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Abstract Up to not so long ago, Loop-Free Alternates

(LFA) was the only viable option for providing fast pro-

tection in pure IP and MPLS/LDP networks. Unfortu-
nately, LFA cannot provide protection for all possible

failure cases in general. Recently, the IETF has initiated

the Remote Loop-Free Alternates (rLFA) technique as a
simple extension to LFA, to boost the fraction of failure

cases covered by fast protection. Before further stan-

dardization and deployment, however, it is crucial to
determine to what extent rLFA can improve the level of

protection against single link or node failures in a gen-

eral IP network, as well as to find optimization methods

to tweak a network for 100% rLFA coverage. In this pa-
per, we take the first steps towards this goal by solving

these problems in the special, but practically relevant,

case when each network link is of unit cost. We also pro-
vide preliminary numerical evaluations conducted on

real IP network topologies, which suggest that rLFA

significantly improves the level of protection, and most
networks need only 2−3 new links to be added to attain
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Magyar tudósok körútja 2., Budapest, Hungary, H-1117
Tel: +36 1 463-2448
Fax: +36 1 463-3107;
E-mail: retvari@tmit.bme.hu

100% failure case coverage irrespectively of whether link

or node protection is considered.

Keywords IP Fast ReRoute · Remote Loop-Free

Alternates · link protection · node protection ·
heuristics · unit link costs

1 Introduction

In recent years, high availability has become an impor-

tant factor in operational networks, not just due to the
requirements of the increasing number of real-time ap-

plications (VoIP, IPTV, online-gaming, etc.) but also

for the standard Internet applications used day by day.
Low latency is very important even if one only waits

for a single web page to download, but network out-

ages might cause intolerably long time intervals of ser-
vice disruptions [1], and hence, increased latency. In-

stalling added redundancy in the network topology, as

well as a sophisticated failure mitigation scheme at the

routers, has the potential to reduce the latency caused
by component failures, and consequently, increase net-

work revenue [3]. In order to reduce latency and increase

the availability in service provider networks, therefore,
it is essential for operators to deploy network function-

ality to recognize the failure in a timely fashion and

reroute the affected packets instantly around the failed
component.

Formerly, the intra-domain routing protocols (Open
Shortest Path First [4] or Intermediate System To

Intermediate System [5]) used to handle failures. The

failure information was distributed throughout the net-

work in order to notify each router to recalculate short-
est paths with the failed component removed from the

topology. This process can take between 150 ms and

a couple of seconds, depending on network size and
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routers’ shortest path calculation efficiency [7,8]. Clearly,

this recovery time is beyond what real-time applications
require.

Therefore, the IETF defined a framework, called IP

Fast ReRoute (IPFRR [9]), for native IP protection, in

order to reduce failure reaction time to tens of millisec-
onds in an intra-domain, unicast setting. In order to

achieve this goal, the IPFRR techniques are based on

local rerouting and precomputed detours [9]. This allows
instant reaction to the failure and enables the routing

protocol to converge in the background.

In the past few years, many IPFRR proposals have

appeared to solve this problem. Unfortunately, the ma-
jority of them requires additional management burden,

complexity, and non-standard IP forwarding function-

ality [10–15] to existing routing protocols, evading the

possibility to be eventually applied in commercial routers.

Yet, there is an IPFRR method, called Loop-Free
Alternates (LFA) [28], which has already made its way

into commercial routers [29, 30]. LFA is simple, stan-

dardized and already implemented. However, it has a
significant drawback: it does not guarantee protection

for all possible failure cases, due to strong dependency

on actual topology and link costs. Extensive simulations
and numerical studies have shown that LFA can only

protect 75 − 85% of the link failures and 50 − 75% of

the node failures, respectively.

To improve the level of fast protection provided by

LFA, the IETF has published a generalization of LFA,
called the Remote LFA (rLFA) IP Fast ReRoute frame-

work [31]. This method is an extension to the basic

LFA that provides additional backup connectivity when
none can be provided by the basic mechanisms. But

even if it provides higher failure coverage, there still ex-

ist networks that are not sufficiently protected by rLFA.
Unfortunately, as of now there is no information avail-

able about how it performs in different network topolo-

gies, what the fundamental lower and upper bounds

on failure case coverage are, or how this can be im-
proved [32].

In the present paper, we make the first steps in this

direction. As a first approach, we shall limit our atten-

tion to the special case when link costs are uniform.
Our earlier studies on LFA [32] showed that the pro-

tection capabilities of LFA crucially depend on both

the graph topology and the link costs of the under-
lying network. Unfortunately, it turned out extremely

difficult to consider both at the same time, due to the

complexity of the related graph theoretical questions.

Therefore, it has proven beneficial to study graph topo-
logical concerns separately from the effects of link costs.

In the present paper, we follow the same course: first,

we initiate the analysis for remote LFA in graphs with

unit costs, and in a subsequent study we shall attempt

to generalize our results to arbitrary weighted graphs.
Considering unweighted graphs is fruitful for a number

of further reasons. The unit cost case is highly relevant

in real-world networks and, as shall be shown, results
for LFA can only be generalized to rLFA under the

unit cost assumption. Finally, we also found this prob-

lem particularly appealing from a theoretical point of
view.

This paper is essentially a crystallization of the ideas

in our preliminary study on rLFA [RNDM] and an ex-

tension of the rLFA specification [31], as well as our
analysis, from the model of single link outages to the

crucial case of single node failures. In the first part, we

provide the first ever basic graph theoretical toolset for
analyzing rLFA failure case coverage in the case when

link costs are uniform, and we establish a sufficient

and necessary condition for a network to have 100%
rLFA failure coverage. We also study the “bad cases”

for rLFA, in which failure coverage is particularly poor.

Building on [31], we distinguish between plain and ex-

tended remote LFA and we quantify the benefits that
come from the usage of extended rLFA.

Our analysis shows that many practically important

graph topologies do not admit 100% rLFA failure cov-
erage, especially with plain rLFA. Recently, LFA net-

work optimization methods were proposed [32–36] to

optimize certain aspects of the network to obtain max-
imal failure coverage. The second part of the paper is

devoted to generalize these methods to rLFA. In par-

ticular, we study the problem of optimizing a network

topology for better rLFA protection and we introduce a
set of algorithms for modifying the network, by adding

the smallest number of new links, to improve coverage

to 100%.
The main contributions in this paper are as follows:

– We develop a set of elemental graph theoretical rLFA

tools, which facilitates for analyzing rLFA failure

coverage in general networks. We also extend the

rLFA specification [31], originally defined for sin-
gle link failures only, to the relevant case of single

node failures, and we generalize our toolset to this

very case as well. Furthermore, we reveal the deep
relations between LFA and rLFA and we show the

conclusions that can be drawn if information about

one of them exists.
– Using this toolset, we provide a comprehensive anal-

ysis of rLFA failure case coverage under the assump-

tion that network links are of uniform cost. We give

sufficient and necessary conditions for full rLFA fail-
ure coverage in the case of single link as well as

node outages. An attempt is also made to find lower

bounds on failure case coverage. In particular, we
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find that in 2-node-connected graphs rLFA protec-

tion coverage for single link failures can go down to
50%, or to 33% for 2-edge-connected networks, and

for node failures rLFA coverage can totally zero out

in certain cases.
– To help inherently poorly protected networks, we

study the rLFA graph extension problem in detail.

This problem asks to augment the network with
new, unit cost links to attain complete rLFA pro-

tection. In particular, we propose a complete family

of heuristics in order to facilitate for picking the best

approximation algorithm for the particular network
under consideration.

– We provide an extensive numerical evaluation of

rLFA failure case coverage and rLFA graph exten-
sion methods on a wide range of real-world net-

work topologies. Crucially, we find that some net-

works have full rLFA protection without any modi-
fications. For the rest, the proposed heuristics turn

out very effective in improving rLFA failure protec-

tion.

The rest of the paper is organized as follows. Sec-

tion 2 gives a summary on the related works, Section 3

gives an introduction the rLFA, and then Section 4
presents the essential formal definitions. Section 5 gives

a useful mathematical model and Section 6 and Sec-

tion 7 are devoted to a graph theoretical remote LFA

failure coverage analysis of many important classes of
graph topologies. Section 8 discusses the remote LFA

graph extension problem and describes numerical re-

sults on many real-world network topologies. Finally,
in Section 9 we conclude our work and sketch future

research directions.

