-problems of P are all the sub-
problems of the form (P,m1,m2,Q) for some m1 ≤ n1,
m2 ≤ n2 and a set of compliance requirements Q. Then, the
key insight consists in observing that the optimal caching gain
(P,m1,m2,Q) can be expressed as a function of the optimal
caching gains of the sub-problems of P.0 and P.1, the two
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Figure 3. Prefix rule dependency. Caching a prefix P = 10** requires caching
all prefixes in the colored subtree such as 100*, 101* (if exists).

descendants of P in the prefix tree (see Fig. 3). Leveraging
this insight, the solution to the problem is found through a
bottom-up dynamic programming approach over the prefix tree.

A solution for the sub-problem (P,m1,m2,Q) can
be derived from solutions to (P.0,m′

1,m
′
2,Q0) and

(P.1,m′′
1 ,m

′′
2 ,Q1) where, for i = 1, 2, either m′

i+m′′
i = mi−1

or m′
i +m′′

i = mi, depending on whether prefix P is cached
in switch i or not. The compliance requirements Q0 and Q1

are used to determine whether P can be added to any of the
caches without violating the correctness requirement.

A major insight consists in noting that given solutions to
the two sub-problems, it suffices to determine whether prefix
P should be added or not to the switches. In particular, by
properly selecting values for m′

i and m′′
i we ensure that P can

be cached on top of the solutions for the sub-problems. Hence,
evictions are unnecessary.

B. Algorithm details

For simplicity, in this section we assume that if (P, a1) ∈ S
and (P, a2) ∈ S then a1 = a2. That is, the same prefix is
only associated with a single action for all the switches. Then,
we can refer to rules as prefixes (though, not all prefixes are
rules). In particular, we write P ∈ S (resp., P ∈ C) when there
is an action a such that (P, a) ∈ S (resp., (P, a) ∈ C). Our
algorithm can be easily extended to the general case without
this requirement.

We establish a partial ordering among prefixes, such that
P ≤ P ′ when a prefix P shares all its bits with a longer or
equal prefix P ′. We also write P < P ′ when P ≤ P ′ and
P ̸= P ′. We say that P covers (resp., strictly covers) P ′ when
P ≤ P ′ (resp., P < P ′). We denote by SP (resp., ŜP ) the set
of prefix rules covered by P , i.e., the set of prefixes of rules
belonging to the subtree rooted by P , SP = {P ′ ∈ S|P ≤ P ′}
(resp., strictly covered by P , ŜP = {P ′ ∈ S|P < P ′}).

Recall that Sj is the set of input rules applicable to switch
j ∈ {1, 2}. We denote by Sj

P the set of rules applicable to
switch j, covered by P , Sj

P = {P ′ ∈ Sj |P ≤ P ′}.
Next, we formally define the mentioned compliance require-

ments Q. We use the common cartesian set product notation
{1, 2}×{1, 2} representing the set {(1, 1), (1, 2), (2, 1), (2, 2)}.
Given a solution to the caching problem, a set T of prefixes and
(i, j) ∈ {1, 2} × {1, 2}, we say the caching is (i, j)-compliant
with respect to T if for every prefix P ∈ T ∩ Si, either

• P ∈ Ci and i ∈ M i
P or

• P ∈ Cj and i ∈ M j
P .

For a given rule P ∈ Si, if a solution is (i, j)-compliant with
respect to ŜP it is possible to insert P to Cj and add i to M j

P

(i.e., mark P as effectively applicable to origin switch i) while
preserving the correctness requirement. Indeed, the above two
bullets correspond to the two bullets in the definition of the
correctness requirement (Definition 5).

A compliance requirement is a set Q ⊆ {1, 2} × {1, 2}.
It holds |Q| ∈ [0, 4]. Given a set of prefixes T , we say a
solution to the caching problem is Q-compliant with respect
to T if for every (i, j) ∈ Q the solution is (i, j)-compliant
with respect to T . For example, for Q = {(1, 1), (1, 2)}, a
solution is Q-compliant with respect to T if it is both (1, 1)
and (1, 2)-compliant with respect to T .

