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Abstract Lately, demand for fast failure recovery in IP

networks has become compelling. The Loop-Free Alter-

nates (LFA) specification is a simple IP Fast ReRoute

(IPFRR) scheme proposed by the IETF that does not
require profound changes to the network infrastructure

before deployment. However, this simplicity comes at

a severe price, because LFA does not provide complete
protection for all possible failure cases in a general topol-

ogy. This is even more so if network components are

prone to fail jointly. In this paper, we study an im-
portant network optimization problem arising in this

context, the so called LFA graph extension problem,

which asks for augmenting the topology with new links

in an attempt to improve the LFA failure case cover-
age. Unfortunately, this problem is NP-complete. The

main contributions of the paper are a novel extension

of the bipartite graph model for the LFA graph ex-
tension problem to the multiple-failure case using the

model of Shared Risk Groups, and a suite of accom-

panying heuristics to obtain approximate solutions. We
also compare the performance of the algorithms in ex-

tensive numerical studies and we conclude that the op-
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timum can be approximated well in most cases relevant

to practice.
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1 Introduction

Throughout the last few years, the amount of stream-
ing media traffic transmitted over the Internet has in-

creased significantly. As this kind of traffic is more sen-

sitive to delay than to packet loss, the need to improve

service reliability and availability has become more and
more stressing to operators. Consequently, operators

strike to maintain five-nines availability (99,999% up-

time) in order to stay competitive in the fierce telecom-
munications market. Unfortunately, the state-of-the-art

IP protocol suite, the prevailing platform on top of

which operators are delivering their services to cus-
tomers today, is not adequate to meet these needs.

One of the principal reasons for this inadequacy is the

IP control plane’s inability to rapidly reconverge af-

ter a network component has failed. The maximum
affordable recovery time from a failure without severe

degradation to video service quality is about 10-50 ms,

yet recovery with today’s Interior Gateway Protocols
(IGPs), like the Open Shortest Path First (OSPF, [36])

or the Integrated IS-IS (IS-IS, [5]) routing protocol,

takes about ten times more than that [14].
To tackle this challenge, the Internet Engineering

Task Force (IETF) has initiated the IP Fast ReRoute

(IPFRR [43]) framework, with the purpose of reduc-

ing the critical routing convergence time to the order
of tens of milliseconds. IPFRR is based on two funda-

mental design principles. First, recovery in IPFRR is

proactive, meaning that backup routes are calculated,
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and installed into the forwarding plane of the routers,

well before a failure occurs. Second, IPFRR adopts a lo-
cal rerouting scheme, that is, only routers directly adja-

cent to the failed component participate in the recovery

process. This allows to eliminate one of the most time-
consuming parts of the IGP recovery process: flooding

the changed routing information throughout the net-

work. Instead, when a network element becomes un-
available, its neighbors immediately switch to the backup

routes and traffic flows without major disruptions while

the IGP converges in the background. In fact, the IP

Fast ReRoute standards essentially switch IP networks
from what was formerly a predominantly restoration

scheme to an intrinsically faster protection mechanism

[45].

Note that IPFRR is not the only option to realize

fast protection in IP networks. For operators that set-

tled on MultiProtocol Label Switching (MPLS) with
the Resource Reservation Protocol–Traffic Engineering

extensions (RSVP-TE), the MPLS Fast ReRoute spec-

ification [38] provides a standardized and broadly im-
plemented fast protection scheme [19]. However, there

are many operators that have not deployed MPLS at

all, or instead of RSVP-TE use the lighter weight La-
bel Distribution Protocol (LDP) that also relies on the

IP control plane for routing information. In such cases,

IP Fast ReRoute is the only alternative available today.

Not surprisingly, researchers and device vendors have

come up with a wide selection of IPFRR mechanisms

this far. Some proposals introduce tunnels to route around
the failed component [3, 4, 11], others apply explicit

or implicit failure signaling [20, 24, 29], and still oth-

ers straight-out call for altering IP’s destination-based

forwarding [26]. Unfortunately, the majority of exist-
ing IPFRR proposals, in some way or another, require

functionality not yet available in existing IP network

gear or impose significant extra management burden on
network operations [13, 16, 28] (or both), which makes

device vendors reluctant to implement them and dis-

courages operators from deploying IPFRR all together.