2 Related Works

Protection against network failures has become one of

the most compelling problems of today’s internet. It

turned out that more than 85% of unplanned failures
affect only links and almost the half of these failures

are transient [1], i.e., 50% of all failures last less than

a minute [2]. Unfortunately, such transient failures are
very difficult to handle with current intra-domain rout-

ing protocols, like OSPF [4] or IS-IS [5]. For instance,

just a single flapping interface can keep all other routers
in the network busy, since it can cause link state flood-

ing and significant computational overhead due to the

constant need for shortest paths recalculations. This

drawback comes directly from the fundamental design
philosophy of the protocol, since it does not disregard

failures and by means of link state advertisements it

tries to make the network topology up-to-date for the

routers all the time. Conversely, after a failure, an adja-

cent router recognizes it and notifies every other router
throughout the network about the failure in order to

induce the recalculation of the shortest paths with the

failed component removed. During this re-convergence
process packets are dropped due to invalid routes.

To overcome these issues, IP Fast ReRoute Frame-
work (IPFRR, [9]) was defined by the IETF (Internet

Engineering Task Force). IPFRR techniques are based

on two major principles: local rerouting and precom-

puted detours. Local rerouting means that instead of no-
tifying every other router about the failure, the adjacent

router to the failure tries to locally solve the problem,

i.e., reroute the packet to another node, this way by-
passing the failed component. Precomputed means that

the mechanism is proactive and alternate routes are in-

stalled long before any failure occurs. Thus, the IPFRR
techniques convert the restoration scheme, standard in

IP networks today to handle outages, into a faster proac-

tive protection mechanism [17].

Some time ago, the IETF defined a basic specifica-

tion for IPFRR, called Loop-free Alternates (LFA) [28].

In LFA, when the connectivity to a next-hop1 is lost all
the traffic is rerouted to an alternate next-hop, called a

Loop-free Alternate, that still has a path to the destina-

tion, which is unaffected by the failure. These alternate

next-hops are selected in a way as to guarantee that the
packet will not be passed back, since that would lead

to an IPFRR loop. However, such alternate next-hops

do not always exist, depending on the actual topology
and link costs. Therefore, in most network topologies

not all next-hops can be protected with LFA, leaving

the network vulnerable to certain failure scenarios.

In the past few years, many IPFRR proposals have

appeared to guarantee 100% failure case coverage in ev-

ery network topology, however, the majority of them re-
quires additional complexity, non-standard IP forward-

ing functionality, explicit signaling, etc.

The Failure-carrying Packets (FCP [23]) framework

does not just deal with single node or link failures, but

it can also guarantee delivery if simultaneous failures

are present in the network. Instead of having an ex-
tremely high number of precomputed paths, in FCP

all routers have a consistent view of operational links,

called a Network Map. Because of its consistency, all
that is required to be carried by the packets is informa-

tion about which of these links have failed.

In the case of O2 routing [24], each router has al-

ternate paths through at least two distinct next-hops

to each destination, in order to facilitate local failure

reaction and loop-free forwarding. Unfortunately, the

1 In IP routing, the next router along the shortest path to
a destination is called next-hop
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network must meet a necessary condition, which states

that each node has to form at least one triangle.

As another approach, Kvalbein et al. proposed Mul-
tiple Routing Configurations (MRC, [13]), wherein a

small set of backup network configurations is used. Thus,

in case of a failure a nearby router detects it and marks

the packet with a backup configuration identifier des-
ignating an overlay topology that does not contain the

failed component. They also proved that on average the

number of such backup configurations is usually below
four. A similar approach is [20], wherein the protection

and restoration is provided by distributed multipath

routing. The main idea is that if multiple paths exist
in the network due to load balancing, then they can be

used as backup routes as well.

The so called Protection routing scheme, proposed

in [25], is based on a centralized control over the routing

tables. A central server pre-computes forwarding deci-
sions for common failure scenarios and download these

into the routers. Thus, if a failure occurs, the appropri-

ate new forwarding state is already available locally.

Another fast resilience scheme, called Failure Insen-

sitive Routing (FIR [10]), uses interface specific for-
warding. FIR handles only link failures, while a subse-

quent scheme of the same authors, FIFR [11], deals with

node failures as well. The main idea of these concepts is

that if a node receives a packet through an unusual in-
terface, it can infer implicitly that, due to a failure, the

packet has not traveled along its default shortest path.

Unfortunately, interface specific forwarding is generally
not available in IP routers today.

In the method called Not-via addresses [14], when a
failure occurs then the packets are forwarded on an ex-

plicitly defined detour, which definitely avoids the failed

component, i.e., if an arbitrary node s wants to send a
packet to a destination node d, and the link to the next-

hop n or the next-hop n itself fails, then s has to pass

the packet towards d not-via n. Thus, this mechanism
requires additional (Not-via) addresses for which there

is no standardized protocol, moreover it brings extra

complexity into routing if the additional IP header does

not fit into the MTU (Maximum Transfer Unit)2, which
can cause packet fragmentation and time-consuming re-

assembly at the tunnel endpoint. To break down the

management burden and computational complexity, a
lightweight version of Not-via [15] was later proposed,

which is based on the concept of redundant trees [22].

DisPath [19] can protect every single link or node

failure in networks and, similarly to LFA, it has low

complexity and it does not modify the IP packets. Un-

2 In computer networking, the maximum transmission unit
(MTU) is the size of the largest protocol data unit that the
layer can pass onwards

fortunately, the computation of backup paths relies on

a reverse shortest path algorithm, crucially limiting its
applicability as currently OSPF and IS-IS implements

Dijkstra’s standard shortest path algorithm only.

A different approach is to use explicit signaling to

notify routers about the failures [26,27]. The advantage
of this is that it avoids the need of the modification to

standard IP forwarding, but in order to make it work, it

requires separate signaling mechanism only for IPFRR.

Due to the complexity of the aforementioned tech-

niques, it is no wonder that so far only LFA has made its
way into commercial IP routers. As mentioned above,

however, LFA cannot protect each next-hop in all net-

works. As a workaround, the IETF suggested to use
LFA and Not-via side-by-side in the cases when the for-

mer does not deliver sufficient levels of protection [14,

28]. Nevertheless, the authors in [16] proved that in real
networks, where the sheer size of the IP forwarding ta-

bles and traffic engineering also play an important role,

this combined method does not provide any significant

advantages over pure Not-via.

As a consequence of the above considerations, there
have been proposals lately to attempt to reach full fail-

ure coverage using solely Loop-free Alternates. The main

idea is, instead of extending the capabilities of LFA,
modify the underlying topology instead. Some research

works studied the question of how to augment the net-

work with the smallest number of new links to improve
the failure coverage [32, 33], while others [34–36] at-

tempted to optimize IGP link costs in order to generate

new loop-free alternates through altering default short-

est paths. In the former approaches, it was proved that
an exiguous number of additional links can significantly

improve failure coverages in most real network topolo-

gies. Therefore, for those operators whose budget can
afford adding new physical links to the topology, these

may provide good solutions. In those networks, how-

ever, where reconfiguring link costs is not an option due
to load balancing and traffic engineering issues, cost op-

timization may not be a good approach.

Recently, the IETF has published a generalization

of LFA, called the Remote LFA [31] in order to improve

the failure coverage provided by simple LFA. Since it is
based on LFA, it is already available in today’s routers

[41]. The main idea is that, in case of a failure, not

only direct neighbors can be used as a potential loop-
free alternate but further remote nodes as well. These

remote LFA staging points are reached trough IP tun-

nels, but these tunnels are restricted to shortest paths

as well. Note that in an MPLS/LDP (MultiProtocol
Label Switching–Label Distribution Protocol) enabled

network these tunnels are freely accessible via a sim-

ple label stack. Yet, even if remote LFA can produce
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higher failure case coverage than pure LFA, the level of

this protection still depends heavily on the underlying
topology and link costs. The main objective of this pa-

per is, consequently, to quantify this dependence using

a thorough graph-theoretical analysis and propose new
network optimization techniques to tweak a network

topology towards better remote LFA protection.

Note that IPFRR is not the only option for fast
protection in IP networks, since for MPLS different

fast protection schemes have been already standardized

[21] and ubiquitously implemented [18]. These methods,

however, are only available in networks with the Re-
source Reservation Protocol–Traffic Engineering (RSVP-

TE) extension deployed. Many operators, on the other

hand, rely on MPLS/LDP exclusively, which uses the
IP control plane for routing information and hence de-

pend crucially on pure IP protection schemes.

3 Remote Loop-Free Alternates

In Loop-Free Alternates, the backup routes are precom-

puted and installed in the router as the backup for the

primary routes. Once a router detects a link or adjacent
node failure, it switches to the backup route to avoid

traffic loss. Whole LFA considers only physically adja-

cent routers for backup routes, remote LFA allows the
backup next-hop to be more than one hop away. After

a failure, an adjacent router recognizes it and tries to

find a (remote) node whose shortest path to the desti-

nation is not affected by the failed component. If such
a router is found, then packets will be forwarded to

it. Remote LFA relies on tunnels to provide additional

logical links towards backup next-hops. After the re-
mote node receives the package it sends it towards the

primary destination. Note that the tunnelled traffic is

restricted to shortest paths just like “normal” traffic,
hence the tunnel must avoid the failure as well. Per-

haps the easiest way to understand remote LFA, and

how it differs from basic LFA, is through an example.