We use the notation 2S for the power set of a set S, namely
the set of all subsets of S. For instance 2{1,2}×{1,2} includes
16 elements. Likewise, let P be the set of all prefixes (shown
as nodes in the binary prefix tree, not necessarily in S).

We now characterize the caching gains. We define
Λ(P,m1,m2,Q) as a function

Λ : P × [0, n1]× [0, n2]× 2{1,2}×{1,2} → R ∪ {−∞}.

The value of Λ(P,m1,m2,Q) is the highest achievable gain
from a correct caching of prefixes from SP which is Q-
compliant with respect to SP and in which |Ci| ≤ mi for
i = 1, 2. If no such caching exists let Λ(P,m1,m2,Q) = −∞.

Recall Proot is the root of the prefix tree. By definition,
Λ(Proot, n1, n2, ∅) is the highest gain achievable by a correct
caching of rules from the prefix tree, with up to n1 rules in
switch 1 and n2 rules in switch 2 (without particular compliance
requirements). We also refer to Λ(Proot, n1, n2, ∅) as the value
of the optimal caching. Therefore, our objective is to compute
Λ(Proot, n1, n2, ∅) and a caching that attains this gain.

Our algorithm utilizes an additional auxiliary function

Γ : P × [0, n1]× [0, n2]× 2{1,2}×{1,2} → R ∪ {−∞},

defined similarly to Λ(P,m1,m2,Q), with a distinction that
Γ refers to ŜP rather than SP , namely it cannot cache the
prefix P itself. It describes the highest achievable gain from
a correct caching of prefixes from ŜP which is Q-compliant
with respect to ŜP and in which |Ci| ≤ mi for i = 1, 2. Again,
Γ(P, n1, n2, ∅) = −∞ if no such caching exists.

Next, we focus on the computation of the values of Λ and
Γ. The optimal caching itself can be recovered using standard
backtracking techniques.

We start with Γ. For a prefix P such that ŜP = ∅ by
definition Γ(P,m1,m2,Q) = 0, for all Q, m1, m2 in the
domain of Γ. For a prefix P such that ŜP ̸= ∅, let P.0 and P.1
be its children. A solution for Γ(P,m1,m2,Q) is comprised of
sets C1, C2 and M i

P ′ for i = 1, 2 and P ′ ∈ Ci. This solution
can be split into two parts, a solution with the prefixes in SP.0

and another with the prefixes in SP.1. That is, for d ∈ {0, 1},
the solution for P.d is given by sets Cd

1 = C1 ∩ SP.d and
Cd

2 = C2 ∩ SP.d and sets M i
P ′ for P ′ ∈ Cd

i . It holds that
Ci = C0

i ∪C1
i . As the solution for P is correct and Q-compliant

with respect to ŜP then necessarily the solutions for P.0 and
P.1 are also correct and Q-compliant with respect to SP.0 and
SP.1, respectively. The gain of the solution for P equals the
sum of gains for the two solutions for P.0 and P.1. That is, a
solution with mi rules in Ci for P can be seen as the union
of two solutions with m′

i and mi −m′
i for P.0 and P.1.
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Similarly, a solution for Λ(P,m1,m2,Q) can be constructed
from solutions for Γ(P,m′

1,m
′
2,Q) and Γ(P,m1 −m′

1,m2 −
m′

2,Q) for any 0 ≤ m′
1 ≤ m1, 0 ≤ m′

2 ≤ m2.
By the above arguments we obtain the following formula.

Γ(P,m1,m2,Q) =

max
m′

1∈[0,m1],m′
2∈[0,m2]

(
Λ(P.0,m′

1,m
′
2,Q)+ (6)

Λ(P.1,m1 −m′
1,m2 −m′

2,Q)

)
.

Next, we describe how to evaluate Λ(P,m1,m2,Q) given
Γ(P,m′

1,m
′
2,Q′). The difference between the caching implied

by Λ and by Γ refers to the potential caching of P . Clearly, if
P /∈ S, that is, P is not a rule, then

Λ(P,m1,m2,Q) = Γ(P,m1,m2,Q). (7)

Consider the case where P ∈ S. We characterize the caching
decision for P using a set DP ∈ 2{i|P∈Si}×{1,2}, where
(i, j) ∈ DP indicates that P is cached at switch j and is
marked as applicable to i, i.e., (i, j) ∈ DP if P ∈ Cj and
i ∈ M j

P . In what follows, prefix P should be clear from context,
and we refer to DP simply as D.