Consider the network depicted in Fig. 1(a) and suppose
that router s wishes to send a packet to a destination

d.

The next-hop of s along the shortest path towards
d is a. If, however, the link (s, a) fails, then node s has

to find an alternative neighbor to pass on the packet to.

It cannot send the packet to, say b, as b has an ECMP
(Equal Cost Multiple Path) to destination d and, as it

does not know about the failure, it can send the packet

back to s causing a loop. Therefore, s has no neighbor

that would not pass the packet back to it if chosen as
a bypass, so in this case the given source-destination

pair cannot be protected via standard LFA. However,

if a tunnel is created between s and e (marked by black

dashed line in Fig. 1(a)), then e, now being an indirect

neighbor of s, would become an LFA for d, thereby
protecting the link (s, a).

Consequently, when a link cannot be entirely pro-
tected with local LFA neighbors, the protecting router

seeks the help of a remote LFA staging point. Note that

this tunnel is only used as a detour, so it does not af-

fect the normal flow of traffic in any ways. There are
numerous tunnelling mechanisms which fulfill the re-

quirements of this design. In an MPLS/LDP (Multipro-

tocol Label Switching-Label Distribution Protocol [37])
enabled network, for instance, a simple label stack can

be used to provide the required tunnel without any ad-

ditional modification to the IP header of the packets.

Next, consider Fig. 1(b) where node s remains the

source but node d′ becomes the destination and link

(s, b) fails. Then (s, b) cannot be protected for a lack of
a suitable tunnel, since all nodes whose shortest path

does not go through (s, b) can only be reached from

s through (s, b) itself. For a formal definition, see the
next section. This suggests that while the use of rLFA

definitely can provide higher protection level against

link failures than pure LFA, it still does not facilitate

full protection for all failure cases in a general topology.

Next, examine how all the previously mentioned

properties are changed when node protection is also
taken into account. Consider the network depicted in

Fig. 2.

Suppose that node s wants to send a packet to des-
tination node d. The next-hop of s to d is node e. One

can easily check that if link (s, e) goes down then node

n and m are suitable repair tunnel endpoints, since the
shortest paths from them to node d avoid the failed

component. However, if not only the link (s, e) fails but

the node e itself, then node m can be the one and only

remote loop-free alternate, since node n has an ECMP
shortest path to node d through the failed node e. It

should also be noted that in case of node protection we

have to deal with the so called last-hop problem. This
says that if the destination node itself goes down, then

it obviously cannot be protected. Therefore, node pro-

tection between two neighboring nodes is undefined.

4 Model Formulation

Our mathematical model for studying rLFA is as fol-

lows. We model the network topology by a simple, undi-

rected graph G(V,E), with V being the set of nodes

and E the set of edges. Let n = |V | and m = |E|,
and denote the complement edge set with E. We as-

sume that links are bidirectional and point-to-point. As

mentioned earlier, we further assume that each link in
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a s b d′

d c e f

PLP of s with respect to link (s, a)
QLP of d with respect to link (s, a)

(a) Higher protection can be attained with rLFA

a s b d′

d c e f

PLP of s with respect to link (s, b)
QLP of d′ with respect to link (s, b)

(b) A basic situation that cannot be protected with rLFA either

Fig. 1 Sample network topologies with uniform link costs. Solid lines mark the IP network topology, while thick dashed lines
mark a tunnel

n m

s e d

PNP of s with respect to node e

QLP of d with respect to link (s, e)

QNP of d with respect to node e

Fig. 2 A sample network topology for illustrating how node protection differs from link protection

G is of the same unit cost, as this assumption allows us

to study the purely graph theoretical aspects of rLFA
separately from the effect of link weights. In a subse-

quent paper, we plan to relax this assumption. Further-

more, we presume that each node has a well-defined
next-hop towards each destination even if more than

one equal cost shortest paths exist. Since an arbitrary

link can only be protected if the graph of the network
is 2-edge-connected, we assume this minimum topolog-

ical requirement for link-protecting case. For the case

of node protection, we also assume the graph to be 2-

node-connected. We use the notation dist(u, v) for any
u, v ∈ V to describe the length of the shortest path

from u to v. Let neigh(s) denote the set of nodes which

are the neighbors of an arbitrary node s. Furthermore,
LFA(x, y) denotes the set of nodes protecting the (x, y)

source-destination pair.

During a failure, the repair tunnel endpoint needs
to be a node in the network reachable from the source

without traversing the failed component. In addition,

the repair tunnel endpoint needs to be a node from

which packets will normally flow towards their destina-
tions without being attracted back to the failed com-

ponent. Correspondingly, in the case of link failure the

set of routers which can be reached from a source with-

out traversing the failed link is termed the P-space [38]

of the source with respect to the failed link (hereafter
PLP, where LP refers to link-protecting case). Since the

source router will only use a repair path when it has de-

tected the failure of the link, the initial hop of the repair
path needs not be subject to the source’s normal for-

warding decision process. Therefore, the term extended

P-space (hereafter Pe
LP) was also defined, which is the

union of the PLPs of each of the source’s neighbors. The

usage of Pe
LP may enable the source router to reach po-

tential repair tunnel endpoints that were otherwise un-

reachable. Furthermore, the set of routers from which
the destination can be reached without traversing the

failed link is termed the Q-space (hereafter QLP) of the

destination with respect to the failed link. The intersec-
tion of the source’s PLP and the destination’s QLP with

respect to the failed link defines the viable repair tunnel

endpoints, known as PQLP-nodes, which are practically
the remote LFAs. As can be seen, for the case of the

example network depicted in Fig. 1 there is only one

node (e) that protects the link (s, a), assuming that

node s wants to send a packet to node d as destination.
However, considering d′ as the destination the PLP and

QLP turn out different. Now, there is no intersection of

s’ PLP and QLP of d′, thus viable PQLP-nodes do only
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exist if Pe
LP is used, since if s can pass the packet to

c, then node c will not pass the packet back and the
packet transmission will avoid the failed (s, b).

Next, we extend these definitions to the case of node

failures. Note that the rLFA specification [31] does not

consider this case, so ours is the first such extension. As
it turns out, the case of node protection hardly differs

from the case of link protection. When the next-hop

fails, the possible repair tunnel endpoint needs to be a
(remote) node, which is reached from the source with-

out traversing that failed next-hop itself (instead of only

the link to it, as before). Hence, the set of such routers is
termed the PNP (where the subscript NP refers to node-

protecting case) of the source with respect to the failed

node. As it was in the case of link protection, the term

extended P-space (hereafter Pe
NP) can also be defined as

the union of PNPs of each of the source’s neighbors. The

set of routers whose shortest path to destination avoid

the failed node is termed the QNP of the destination
with respect to the failed node. Here again the inter-

section of the source’s PNP and the destination’s QNP

with respect to the failed node defines the viable repair
tunnel endpoints, known as PQNP-nodes. For the sake

of easy comprehension, see Fig. 2 and consider node s

as source and node d as destination.

In this work, we slightly diverge from the terminol-
ogy of the specification [31] and we say that a node is

remote LFA if it is in the intersection of the “simple”

PLP (PNP) and QLP (QNP, respectively) and we shall

use the term “Extended remote LFA” henceforth when
Pe
LP (Pe

NP) is also to be considered for defining the rLFA

nodes, i.e., PQLP-nodes (PQNP-nodes). In the rest of

the paper, rLFALP(x, y) denotes the set of nodes that
protect source x and destination y with remote LFA if

the link to the next-hop fails. Similarly, rLFANP(x, y)

marks the set of nodes protecting source x and desti-
nation y with remote LFA if the next-hop itself fails.

Most of our analysis will be given for “plain” rLFA,

as this technique can be easily implemented and de-

ployed since it does not require profound modifications
to the forwarding plane. Extended rLFA, on the other

hand, requires sophisticated functionality. Thus, we ex-

pect, implementations to provide only the plain rLFA

initially and so we mostly treat this case, and only
highlight some important aspects of “Extended remote

LFAs”.

From the above discussion, it is clear that in gen-

eral not all nodes have LFA or even remote LFA pro-
tection to every other node. To measure link and node-

protecting rLFA coverages in a graph G, we adopt and

redefined the simple metric from [28]:

µLP (G) =
#rLFALP protected (s, d) pairs

#all (s, d) pairs
(1)

µNP (G) =
#rLFANP protected (s, d) pairs

#all non-adjacent (s, d) pairs
(2)

For LFA, the coverage ηLP(G) and ηNP(G) can be

defined in a similar way.

5 A Mathematical Toolset for Remote LFA

Below, we give some basic machinery to handle remote

LFAs somewhat more plausibly than what is provided
by the mere definitions of P-spaces and Q-spaces. We

shall separate the discussion into two parts. First, in

line with the specification [31], we consider only single
link failures. Then, in the second part we extend our

techniques to single node failures as well.

5.1 Link-protecting case

An arbitrary failed link along the shortest path between
a source and a destination can only be protected if the

intersection of PLP of the source and the QLP of the

destination is not empty. First, we show an alternative
characterization for rLFALP that, as shall be seen, is

more amenable to theoretical analysis. Consider the be-

low reformulation of this requirement in terms of the
shortest path distance function dist.

Observation 1 For a source node s and next-hop e,

some n ∈ V is in PLP(s, e) if and only if

dist(s, n) < dist(s, e) + dist(e, n) , (3)

and some n ∈ V is in QLP(s, d) if and only if

dist(n, d) < dist(n, s) + dist(s, d) . (4)

One can easily see, that (4) is the basic loop-free

criterion of link-protecting LFAs [28], while (3) means
that the repair tunnel cannot traverse the failed link.

The notion of Pe
LP could also be expressed with distance

functions:

Observation 2 For a source s and next-hop e, some
n ∈ V is in the extended Pe

LP(s, e) if and only if ∃v ∈
neigh(s) : dist(v, n) < dist(v, s)+dist(s, e)+dist(e, n).

It should be noted that the conditions above hold
for arbitrary weighted graphs as well.

Next, we formulate an important corollary of the

previous observations. In particular, we show that if an

arbitrary node on the shortest path between a source
and a destination is rLFALP protected, then every fur-

ther node along that shortest path is rLFALP protected

as well.
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s e q d

n

Fig. 3 Illustration for the proof of Lemma 1
.

Lemma 1 Let (s, d) be a source-destination pair and

let q be a node along the default shortest path from s to
d. If rLFALP(s, q) 6= ∅, then rLFALP(s, d) 6= ∅.

Proof Consider Fig. 3 and suppose node e is the next-

hop from s to d. The wavy lines denote the existence
of a path between the given nodes. The thick line in-

dicates the shortest path from s to d. For n to be in

rLFALP(s, d), it has to fulfill the conditions stated in

Obs. 1. First, it satisfies (3) for (s, d) since PLP does
not depend on the destination node. Additionally, in

case of link protection it only needs to satisfy (4), no-

tably dist(n, d) < dist(n, s) + dist(s, d). We know that
dist(n, q) < dist(n, s)+dist(s, q) and due to the triangle

inequality3 dist(n, d) ≤ dist(n, q) + dist(q, d). There-

fore, dist(n, d) < dist(n, s) + dist(s, q) + dist(q, d) ⇒
dist(n, d) < dist(n, s) + dist(s, d). ⊓⊔

An important consequence of Lemma 1 is the simple

observation that a graph has full rLFALP protection, if
and only if each node has an rLFALP to each of its

next-hops.

Corollary 1 Let G be a graph with unit link costs.

Then, µ(G) = 1, if and only if for each (u, v) ∈ E,
u has an rLFALP to v and v has an rLFALP to u.

Next, we show that there is a deep connection between

basic link-protecting LFA (LFALP) and rLFALP in unit

cost networks.

Theorem 1 Let G(V,E) be a graph with unit link costs,

let (s, d) be a source-destination pair, let e be the default

next-hop of s to d, and let u be an arbitrary node with

u ∈ neigh(s), u 6= e. Then, u ∈ rLFALP(s, d) if and
only if u ∈ LFALP(s, d).

Proof First, we verify the forward direction. Easily, u ∈
rLFALP(s, d) implies u is in QLP, which precisely coin-
cides with the condition for u to be a link-protecting

LFA. Second, we check the reverse direction. If u ∈

3 The triangle inequality states that for any triangle, the
sum of the lengths of any two sides must be greater than or
equal to the length of the remaining side. It is one of the
defining properties of the distance function, which is used in
shortest path routing.

LFALP(s, d), then u, by definition, fulfills (4). In ad-

dition, it also satisfies (3) due to the assumption u ∈
neigh(s), because in a uniform cost network the default

shortest path between adjacent nodes is through the

direct link, and hence the s → u shortest path always
avoids the (s, e) link. ⊓⊔

5.2 Node protection

In this subsection, we extend the previous statements
to node protection. Now, suppose that not the link be-

tween an arbitrary source s and it’s next-hop e fails but

the next-hop e itself. It is easy to see from the above
discussion that the condition for PNP remains the same

as for PLP, thus only QNP has to be re-defined.

Observation 3 For a source s, next-hop e and desti-

nation d, some n ∈ V is in QNP(s, d) if and only if

dist(n, d) < dist(n, e) + dist(e, d) . (5)

Similarly, it is easy to observe that (5) is the basic
loop-free criterion of node-protecting LFAs [28]. The

concept of Pe
NP could also be expressed as follows:

Observation 4 For a source s and next-hop e, some
n ∈ V is in Pe

NP(s, e) if and only if ∃v ∈ neigh(s) :

dist(v, n) < dist(v, e) + dist(e, n).

Again, note that these conditions also hold for arbitrary

weighted graphs.
Next, we reformulate Lemma 1 and show that if an

arbitrary node on the shortest path between a source

and a destination is rLFANP protected, then every fur-
ther node along that shortest path is rLFANP protected

as well.

Lemma 2 Let (s, d) be a source-destination pair and

let q be a node along the default shortest path from s to

d. If rLFANP(s, q) 6= ∅, then rLFANP(s, d) 6= ∅.

Proof Consider example network depicted in Fig. 3 again

and suppose again node e is the next-hop from s to

d. For n to be n ∈ rLFANP(s, d), it has to fulfill (3)
and (5). As it was in the link-protecting case, we do not

have to deal with PNP since it does not depend on the

destination node. We only have to verify the condition
of QNP: dist(n, d) < dist(n, e) + dist(e, d). Since n ∈
rLFANP(s, q), then dist(n, q) < dist(n, e) + dist(e, q),

and due to triangle inequality dist(n, d) ≤ dist(n, q) +

dist(q, d) ⇒ dist(n, d) < dist(n, e)+dist(e, q)+dist(q, d) ⇒
dist(n, d) < dist(n, e) + dist(e, d), which completes the

proof. ⊓⊔

Next, we show that, analogously to the link protect-

ing case, node-protecting LFAs and rLFAs are deeply

related to each other in unit cost networks.
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Theorem 2 Let G(V,E) be a graph with unit link costs,

let (s, d) be a source-destination pair, let e be the default
next-hop of s to d, and let u be an arbitrary node with

u ∈ neigh(s), u 6= e. Then, u ∈ rLFANP(s, d) if and

only if u ∈ LFANP(s, d).

The proof of the theorem goes along similar lines

as the proof of Theorem 1 and so we do not present it
herein. ⊓⊔

6 Analysis of extended remote LFA

Next, we digress a little to show that extended rLFAs

are a powerful tool for link-protection. In particular,
first we show that in case of link failures extended rLFALP

ensures 100% failure coverage in every network.

Theorem 3 Let G be an arbitrary 2-edge-connected graph
with uniform link costs and suppose that remote LFA

can use the Pe
LP option. Then, in case of link failures

µ(G) = 1.

Proof We show that for each edge (u, v) ∈ E, u has a

remote LFA to v (and vice versa). This will mean that
every node has an rLFALP to each of its next-hops,

which guarantees µ(G) = 1 by Corollary 1. Since G is

2-edge-connected, we know that (u, v) is contained in at
least one chordless cycle. Let the length of this cycle be

k. If k is odd, then the single node at distance k−1
2 from

v along the cycle is a remote LFA to u. If, on the other

hand, k is even, then the PLP(u, (u, v)) ∩ QLP(u, v) is
empty. Observe, however, that the single node of dis-

tance k
2 from u is contained both in QLP(u, v) and the

extended PLP(w, (u, v)), where w is the neighbor of u
other than v along the cycle, and so it is a remote LFA

in terms of the Pe
LP option. This completes the proof.

⊓⊔

Consequently, in general it can be stated that if re-
mote LFA implementations support extended P-space

then unit cost networks have full protection against sin-

gle link failures. This may be an important factor to
consider by an operator willing to deploy rLFA and to

an IP device vendor to implement extended rLFA in its

router products.

However, when node failures are also taken into ac-

count, then extended P-space with respect to the failed
node is not always enough to guarantee 100% failure

coverage in every network. As a proof, consider the

simple network depicted in Fig. 4. Assume that node
s wants to send a packet to node d. The default short-

est path goes through node c.