Let VP (D) be the gain from caching P according to D. For
each switch i, there is a gain of αλi,P if P is cached at any
of the switches and marked as effectively applicable to i. If
the rule is also cached at switch i and marked as effective for
switch i, there is an additional gain of (1− α)λi,P . Then,

VP (D) =
∑

i∈{1,2} | ∃j∈{1,2}: (i,j)∈D

α · λi,P

+
∑

i∈{1,2} | (i,i)∈D

(1− α)λi,P .

For P , let Q ⊆ {1, 2} × {1, 2} be a given compliance
requirement. If P ∈ Si and (i, j) ∈ Q we must cache P in
either i or j and mark it as applicable for i in order to maintain
a caching Q-compliant with respect to SP . Therefore, we say
that D ∈ 2{i|P∈Si}×{1,2} is P -consistent with Q if for every
(i, j) ∈ Q ∩ 2{i|P∈Si}×{1,2} we have

• (i, i) ∈ D or
• (i, j) ∈ D.

The above two conditions correspond to the two bullets in the
definition of the correctness requirement (Definition 5).

Denote

ΦP (Q) =
{
D ∈ 2{i|P∈Si}×{1,2}

∣∣∣ D is P -consistent with Q
}
.

Informally, ΦP (Q) describes all possibilities to cache P (in
either none, one or two of the switches) that would allow
Q-compliance with respect to SP .

Let µj(D) be an indicator variable denoting whether rule
P is cached in switch j under allocation D.

µj(D) =

{
1, (1, j) ∈ D or (2, j) ∈ D
0, otherwise.

The gain Λ(P,m1,m2,Q) is attained by a caching solution,
C1, C2 and subsets M i

P ′ for P ′ ∈ Ci and i = 1, 2, which is
Q-compliant with respect to SP . Define D′ = {(i, j) | P ∈

Cj , i ∈ M j
P }. As the solution is Q-compliant then D′ ∈

ΦP (Q). If we remove the rule P from this caching solution,
we get a caching solution for ŜP which is both Q-compliant
and D′-compliant with respect to ŜP .

Likewise, an opposite argument can be used to construct
a caching for Λ(P,m1,m2,Q) for any D ∈ ΦP (Q) from a
caching for Γ(P,m1−µ1(D),m2−µ2(D),Q∪D), by adding
a caching for P as prescribed by D.

This allows us to derive the recursive formula

Λ(P,m1,m2, ,Q) (8)
= max

D∈ΦP (Q)
Γ(P,m1 − µ1(D),m2 − µ2(D),Q∪D) + VP (D).

In the formula, the maximum operator applied over an empty
set equals −∞.

Theorem V.1. An optimal cooperative caching with prefix
matching for up to two switches can be found in polynomial
time.

Proof. Equations (6), (7) and (8) derived in this section can be
used to evaluate Γ(P,m1,m2,Q) and Λ(P,m1,m2,Q) over
all the prefixes P ∈ P , with SP ̸= ∅, in a bottom-up fashion.
Therefore, we get Λ(Proot, n1, n2, ∅) as required. For each
action corresponding to a prefix P of length up to W , we
evaluate a polynomial number of nodes in the prefix tree, as
only nodes along the path from prefixes to the root must be
traversed, and their number is linear in W and |S|.

In a possible implementation, the algorithm iterates over the
prefixes in P according to their lengths from the longest to the
shortest. For each prefix P it first evaluates Γ(P,m1,m2, Q)
for every (m1,m2, Q) ∈ [0, n1] × [0, n2] × 2{1,2}×{1,2}

according to (6) (or sets all these values to 0 if ŜP =
∅), and afterwards it evaluates Λ(P,m1,m2, Q) for every
(m1,m2, Q) ∈ [0, n1] × [0, n2] × 2{1,2}×{1,2} according to
either (7) or (8). The optimal achievable gain for the caching
problem is Λ(Proot, n1, n2, ∅). The algorithm finds a caching
which obtains this gain via standard backtracking and returns it.