Under the assumption that only the link (s, c) fails

(see Fig. 4(a)), then it can be protected since PLP ∩QLP 6=

∅ (b ∈ PQLP-nodes). Next, consider the case of Fig. 4(b)

where the next-hop c went down. The potential repair
tunnel endpoints are in PQNP-nodes, which is again the

intersection of PNP of s and QNP of d. Unfortunately,

this remains the case even if using the extended P-space
Pe
LP would be an option. This means that there are

networks that cannot be 100% protected against node

failures by nor “plain” neither extended remote LFA.
From the above discussion, one can easily see that

the requirements of node protection are stricter than

those for link protection. We can summarize our obser-

vations as follows.

Lemma 3 PLP = PNP but Pe
NP ⊆ Pe

LP, and QNP ⊆
QLP.

Proof First, note that it was already concluded that
the protection scheme does not affect P-spaces. Sec-

ond, to prove the connection between Pe
LP and Pe

NP

we use Obs. 2. and Obs. 4. In the case of Pe
NP, there

is a node n: dist(v, n) < dist(v, e) + dist(e, n), where

v ∈ neigh(s) and e is the default next-hop. Due to

triangle inequality dist(v, e) ≤ dist(v, s) + dist(s, e),

and using this in our formal definition of Pe
NP results

that dist(v, n) < dist(v, e) + dist(e, n) ≤ dist(v, s) +

dist(s, e) + dist(e, n), which corresponds to the formal

definition of Pe
LP. Therefore, P

e
NP ⊆ Pe

LP. Third, since
QLP and QNP are actually the loop-free criteria of link

and node-protecting LFAs, respectively, the property

QNP ⊆ QLP is inherited from pure LFA. ⊓⊔

Hereafter, the terms PLP and PNP will be used with-

out subscript to highlight that these sets do not differ

under link protection and node protection.

7 Analysis of “plain” remote LFAs

Next, we return to the case of plain remote LFAs as

this is the option that is expected to be supported first

by commercial routers. Hence, in the rest of the paper

we consider only the standard definitions for Ps, QLP

and QNP.

We give a graph-theoretical characterization of rLFA

coverage, as measured by µLP(G) and µNP(G). Our
main aim is to identify the attainable lower and up-

per bounds of plain rLFA failure coverage against both

link and node failures. We describe some methods to
easily calculate failure coverages in different families of

graph topologies notable in building resilient networks.

In the course of the analysis, our aim is to generalize

previous propositions stated for LFAs in [32, 34, 36] to
rLFA. First, we deal with single link failures, then in

the second subsection we focus on node protection as

well.
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e a b

d c s

PLP with respect to link (s, c)

QLP with respect to link (s, c)

Pe
LP with respect to link (s, c)

(a) Pe
LP provide full rLFA protection against single link failures

e a b

d c s

PNP with respect to node c

QNP with respect to node c

Pe
NP with respect to node c

(b) Pe
NP cannot guarantee full protection against single node failures

Fig. 4 Illustration of a network with different protection scenarios

7.1 Link protection

7.1.1 Graphs with good coverage

Network operators facing with the challenge of deploy-

ing remote LFA need to ask the question, whether their
current network topology is amenable to rLFA or not.

Therefore, it is crucial to separate graph topologies that

are “good” for rLFALP (i.e., the ones with µLP(G) = 1)
away from those that attain a particularly low coverage.

First, we characterize the good cases for rLFALP.

Theorem 4 Let G be an undirected, simple graph with
uniform link costs. Now, µ(G) = 1, if and only if for

each (i, j) ∈ E : ∃n 6= i, j so that dist(i, n) = dist(j, n).

Proof The result comes from applying (3) and (4) di-

rectly to (i, j). Therefore, PLP can be defined as dist(i, n) <
dist(i, j)+dist(j, n), whileQLP as dist(j, n) < dist(n, i)+

dist(i, j). Since link costs are unit cost, then dist(i, j) =

1, accordingly dist(i, n) < 1+dist(j, n) and dist(j, n) <
dist(n, i) + 1 → dist(j, n) + 1 < dist(i, n) < dist(j, n) +

1 ⇒ dist(i, n) = dist(j, n). The backward direction of

the proof comes from Cor. 1. ⊓⊔

Notable graph topologies with 100% failure coverage in-
clude chordal graphs [39] (see Fig. 5(d)), infinite grids

(see Fig. 5(b)) and “Möbius ladder” topologies (see

Fig. 5(c)).

7.1.2 Worst-case graphs with rLFALP

In the following, we turn to discuss lower bounds for

rLFALP, that is, we seek worst-case graphs, whose cov-

erage against single link failures is particularly poor.

It has been observed previously that quintessen-

tial worst-case graphs for IPFRR are rings, i.e., cycle
graphs in which all nodes are of degree two [12, 40].

Consequently, we consider odd rings first, and then we

shall treat even rings. Before that, we repeat a previous

proposition from [32], which proved the lower bounds
on the failure case coverage of link protecting LFA, de-

noted therein by ηLP(G):

Proposition 1 For an even ring on n nodes ηLP(G) =
1

n−1 , and for an odd ring on n nodes ηLP(G) = 2
n−1 .

Next, we generalize these results to rLFALP. In fact,

we shall do a bit more, as our analysis will account for
the length of the repair tunnel, which is an important

factor in provisioning remote LFA4.

Theorem 5 Let Cn be an odd ring on n nodes with

n ≥ 3, and let 1 ≤ k ≤ n−1
2 denote an upper bound

on the length of the tunnel from the source node to its
rLFA. Then, µ(Cn) =

2k
n−1 .

Proof Consider a ring topology on n nodes, n odd, let

(s, d) ∈ E be a neighboring source-destination and sup-
pose that the link between them went down. In this case

s needs to find a possible remote loop-free alternate

4 See the remote-lfa maximum-cost option on [41]
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since it cannot use its other neighbor because it will

pass back the packet. Thus, the possible repair tunnel
endpoints are situated on the other side of the ring with

respect to the failed link, i.e., if an arbitrary node u ∈
rLFALP(s, d), then dist(s, u) ≤ n−1

2 which is tight if d ∈
neigh(s). One can observe that if maximal tunnel length

is permitted, i.e., k = n−1
2 , then such kind of repairing

node always exists (µLP(Cn) =
n(n−1)
n(n−1) = 1). However,

if the tunnels need to be shorter than an arbitrary node

u can only be an rLFALP is dist(s, u) ≤ n−1
2 − l, where l

is the tunnel shortening coefficient, i.e., the greater the
l, the shorter the tunnel. Trivially, shortening the tun-

nel with l dissolves the protection among ∀(s, d) pairs,
where dist(s, d) = l. Therefore, rLFALP failure coverage

can be modified as follows: µLP(Cn) =
n(n−1−2l)
n(n−1) . Now,

consider dist(s, u) ≤ k, where k represents the length

of the tunnel. In this manner l = n−1
2 −k meaning that

µLP(Cn) =
n−1−n+1+2k

n−1 = 2k
n−1 . ⊓⊔

Note that k = 1 means that only neighboring nodes

can be used as repair tunnel endpoints, which essen-

tially corresponds to simple loop-free alternates. In this

case, Theorem 5 yields the same result as Prop. 1 stated
for LFALP for odd rings.

Theorem 6 Leg Cn be an even ring on n nodes with

n ≥ 4, and let 1 ≤ k ≤ n−2
2 denote an upper bound

on the length of the tunnel from the source node to its
rLFALP. Then, µLP(G) = 2k−1

n−1 .

Proof Consider a ring on n nodes, n even, and suppose

that link between an arbitrary neighboring (s, d) source-
destination pair went down. According to the case of

odd ring, s need to pass the packet to the other side of

the ring, however, the possible repair tunnel endpoints

cannot be reached without traversing the failed com-
ponent. Thus, for ∀(s, d) pairs, where d ∈ neigh(s) :

the link (s, d) cannot be protected. One can observe,

if dist(s, d) ≥ 2, then tunnels, avoiding the failed link
exist. Therefore, for an arbitrary source s has remote

LFAs to ∀d destination excluding its neighbors (µLP(Cn) =
n(n−3)
n(n−1) ). However, assuming shorter tunnels results that

for possible u ∈ rLFALP(s, d) : dist(s, u) ≤
n
2 − l, where

l is a shortening coefficient as it was in the case of
odd rings. Now, l = n

2 − k meaning that µLP(Cn) =
n−1−n+2k

n−1 = 2k−1
n−1 . ⊓⊔

As before, supposing k = 1 results the corresponding
statement in Prop. 1 for LFALP for even rings. In this

regard, rLFALP can be seen as a natural generalization

of LFALP.

k

s a b c d

e f g h i

S(s)

(a) Grid on n = 2k
nodes

k

s a b c d

e f g h i

(b) Infinite grid on
n = 2k nodes

k

s a b c d

e f g h i

(c) Möbius ladder on n =
2k nodes
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b

c

d

e

f

(d) Chordal
graph
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d e

f

g

h i

j

(e) 4-Propeller
graph on
n = 3k + 1

k

s a

b c

d e

S(s)

(f) Complete
bipartite graph
on n = 2k nodes

Fig. 5 Illustration topologies

7.1.3 Worst-case scenarios for rLFALP:

2-node-connected graphs

Below, we continue our analysis towards finding 2-node-
connected graphs with low rLFALP failure coverage. In

what follows, we suppose that there is no constraint on

the length of the tunnel.

Since the simplest 2-node-connected network with

low failure coverage is a 4-cycle (µLP(C4) =
1
3 ), we ex-

amined graphs that contain a large number of 4-cycles
as subgraphs. We considered the networks depicted in

Fig. 5(a) where k denotes the number of 4-cycles, and

Fig. 5(f) where k marks the number of node pairs. The
following theorem concludes the results:

Theorem 7 For any k > 2 there is a 2-node-connected
graph G on n = 2k nodes with µLP(G) = k−1

2k−1 .

As a proof, we show that grids (Gk) and complete bi-

partite graphs (Kk,k) attain this limit. In grids, ∀(s, d)
pairs: d ∈ neigh(s) or d ∈ S(s) cannot be protected,

where S(s) denotes the set of nodes situated on the same

side. It is easy to see that every node is in a 4-cycle

wherein neighbors as destinations are not protectable
and the shortest paths to every node on the same side

traverse one of the neighbors. Thus, such nodes are un-

protected according to Lemma 1.
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Similar is the case for Kk,k as well. Each d ∈ S(s)

are protected while ∀d′ /∈ S(s) are neighbors of s and,
due to the property of bipartite graphs that every cycle

is even, neighbors cannot be protected either. ⊓⊔

7.1.4 Worst-case scenarios for rLFALP:

2-edge-connected graphs

So far, we have seen that in 2-node-connected graphs

as many as 50% of the node-pairs can go unprotected

by rLFA against single link failures. Below, we show
that in slightly less dense 2-edge-connected graphs the

situation can be even worse.

Theorem 8 For any k ≥ 1 there is a 2-edge-connected
graph G on n = 3k + 1 nodes with µLP(G) = 1

3 .

As a proof, we show that the so called “4-propeller
graph” (Pk) attains this limit. Thus, consider (Pk) de-

picted in Fig. 5(e) where k denotes the number of blades.

One can see that the nodes on the pitch of the propeller
blades have remote LFAs to every destination except

the neighbors, since they are on an even cycle. Nodes

on the side of the blades considered as sources can only

protect adjacent link failures if the nodes in the face of
them are considered as destinations. Finally, the node in

the middle has remote LFAs only for destination nodes

situated on the pitch of the blades. Thus,

µLP(G) = k(3k−2)+2k+k

3k(3k+1) = 3k2+k
3k(3k+1) =

k(3k+1)
3k(3k+1) =

1
3 .

⊓⊔

7.2 Node protection

Next, we turn to find the graphs with the lowest and

highest rLFANP coverage, as measured by µNP. First,
we characterize the good cases and show that, as it was

in the link-protecting case, there exist graphs that can

be fully protected against single node failures. Then, we
show that even µNP(G) = 0 is possible, and this can be

attained even in a not so complicated network topology.

7.2.1 Graph with good coverage

Since node protection is undefined between two arbi-
trary neighboring nodes, we need to analyze only those

(s, d) pairs, where dist(s, d) > 1. The following theorem

concludes the results:

Theorem 9 Let G be an undirected, simple graph with

uniform link costs, and let S2 be a set of 2-neighbors in

G: (u, v) : dist(u, v) = 2. Now, µNP = 1, if and only if
for each (s, d) ∈ S2 there exists n for which

dist(s, n) = dist(n, d) or dist(s, n) + 1 = dist(n, d) .

s e d

n

Fig. 6 Illustration for Theorem 9

Proof Consider the (s, d) pair in S2 depicted in Fig. 6,

where dist(s, d) = 2 and the wavy lines denote the ex-

istence of paths among the nodes. In this case, for n
to be rLFANP(s, d) it has to fulfill (3) and (5), namely

dist(s, n) < 1 + dist(e, n) and dist(n, d) < dist(e, n) +

1 ⇒ dist(s, n) = dist(n, d). On the other hand, consider

now that dist(e, n) = k. Then, due to triangle inequal-
ity, dist(s, n) and dist(n, d) can only be 1 ≤ x ≤ k. How-

ever, if x = 1, then dist(n, d) can only be dist(s, n) + 1,

since if it does not, then the next-hop of s to destination
d would not be node e. The backward direction of the

proof comes from Lemma 2, as if a next-hop is rLFANP

protected, then every further node, including the next-
next-hop, is protected as well. Therefore, if it is true for

each non-neighboring node pair, then µNP(G) = 1. ⊓⊔

There is a bunch of networks for which the state-

ment of Theorem 9 applies. For instance, odd and even
rings, infinite grids, and “Möbius ladder” topologies all

qualify.

7.2.2 Worst-case graphs for rLFANP

Next, we turn to discuss which networks are the most

inconvenient for rLFANP. Note that there are certain

graphs for which studying µNP does not make sense,

as it happens to be undefined. Such is the case, for in-
stance, of complete graphs with unit link costs: here,

every node-pair is adjacent and hence rLFANP is not

defined due to the last-hop problem. In our analysis,
therefore, we only considered graphs in which at least

on non-adjacent node pair exists (i.e., non-complete

graphs). Even in these graphs the question is only in-
teresting when single node failures, at least theoreti-

cally, can be repaired, so we shall focus only on 2-node-

connected graphs.

Theorem 10 For any n > 4, there is a 2-node-connected

graph G on n nodes with µNP(G) = 2(n−3)
n2

−5n+6 .

Again, as a proof we show a particular graph on n
nodes, hereafter denoted by Ln, that attains this limit.

An example for Ln for the case when n = 6 is depicted

in Fig. 7. The main topological characteristic of Ln is



On Providing Fast Protection with Remote Loop-Free Alternates 13
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Fig. 7 Worst-case graph for rLFANP on n = 6 nodes

that there is one node on the top with degree of n− 1,

there are two nodes with degree of 2, while the remain-

ing n − 3 nodes have a degree of 3. Correspondingly,
the number of non-adjacent source-destination pairs is

2(n− 3) + (n− 3)(n− 4) = n2 − 5n+ 6. For each non-

neighboring node pair (s, d) : dist(s, d) = 2 via the node
on the top. One easily sees, in addition, that only those

node pairs can be protected that have ECMPs to each

other, that is, which are in opposite in the 4-cycles. The
number of such node pairs equals twice the number of

4-cycles in the graph (i.e., n − 3), and therefore there

are 2(n − 3) protected node pairs. Consequently, we

have µNP(Ln) = 2(n−3)
n2

−5n+6 . Observe that, in the limit,

this bound tends to zero, meaning that in very large

Ln graphs the fraction of rLFA node-protected source-
destination pairs diminishes. ⊓⊔

So far, we have sought a tight characterization for

the lower bound on µLP and µNP for any unweighted

graph G. At the moment, we do not have clear answers
to this intriguing but hard graph-theoretical problem.

What we could prove, however, is that in certain 2-

node-connected unweighted graphs µLP(G) can be as
low as 1

2 , and in 2-edge-connected graphs an even lower

threshold of 1
3 is also realizable. So far, we have not

been able to identify any 2-node-connected or 2-edge-

connected graph with smaller rLFALP coverage. Thus,
we conjecture that k−1

2k−1 is an actual lower bound on

µLP(G) for 2-node-connected graphs, while 1
3 is a lower

bound on µLP(G) for 2-edge-connected graphs. In the
case of node protection, we have stronger results: we

could show that there exist certain large graphs with

µNP → 0, which, evidently, is a lower bound, at least in

the limit. Regarding graphs of practical size, however,
we do not have better lower bound at the moment than

the one for Ln graphs.

7.2.3 Computational study

It turned out that finding a universal lower bound on

rLFALP or rLFANP coverage is a hard problem. Clearly,

a computational approach might be instructive to sup-

Table 1 Lower bounds measured by µLP and µNP in worst-
case graphs on n nodes

n µ2e
LP Bl µ2n

LP Bl µNP Bl

3 1 1 1 1 undefined undefined

4 1
3

1
3

1
3

1
3

1 1

5 2
5

2
5

2
3

2
3

6 2
5

2
5

2
5

1
2

1
2

7 1
3

1
3

3
7

2
5

2
5

8 19
56

3
7

3
7

1
3

1
3

9 1
3

31
72

2
7

2
7

port or refute our conjectures. Hence, we generated

all non-isomorphic networks on n nodes where n ∈
{1, 2 . . . 9}. Note that the generation is very time con-
suming even if only non-isomorphic graphs are created.