VI. WILDCARD RULE MATCHING

We study the case of wildcard rules. Such rules can have
general rule dependencies. In the case of a single switch with
general rule dependencies, the dependencies can be described
in the form of a directed acyclic graph (DAG) [17], [18]. Given
such a dependency DAG, for correctness, when a rule is cached
in the network switch, all its dependents (reachable via the
directed edges in the DAG) have to be cached along with it.
Consider two nodes u, v that refer to rules Ru, Rv . The graph
is acyclic since an edge from u to v exists only if besides
their intersection Rv precedes Ru in the classifier (i.e., it has
a higher priority).

In this setting, the problem of rule caching is known to be
NP-hard even for a single switch [17], [18]. Naturally, the
problem of rule caching across two (or more) switches is NP-
hard as well. To see that note that for low enough values of
the parameter α, an optimal joint caching is given by local
optimal caching in each of the switches.
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Corollary VI.1. Finding an optimal caching policy for two
or more switches with general rule dependencies is NP-hard.

Correctness follows maintaining the requirements from
Section III. Note that in the case of two switches, two
intersecting rules can appear in the two switches in two different
orders. Accordingly, for two switches the dependency graph
accounting for all dependencies is not necessarily a DAG.

Since finding the optimal caching solution is NP-hard, a
greedy heuristic can be used to pick the rules to be cached in a
switch. For instance, one such heuristic consists in storing rules
with the highest ratio of cost reduction achieved by caching
the rule in the switch divided by the space needed to store its
dependencies. Note that this heuristic is similar in spirit to an
approximate solution to a knapsack problem.

VII. BEYOND PAIRWISE COOPERATION

Next, we discuss extensions beyond pairwise matching.

A. Fundamental results

The solution from Section IV for the case of exact rule
matching with no dependencies applies for an arbitrary number
of k switches and optimal cooperative caching can be found
in polynomial time in the same manner.

The design of optimal cooperative rule placement with depen-
dencies, beyond pairwise matching of switches, is challenging.
In particular, adapting the dynamic-programming approach that
accounts for pairwise switch cooperation with prefix rules from
Section V would imply running-time complexity which grows
exponentially with the number of switches. For wildcard rules,
the problem is NP-hard even for a single switch (Section VI).

Observation. As a potential building block in future exten-
sions of our results beyond pairwise cooperation, we describe a
simple approach of conditionally optimal caching. It selects the
caching for a second switch after the caching in a first (or more)
switches is determined. This can be done by solving the caching
problem in a single switch using modified rule popularities.
The approach, however, might not imply the optimal joint
caching in multiple switches.

Theorem VII.1. Consider two switches with sets of rules from
S. Assume a caching, represented by the set of cached rule
indices C1 ⊆ S, is given for switch 1. An optimal conditional
caching C2 for switch 2, i.e., switch 2 best response, can
be obtained as an optimal caching for a single switch with
popularities of λr = λ2,r·(1−α·I(r ∈ C1))+α·λ1,r·I(r /∈ C1)
for a rule Rr, where I(·) is the indicator function.

Proof. Assume a given caching for switch 1. Clearly, a rule
Rr that is not cached by switch 1, can reduce the cost by
λ2,r + α · λ1,r if it is cached by the second switch, reducing
the cost for traffic matching the rule in both switches. If the
rule is cached by switch 1, if it is then also cached by switch
2, the potential cost reduction is λ2,r · (1− α), reducing the
classification cost only for traffic of the second switch.

Theorem VII.2. Consider switches selected in a round-robin
manner. For a switch select its cached rules as a best response
to the allocations of the other switches. Then,

(i) The total classification cost is monotonically non-
increasing.

(ii) The process converges after a finite number of iterations.
(iii) The process does not necessarily converge to the optimal

caching with the minimal total classification cost.

Proof. In each step (either the time a switch is first considered
or later), the caching of a switch is by definition the best
possible from the system cost perspective and in particular,
does not increase the cost of the previous selection of the
switch. Moreover, since the number of solutions is finite and
the optimal cost is bounded the process converges. Indeed, it
can be shown that the process does not necessarily end up
with the optimal cache selection even for the case of k = 2
switches. Consider two switches: the first with many rules,
all with small popularity smaller than α/3 and a second with
two rules R2,1, R2,2 of popularities 0.5 + ϵ, 0.5− ϵ. Assume
a capacity of one rule in each switch. Starting from the first
switch, the algorithm selects to cache in the first switch the
rule R2,1 from the second switch. Next, the rule R2,2 is cached
in the second switch. Later iterations do not change the cached
rules. Unlike the solution of the algorithm, since the popularity
of R2,1 is greater than that of R2,2, a lower classification cost
is obtained when the rule R2,1 is cached in its original second
switch and the rule R2,2 is cached in the first switch.

Clearly, to avoid the phenomena of reaching a local minimum
point of the classification cost, one can consider standard
randomization techniques where the caching of a switch is
selected given the previous selections not as the best achievable
but as an efficient one with almost similar performance. More
generally, approaches like simulated annealing can be useful
in this context [47].

B. Simple and practical cooperative caching for multiple
switches

Accordingly, while still relying on the power of cooperative
caching, we restrict its degrees of freedom for simplicity and
efficiency. We do so by designing (non optimal) solutions,
where each switch has a single additional switch, selected in
advance among all k switches, where he can solve a given
local cache miss. The various schemes are illustrated in Fig. 4.
They describe a tradeoff between simplicity and efficiency.

(i) Cooperation in pairs (illustrated in Fig. 4(b)) - This
scheme has the advantage of being simple but with the cost
of loss of potential efficiency. We partition the switches into
pairs based on the similarity of their rule sets and traffic
distributions. Then, cooperation is performed only within each
pair of switches. We estimate the similarity between each pair of
switches. Then, a partition can be found by a graph matching
algorithm in a weighted general (not necessarily bipartite)
graph. This can be done in polynomial-time by various
implementations of Edmond’s algorithm [48]. While ideally,
we would like this estimation to describe the classification
cost reduction achieved by each pair, this might require
running the caching algorithm for each pair. Alternatively,
we simply estimate this similarity by finding the top accessed
rules in each of the switches and calculating the (weighted)
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S1:
R1 : 0.4
R2 : 0.2
- - - - - - - -
R3 : 0.15
R4 : 0.05
R5 : 0.2

S2:
R3 : 0.40
R7 : 0.21
- - - - - - - -
R2 : 0.20
R4 : 0.10
R6 : 0.09

S3:
R5 : 0.24
R7 : 0.25
- - - - - - - -
R1 : 0.10
R4 : 0.20
R6 : 0.21

S4:
R4 : 0.26
R8 : 0.30
- - - - - - - -
R3 : 0.10
R5 : 0.09
R7 : 0.25

(a) Traditional rule caching: delay of 0.486 · TC

S1:
R1, R2

S2:
R3, R7

S3:
R4, R5

S4:
R7, R8

(b) Cooperation in pairs

S1:
R1, R2

S2:
R3, R7

S4:
R4, R8

S3:
R5, R7

(c) Cooperation in chains

1-4

1-4

1-4

1-4 5-8

5-8 5-8
5-8

S1:
R1, R2

S2:
R3, R4

S3:
R5, R6

S4:
R7, R8

(d) Address-dependent cooperation

Figure 4. Example of multi-switch schemes: The subfigures illustrate the
schemes described in Section VII-B An arrow is directed from a switch to
another switch where its cache misses can be solved. A value on an arrow
helps to determine the accessed switch based on the rule number observing a
local miss.

intersection between those rules for each pair of switches. If
the classification cost alternatives among the different switches
vary (e.g., based on the switches locations and their differences),
they can also be taken into account in the partition.

(ii) Cooperation among chains (illustrated in Fig. 4(c)) - We
generalize the above approach. While still a switch can solve
its local misses by accessing another switch, this relation is
not required to be symmetric and cooperation has the form
of chains. We start with a single switch that calculates its
local caching (e.g., by a simple scheme for prefix rules or by
techniques from [17], [18] for more general rule dependencies).
Then, we examine the similarity of its non-cached rules to each
of the rules in all other switches. We select as the next switch in
the chain the switch that would benefit the most from the ability
to access the cached rules in the last switch. We then continue
to add more switches, enabling the selection of switches that
have been selected earlier. In case the switch selected is not
new, it might be the first in a chain or a later one. This would
lead to a structure of switch relations that is not necessarily a
chain. If this occurs, in the next step another switch is selected
to start a new chain. Upon a miss, classification is completed
by the next switch in the chain.