Table 1 summarizes the lower bounds with the following

notations: n denotes the number of nodes, µ2e
LP and µ2n

LP

notes the failure coverage against single link failures
in case of 2-edge-connected and 2-node-connected net-

works, while µNP denotes the failure coverage against

single node failures in non-complete 2-node-connected
networks. The columns marked by Bl denote the con-

jectural lower bounds.

In the case of link protection, it can be seen that
until n ≤ 4 results are the same, and if n ≥ 5 coverages

start to increase. One can observe that in the case of

n = 7 the given failure coverage equals to the coverage
attained by 4-propeller graphs mentioned above. It also

shows that lower bounds of 2-edge-connected networks

are the lowest.

The case of node protection turns out different. If

n = 4 the coverage is 1, while if n > 4 the coverages

start to decrease. The most important observation is

that the conjectured lower bounds are tight for every
2-node-connected network until n = 9 nodes suggesting

that the result of Theorem 10 hold true as the attain-

able lower bound on µNP in 2-node-connected networks.

8 Remote LFA graph extension

As observed, there exist a lot of graphs with small fail-

ure coverage, measured in terms of µLP and µNP. Hence,
in this section we ask to what extent we need to in-

tervene at the graph topology to improve coverage to

100% in both link and node-protecting cases. This prob-

lem is important since (i) this would answer how “far”
are poorly protected networks from perfect rLFA failure

coverage and (ii) would provide an easy way for opera-

tors to boost the protection in their networks. We adapt
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the formal description of the LFA graph extension prob-

lem from [32] to link-protecting rLFA as follows:

Definition 1 Link-protecting rLFA graph extension prob-

lem: Given a graph G(V,E), find the smallest subset F

of the complement edge set E ofG such that µLP(G(V,E∪
F ) = 1.

Similarly, in the case of node protection this definition

can be formalized as follows:

Definition 2 Node-protecting rLFA graph extension
problem: Given a graph G(V,E), find the smallest sub-

set F of the complement edge set E of G such that

µNP(G(V,E ∪ F ) = 1.

At the moment, we do not know the complexity
of this problem but, based on our former experience

with similar network optimization problems for LFA, it

seems highly probable that it is also NP-complete. To
actually solve the problem, we adopted the greedy graph

extension algorithm from [32], which, at least for LFA,

performed almost the same as the optimal algorithm,

but it is much faster and simpler. Here, we extend
this algorithm to the case of rLFA, both for the link-

protecting and the node-protecting cases. Moreover, we

also developed a simulated annealing-based heuristics
as another approach to complement our studies in in-

creasing the rLFA failure coverage in different kinds of

networks.
First, we show the greedy graph extension method.

This algorithm adds the best edge from the complement

edge set that improves the coverage at most. Formally,

the algorithm is defined as follows:

Algorithm 1 Greedy rLFA graph extension for graph

G(V,E)

1: while µ(G(V,E)) < 1
2: (u, v)← argmax

(i,j)∈E

µ(G(V,E ∪ {(i, j)}))

3: E ← E ∪ {(i, j)}
4: end while

Note that the pseudo-code works the same for the

link-protecting and the node-protecting case. The vari-
ant for the link-protecting case is called the greedy link-

protecting rLFA graph extension algorithm, while the

one optimizing for node-protection is called the greedy
node-protecting rLFA graph extension algorithm. The

following theorems characterize the terminating condi-

tions of these algorithms.

Theorem 11 Let G(V,E) be a graph with unit link
costs. Then, the greedy link-protecting rLFA graph ex-

tension algorithm terminates with full link-protecting

rLFA coverage regardless of the input graph.

Proof Alg. 1 surely terminates when all complement

links are added, but at this point µLP(G) = 1 as com-
plete graphs have full link-protecting rLFA coverage.

⊓⊔

Theorem 12 Let G(V,E) be a graph with unit link
costs and suppose that G(V,E) is not a complete graph.

Then, the greedy node-protecting rLFA graph extension

algorithm terminates with full node-protecting rLFA cov-

erage regardless of the input graph.

Proof We cannot use the same approach directly as

above, because with all the complement edges added we

again reach a complete graph but for this graph µNP is

not defined (recall the discussion in Section 7.2). We ob-
serve, however, that if we add all the complement edges

except one, then we get an almost complete graph in

which node protection is defined between one and only
one node pair. As this node pair is trivially protected

against a single node failure (since the nodes in the pair

are not neighbors and they are situated in a 4-cycle),
therefore µNP = 1 for this graph. As the algorithm is

guaranteed to converge to this graph, unless the input

is a complete graph or the algorithm terminates previ-

ously, the proof is complete. ⊓⊔

Next, we turn to the other algorithm. We chose the

simulated annealing probabilistic metaheuristic as the

main framework, and within this framework we ob-
tained different heuristics by different objective func-

tions. Basically, the algorithm works as follows: given

an input graph G(V,E), we try to augment the graph

with a randomly chosen edge (i, j) from the complement
edge set E. If the failure coverage was improved, then

we unconditionally accept this edge. Otherwise, if the

coverage is worse, then the edge could still be accepted
with a certain probability, depending on the actual ob-

jective function and a system parameter called the tem-

perature, which was initially set to relatively high value
and is decreased in every iteration. This ensures the sys-

tem to escape easily from local optima in the beginning,

and eventually get stuck in a good quality optimum.

The process terminates at that time when temperature
is dropped to 0 or failure coverage reached 1. We also

used tabu lists to preclude the iteration from oscillating

between two or more already tested new edge.

The pseudo-code for the simulated annealing based
heuristic is given in Alg. 2. Note again, that it works

similarly for the link-protecting and node-protecting

case. The pseudo-code uses two procedures, specified
as follows:

– choose random edge(i, j) selects randomly an edge

(i, j) ∈ E to be added to the network.
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Algorithm 2 Simulated Annealing based rLFA graph
extension for graph G(V,E)
1: T ← T0

2: while µ(G(V,E)) < 1
3: choose random edge((i, j) ∈ E)
4: if accept edge(∆µ, T ) then

5: E ← E ∪ {(i, j)}
6: end if

7: T ← T − 1
8: end while

– accept edge(∆µ, T ): after adding a randomly selected

new edge to the network, the new failure coverage

µ(G(V,E ∪ (i, j))) is examined. If it was improved,

then the new edge is added irrevocably to the net-
work. Otherwise, two different objective functions

(∆D) are evaluated in order to check how bad the

new solution is. One of them only checks how the
failure coverage declined, formally∆D = µ(G(V,E))−
µ(G(V,E∪(i, j))). Besides, the other objective func-
tion takes into account the number of newly added
links as well in order to try to keep it low, for-

mally: ∆D = ∆NP − 2m, where NP is the number

of protected source-destination pairs and m is the

number of all the edges including the newly added
one as well. These objective functions are tested

via the so called metropolis test. Metropolis test

is used in simulated annealing heuristics to accept
“bad” solutions if it suits for a criterion, namely

e(
−∆D
T

) > R(0, 1), where ∆D is the change of the

objective function, T is the actual temperature of

the system, and R(0, 1) is a random number in the

interval [0, 1]. According to the output of this test,
the newly added edge is left in the network perma-

nently or promptly removed. One can observe that

the two different objective functions result two dif-
ferent kind of heuristics. Therefore, let SAco be the

simulated annealing with the former objective func-

tion, and let SAcne be the simulated annealing with
the latter objective function.

8.1 Numerical evaluations

In this section, we examine how many links one must

add in realistic graphs to achieve full rLFA coverage,
both against single link- and node-failures. We chose

existing real-world topologies inferred from the Rock-

etfuel [42] data set, the SNDLib [43] graph library, and

the Topology Zoo project [44]. In all topologies, we set
link costs uniformly to 1. Note that there are networks

in the data set where inferred link costs were exactly

unit costs.

We executed the greedy algorithm as well as the sim-

ulated annealing based heuristics. From the latter we
executed 20000 rounds, with initial temperature T0 =

150 and tabu list size of 20. The detailed results of the

link-protecting case are in Table 2 with the following
notations: n is the number of nodes and m is the num-

ber of links in G(V,E); ηLP is the initial link-protecting

LFA coverage; µLP is the initial link-protecting rLFA
coverage; Grη denotes the number of new links added

by the LFA greedy graph extension algorithm to reach

100% link-protecting LFA coverage, while Grµ gives the

same result for remote LFA. SA∆µ denotes the number
of new links added by SAco, and last but not least, SAγ

marks the number of new links added by SAcne.