(iii) Address-dependent cooperation (illustrated in Fig. 4(d)) -
We provide a solution that enables cooperation between a large

number of switches while still enabling simple identification
of the switch that has to be accessed in the case of a local
cache miss. We divide the matching address space into disjoint
parts among switches while trying to maximize inclusion of
the local traffic in each switch. In each switch, in addition to
caching of some locally popular rules, the rest of the capacity
is dedicated to cache popular rules, possibly from all switches,
that fall within the address space of the switch. Local cache
misses are forwarded to a single adjacent switch covering the
relevant space portion potentially having the corresponding rule.
This can be done by adding to each cache, a rule directing
local misses in the relevant portion to the corresponding switch.
Some rule duplication might be required to deal with rules
intersecting multiple portions.

Example 1. Consider k = 4 switches, each with five rules and
a cache size (in each switch) of two rules . Let the delay values
satisfy TC/TL = 11, TD/TL = 2 implying α = 0.9. The rule
popularities are demonstrated in Fig. 4(a), for the seven distinct
rules R1, . . . , R7. We assume no rule dependencies. In Fig. 4(a)
the local rule caching are shown, where each switch caches its
two popular rules, namely the two with the highist popularity
among the five rules it has. This implies hit rates of 0.6, 0.61,
0.49 and 0.56 for the various switches, achieving a average
delay reduction of (0.6+0.61+0.49+0.56)/4 · (TC −TL) =
2.26/4 · (TC −TL) = 0.565 · (TC −TL) which implies a delay
of 0.486 ·TC . In Fig. 4(b) ,as in scheme (i) above, cooperation
is done in pairs, where the division to pairs achieving the
minimal delay is with the pairs (S1, S2) and (S3, S4). For
instance, as S1 and S2 have in common rules R2, R3, R4 and
similarly S3 and S4 have R4, R5, R6, namely pairs share rules
with relatively large total popularity, each such pair can benefit
from caching rules of the other switch in the pair and thus
these two pairs are grouped. The average delay reduction
increases with the use of the scheme to 0.76375 · (TC − TL)
which results in a delay of 0.306 ·TC . In Fig. 4(c), cooperation
is done among chains as in scheme (ii) above. A switch can
solve rule cache misses in the switch towards it has an outgoing
arrow. We show the most efficient chain structure where the
next switch in a chain is selected as the one that benefit the
most from the last selected cache. For instance, as S1 caches
only R1, R2 it can benefits from the caching of R5 in S3 while
S3 itself aches R5, R7 and enjoys the fact that S4 caches R4.
Similarly, S4 benefits from the caching of R3, R7 in S2. This
achieves a further improvement, increasing the delay reduction
to 0.78875 ·(TC−TL) implying a delay of 0.283 ·TC . Last, the
address-dependent cooperation, detailed as scheme (iv) above,
is shown in Fig. 4(d). Assume that following the rule structure,
upon a local miss, a switch can look for one of the first 1-4 rules
in one switch and for the last 5-8 in another switch. Intuitively,
rules R1−R4 have a relatively high popularity in S1, S2 while
R5 −R8 in S3, S4, (while of course a particular rule does not
necessarily even appear in the original set of rules in each
switch). This further reduces the delay to 0.81525 · (TC − TL)
leading to a delay of 0.259 · TC .
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VIII. PROTOTYPE TESTBED

We illustrate the benefits of cooperative rule caching in
a simple real-life use case. To this aim, we consider a
“Load Balancer and Access Gateway” prototype of an official
industrial data-plane benchmark suit. This use case models
a real pipeline that is actively being deployed as part of a
commercial 5G mobile packet core product marketed by one
of our industry partners.