The first observation is that there were five networks

that were fully protected with rLFA right away, even

without the need of any graph extension. Second, the
number of links that have to be added to reach full

coverage with rLFA is much less than when only simple

link-protecting LFA capable routers are present, irre-

spectively of which graph extension method was used.
Nevertheless, on average the number of links added

by the different simulated annealing based heuristics

is greater than in the case of the greedy algorithm.
This suggests that for the graph extension problem the

greedy approach is the most plausible solution and, if

we can draw conclusions from the case of pure LFA
in [32], it probably performs very close to the optimal

solution too. The largest improvement in rLFA cover-

age, compared to simple LFA, is seen in networks where

initially η(G) < 0.9 (see, e.g., in the Geant topology).
In the Deltacom topology, the installation of 79 new

links was necessary to achieve full LFA coverage, while

with only 4 additional links full rLFA coverage is at-
tainable. The results indicate that (i) more than 50%

of the networks lend themselves to rLFA extension since

the maximum number of links needed is less than 2; (ii)
on average 3.6 new links are necessary to attain 100%

rLFA coverage while in case of simple LFA this number

is 14.5.

In the second run, we examined how the proposed

algorithms could improve the failure coverage against

single node failures. Since the extended rLFA variant
can play an important role in the case of node pro-

tection, even if the link costs are uniform, we evalu-

ated that possibility as well. Table 3 contains the re-
sults, where again n is the number of nodes and m

is the number of links in G(V,E); ηNP is the initial

node-protecting LFA coverage; µNP is the initial node-

protecting rLFA coverage, while µe
NP is the initial node-

protecting rLFA coverage with the extended rLFA op-

tion. Grη denotes the number of new links added by

the LFA greedy graph extension algorithm. Grµ marks
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Table 2 Remote LFA graph extension results for link protection

Topology n m ηLP Grη µLP Grµ SA∆µ SAγ

AS1221 7 9 0.833 1 0.833 1 1 1

AS1239 30 69 0.898 6 1 0 0 0

AS1755 18 33 0.889 4 1 0 0 0

AS3257 27 64 0.946 3 0.954 1 1 1

AS3967 21 36 0.864 7 0.969 1 1 1

AS6461 17 37 0.919 2 1 0 0 0

Abilene 12 15 0.56 6 0.833 1 1 1

Arnes 41 57 0.595 18 0.731 6 9 12

AT&T 22 38 0.823 6 0.8875 2 2 2

Deltacom 113 161 0.542 79 0.885 4 7 11

Gambia 28 28 0.037 16 0.111 8 12 13

Geant 37 55 0.646 20 0.827 4 5 5

Germ 50 50 88 0.801 22 1 0 0 0

Germany 27 32 0.695 1 0.882 1 1 1

InternetMCI 19 33 0.877 3 0.888 2 2 2

Italy 33 56 0.784 12 0.951 2 2 2

NSF 26 43 0.86 9 1 0 0 0

Table 3 Remote LFA graph extension results for node protection

Topology n m ηNP Gr µNP Gr SA∆µ SAγ µe
NP Greµ SAe

∆µ SAe
γ

AS1221 7 9 0.083 3 0.083 1 1 1 0.083 1 1 1

AS1239 30 69 0.658 16 0.843 1 1 1 0.928 1 1 1

AS1755 18 33 0.704 7 0.912 1 1 1 1 0 0 0

AS3257 27 64 0.521 20 0.702 5 8 8 0.866 3 3 3

AS3967 21 36 0.715 10 0.896 2 2 2 0.994 1 1 1

AS6461 17 37 0.505 8 0.596 3 3 3 0.747 2 2 2

Abilene 12 15 0.608 3 0.725 2 2 2 0.872 1 1 1

Arnes 41 57 0.331 35 0.426 12 24 20 0.45 12 16 15

AT&T 22 38 0.565 12 0.684 4 4 4 0.849 2 2 2

Deltacom 113 161 0.436 113 0.818 9 25 27 0.868 9 22 23

Gambia 28 28 0.04 23 0.12 14 17 22 0.12 13 19 18

Geant 37 55 0.411 30 0.676 5 11 11 0.74 5 8 8

Germ 50 50 88 0.676 37 0.977 1 1 1 0.998 1 1 1

Germany 27 32 0.599 8 0.77 2 2 2 0.955 2 2 2

InternetMCI 19 33 0.558 9 0.837 3 2 2 0.916 1 1 1

Italy 33 56 0.574 24 0.839 3 3 3 0.926 2 2 2

NSF 26 43 0.634 16 0.963 1 1 1 1 0 0 0

the number of new links added by the rLFA greedy
graph extension algorithm, while in the case of Greµ
the extended P-space option was also considered. The

results in column SA∆µ and SAγ are similar to the
link-protecting case, while columns SAe

∆µ and SAe
γ in-

dicates the number of links added by the two simulated

annealing based heuristics, under the assumptions that
routers were able to use their extended P-space.

The first observation is that, if simple rLFA is con-
sidered then there is no network, which is initially fully

rLFA protected against node failures. However, if the

routers are able to use their extended P-space, then

there were 3 networks with full protection out of the
box. As it was in the link-protecting case, much less

additional edges are needed for 100% node-protecting

rLFA failure coverage than when only simple node-

protecting LFAs are only available. For instance, in
Deltacom topology, 113 new edges were necessary to

protect all source-destination pairs with pure LFA against

single node failures, while this number is only 9 when
remote LFAs can be used as well. One also can observe

that the greedy approach yielded the best solutions, i.e.,

it needed the fewest additional edges in order to provide
full protection. Namely, in the case of simple rLFA, on

average it installs 4.05 new links to the network, while

simulated annealing based algorithms could not reach

full protection with less than 6.35 new links. Never-
theless, if extended P-space is an option, then greedy

algorithm needed on average 3.3 new links, whilst the

other two heuristics resulted more than 4.75 new links.

Overall, the results suggest that network operators

might hugely benefit from deploying rLFA in their routers,
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since it can definitely protect much more source-destination

pairs than pure LFA ever could do. Moreover, the pro-
visioning of a very few number of additional new links

can boost the protection provided by rLFA up to 100%.

In particular, we found that more than 50% of the net-
works needed less than 4 additional links for perfect

rLFA failure case coverage.

9 Conclusions

Currently, Loop-Free Alternates is the best choice for
providing fast protection in pure IP and MPLS/LDP

networks, as it is readily implemented in basically all

commercial IP router offerings. It is a well-known fact
that LFA cannot protect every single failure. In our

previous works, we showed that improvements can be

made by altering the existing network topology. If mod-

ifying the network is not an option, remote LFAs may
be a better approach.

As in the case of LFA, the number of failure cases
protected by rLFA crucially depends on both the graph

topology and the link costs. As it seems difficult to con-

sider both at the same time, we studied graph topolog-

ical concerns separately from the effect of link costs in
this paper. This restriction is plausible as a first ap-

proach, and we definitely plan to generalize our results

to weighted graphs in a subsequent work.

For the first time in the literature, we analyzed rLFA

failure coverage in general networks by a new set of

elemental graph theoretical rLFA tools. Moreover, we
extended the basic specification of rLFA [31], originally

defined for single link failures only, to the relevant case

of single node failures, and we also made a deep analysis
to this case with our toolset.

We showed that, under the unit-cost assumption,

“extended P-space” results full rLFA failure coverage
in every network against single link failures. This can

be an important pointer for operators, currently in the

position to deploy rLFA, on how to actually choose link
costs. Unfortunately, it turned out that in the case of

node protection this option is not enough to protect all

source-destination pairs.

We gave sufficient and necessary conditions for a

unit cost graph to be 100% protectable with rLFA against

both link and node failures. Then, we studied general
lower and upper bounds for rLFA coverage. For up-

per bounds, we showed that in both link- and node-

proteting cases, full rLFA coverage can be attained.

For lower bounds, in the case of link protection, we
found that for 2-node-connected graphs on 2k nodes

the value k−1
2k−1 is realizable by grids and complete bi-

partite graphs and we confirmed computationally that

this is a valid lower bound as long as the number of

nodes n is smaller than 10. We also found that for 2-
edge-connected graphs, this “conjectured” lower bound

is 1
3 . We also found that for node failures rLFA coverage

can, somewhat unexpectedly, straight out drop to zero
in certain cases.

We defined the rLFA graph extension problem as

the task to augment an unweighted graph with the
fewest new links to obtain 100% failure case coverage.

Along a simple greedy algorithm we also developed a

family of simulated annealing based heuristics to solve

this problem approximately. We found that, as it was
in the case for pure LFA [32], the greedy method is the

most plausible algorithm. It turns out that, even in very

big real-world ISP topologies, adding only 2–3 new links
is enough to attain 100% failure coverage against link

failures, whilst the number of new links needed for full

protection against node failures is only slightly more,
3–4.

In the future, we plan to study further remote LFA

related network optimization questions. For instance, in

the unweighted case improving rLFA coverage is possi-
ble with modifying link costs as well, which looks an-

other intriguing, and practically relevant, network op-

timization problem.
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