Our prototype, illustrated in Fig. 5, comprises a cluster of
k switches, each facing a different Autonomous System (AS),
providing access for the users in the AS to the web services
hosted inside a data center. In particular, the switches translate
the public Internet address of each service running inside the
cloud to the internal private address of the VMs that run the
corresponding workload. The access switches perceive different
traffic intensities to the individual services and therefore need
to cache different collections of translation rules; however,
requests to certain popular services show up in large numbers
at each of the access switches, allowing the cloud operator
to take advantage of cooperative caching for these popular
services.

Our prototype is built as a Ryu application, using Open
vSwitch (OVS) as the switches and mininet as a network
emulation tool. The request distribution of each switch was
sampled according to the equinix-chicago packet trace from
the CAIDA Anonymized Internet Traces 2014 Dataset [49] at
different intervals of time (unfortunately, we cannot sample
across different routers due to anonymization); the first s =
2000 most popular (IP destination address, TCP destination
port) pairs were taken as the public service access points for
the cloud-hosted services; for each such pair, a rule was set
up to translate this public address to an internal address; and
finally rule popularity at each switch was chosen according
to the local popularity of the address-port pair as seen in
the packet trace for the switch. The resultant flow tables and
rule popularities were then implemented with local caching
and with the best-response-time cooperative caching algorithm
(Theorem VII.1); requests missing the cache are handled by
the Ryu controller. We measured the one-way delay between
two hosts directly attached to the switches using a home-grown
delay measurement kit, which attains nanosecond precision

VM
2

VM
3

AS1

AS2

ASk

access switch 1

access switch 2

access switch k

VM
1

VM
s

Data center

Controller

Figure 5. Cloud access gateway: k switches provide access for distinct
ASes to s data center services. Dashed arrows in green illustrate potential
communication between the switches to solve local cache misses within the
data plane.
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Figure 6. Delay vs. cache size. The knee of the cooperative (resp., local) curve
occurs roughly at n = 200 (resp., n = 500), close to optimal offloading.
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Figure 7. Traffic intensity (partial overhead) vs. cache size. Cooperative
caching uses excess bandwidth among switch links. Local caching does not
offload traffic.

leveraging the fact that clocks across mininet nodes are
synchronized to the same CPU clock.

Measuring classification delays. To illustrate the distinct
orders of magnitude of classification delays in SDNs, we carried
out controlled experiments to assess the delay incurred by
rule classification in a local switch, in the data plane (with
cooperative switches) and in the control plane. Our experiments
produced median delays in these three categories, respectively,
of 3 ms, 4 ms and 200 ms (99-th percentiles 5.5 ms, 6.5 ms,
and 370 ms, respectively). While the data plane measurements
produce robust results over a wide choice of parameters (test
sequence length, number of rules, etc.), the control plane
measurements produced substantial variance, stemming most
probably from the backlog that gradually builds up at the
controller’s ingress packet queue. Note that control plane delays
can easily end up in the seconds range when the backlog grows
large enough.

Latency vs. cache size. Fig. 6 shows the 99-th percentile
one-way delay in the access gateway use case with different
local cache sizes. We set k = 2 switches, both storing 2000
rules, out of which 1096 are shared. A partial traffic trace,
taken again from the CAIDA dataset [49], was fed into one of
the access switches, containing 10,000 packets in 334 flows,
with the individual flow sizes varying between 10 to 216
packets each, following Zipf’s law with a best fit exponent of
s = 0.52. Shared rules account for 41% of the total ingress
traffic. While cooperative caching maintains a comfortable
two-times edge over local caching at basically all reasonable
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Figure 8. Cumulative one-way delay distribution. The delay 99-percentile
under the cooperative (resp., local) solution is roughly 10 ms (resp., 95 ms).

cache sizes, thanks to its more efficient utilization of data plane
classification resources, we observe that the delay reduction
can be an order of magnitude in certain cases. Strikingly,
cooperative caching even when caching only 10% of the rules
(n = 200) already reaches close to full data-plane classification
(7 ms, 99-th percentile one way-delay).

Offloaded traffic intensity. The price for cooperative
caching is that certain rules are enforced at remote switches and
sending offloaded traffic to the fallback(s) imposes additional
load on the data plane. Fig. 7 shows the normalized offloaded
traffic rate as a function of the cache size. For very small
caches we observed that the majority of traffic is classified
remotely whereas caching only 10% of the rules (n = 200)
renders roughly half of the traffic being handled locally. Note
that local caching does not direct any traffic to the link between
the switches, essentially wasting the bandwidth of the inter-
switch link, whereas cooperative rule caching leverages spare
resources at the fast data plane.

In summary, the proposed cooperative caching scheme has
clear benefits for the given use case. Nonetheless, at arbitrary
networks inter-switch links may become bottlenecks. In those
cases, the proposed solution must be adjusted to cope with the
trade-off between data plane overhead against control plane
delays. We leave this study as subject for future work.

Overall delay. Fig. 8 shows the one-way delay CDF (2000
rules and cache size 200). The delay 99-percentile under
cooperative (resp., local) caching is roughly 10 ms (resp.,
95 ms), which is in agreement with the fact that under local
caching delays are caused by large queue backlogs building up
at the controller. As cooperative caching can successfully keep
most traffic in the data plane, it avoids the controller round-trip
almost completely, implying significantly smaller delays.

IX. IMPACT OF WORKLOAD AND RULE SIMILARITY

Next, we evaluate the impact of workload and rule similarity
on hit rate and delay. To this aim, we conduct synthetic
simulations where we assume that a Zipf distribution with
parameter µ determines the popularity of a rule. Each switch
has a complete set of 10K rules, and a rule i has popularity

pi =
1

η
· i−µ, i = 1, . . . , 104,
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Figure 9. Comparison of cooperative vs. local caching: hit rate and delay as
a function of rule similarity.

where η =
∑10K

j=1 j−µ is a normalization constant. We compare
the average overall hit rate (ratio of traffic that can be classified
within the data plane) and classification time that can be
achieved with cooperative caching vs. that of the traditional
local caching. In the implementation of the cooperative caching,
we simply selected the cache of the switches iteratively as the
best response following on Theorem VII.1.

We focus on the case of two switches. We used a parameter
ρ to determine the probability of two switches to share a given
rule. If this is not the case, we assume they have two distinct
rules, associated for simplicity with the same popularity. The
results are illustrated in Fig. 9. In Fig. 9(a), we assume a
Zipf parameter µ = 1, a cache size of n=2K rules in each
switch, and rule similarity of ρ ∈ [0.6, 1] between the two
switches. For the local independent caching, the rule similarity
has no impact on the performance and a fixed hit rate of 0.836
is achieved in each switch. For the cooperative caching, the
improvement is an increasing function of the rule similarity. The
achievable hit rates are between 0.877 and 0.905, describing
a reduction of 25%-42% in the traffic sent to the controller.
As demonstrated in Fig. 9(b), this increase in the amount of
traffic served within the data plane is translated to a reduction
of 23%-38% in the average classification time, where we used
values of TC/TL = 101, TD/TL = 2 implying α = 0.99.

In Fig. 10(a)-10(b) we examine the impact of the Zipf
parameter µ and the cache size n. We assume rule similarity
of ρ = 0.8. Cooperative caching increases the total hit rate
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Figure 10. Comparison of cooperative vs. local caching: hit rate as a function
of workload and cache size.

from 0.516 to 0.655 for µ = 0.6 and from 0.981 to 0.989 for
µ = 1.4 considering n = 2K. A maximal relative decrease
of 31% in the delay is obtained for µ = 1.1. Similarly, in
examining the impact of the cache size n ∈ [100, 2K], we can
see a reduction of 11%-31% in the delay.

X. CONCLUSION

We presented models and algorithms for cooperative rule
caching. Existing caching schemes either assume that caching
is performed independently among caches, e.g., in SDNs, or
do not account for object dependencies, e.g., in CDNs. To
fill that gap, we propose novel rule caching solutions that
take into account several kinds of dependencies as implied by
various rule matching types. By leveraging spare resources at
the fast data plane, we envision cooperative rule caching as an
approach to circumvent the limitations imposed by memory
constrained devices, e.g., of IoT networks [2], [16]. This work
paves the way towards that vision. As future work, we plan
to evaluate the proposal in additional settings, including IoT
networks and NFV scenarios where SmartNICs or P4 switches
are leveraged as caches to offload x86 cycles for bandwidth-
intense or latency-sensitive flows.
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