As of today, there is only one IPFRR proposal that

has gained considerable vendor and operator support:

Loop-Free Alternates (LFA [2]). This is thanks to its
remarkable simplicity. In LFA, when a router detects

the loss of connectivity to one of its next-hops it redi-

rects the affected traffic to an alternate next-hop, called
a Loop-Free Alternate, that still has an intact route to

the destination. LFA can be implemented as an unob-

trusive extension to IGPs, thus it is appealingly easy

to deploy. In fact, in most modern high-end routers
turning LFA on is just a straight-forward configura-

tion command away [7, 18, 21], and needs no extensive

prior testing or pilot deployments. This simplicity, how-

ever, comes at a huge price: depending on the network

topology and link costs there might exist failure sce-
narios in the network for which no alternate next-hop

(i.e., LFA) is available and so no fast protection can be

provided. This deficiency is further exacerbated by the
fact that modern IP networks run on top of complex

MPLS and/or optical substrates, which introduce sub-

tle inter-dependencies between seemingly independent
failure scenarios. For instance, when an optical fiber

shared by multiple virtual connections goes down, the

IP layer perceives this single physical failure as mul-

tiple simultaneous failures, because it sees the virtual
connections as separate IP links. The existence of such

Shared Risk Groups in the network, as shall be argued

later in this paper, further amortizes LFA’s potential
to provide complete failure coverage.

With its standardization and appearance in off-the-
shelf routers, LFA has received renewed interest both

from theoreticians and practitioners recently. The main

motivation behind the corresponding LFA network op-

timization research area is to optimize some aspect of
the underlying network (i.e, the topology, IGP link costs,

etc.) in order to improve the LFA failure coverage, facil-

itating to achieve high quality protection in an IP net-
work intervening only at the management plane, leaving

the data plane and the control plane intact. Since the

control and the data planes are embedded into the IP
routers themselves, altering them promises itself a par-

ticularly long and tedious fight through standardiza-

tion bodies, router vendors, operator forums, etc. On

the other hand, changing the underlying network in-
stead of changing the very IP protocol seems way sim-

pler, and with LFA already implemented in the control

and data planes of IP routers LFA network optimiza-
tion promises with a solution that is readily deployable

even on today’s installed network infrastructure.

There have been various attempts at LFA network

optimization recently [34, 40, 48], one of the most re-

cent of which is LFA graph extension [37,41]. The LFA

graph extension problem asks for adding the smallest
number of new links to the network so that, on the one

hand, LFA failure case coverage becomes 100% and,

on the other hand, shortest paths remain intact. The
latter requirement is important, as shortest paths are

usually engineered with great care to reflect crucial

operational concerns of service providers [12, 46, 47].
A closely related problem is LFA graph improvement,

where the task is merely to raise the level of protection

provided by LFA instead of shooting for 100% failure

coverage. As it turns out, these problems are all NP-
complete. Apart from the NP-completeness proofs, [41]

also presents an Integer Linear Program (ILP) to get

an exact solution plus a greedy heuristic. Unfortunately,
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their treatment is limited to the case of single link fail-

ures in a simplistic network model in which no equal
cost paths are assumed, and no account is made as to

whether the greedy heuristics is suitable to efficiently

approximate the optimal solution.

We initiated the work towards remedying these short-

comings in the conference version of this paper [37], and

below we conclude this work. We provide a detailed and

worked out bipartite graph model for the LFA graph
extension and the LFA graph improvement problems,

which makes it possible to obtain a solution under ba-

sically any failure model relevant to practice, and we
present a collection of optimal algorithms and approxi-

mation heuristics, each with different relative error and

running time, facilitating for picking the most appropri-
ate optimization strategy for the problem under consid-

eration.

The main contributions of this paper are as follows.

– We extend the LFA graph extension and the LFA

graph improvement problem formulations from the
single link failure model to the more sophisticated

multiple failure model of local Shared Risk Groups

(SRGs). Under this model, links and/or nodes adja-

cent to a router that are prone to fail jointly can be
configured into SRGs, and the task is to find an LFA

that is not only loop-free but is also SRG-disjoint.

– We generalize the model given in [41] for the above
extended SRG failure model, presenting a new for-

mal framework as well as illustrative examples. We

also give hints as to how to augment the model to
treat Equal-Cost MultiPath (ECMP) and broadcast

media (LANs).

– We study the solvability of the LFA graph extension

problem and we give a general negative result for the
multiple-failure case.

– We collect a number of optimal and heuristic algo-

rithms from the literature to solve the LFA graph
extension problem and we analyze their theoretical

behavior. In particular, we find that the optimum

can be approximated within a logarithmic factor.
– Finally, we compare the algorithms in extensive nu-

merical evaluations and we observe that LFA graph

extension and LFA graph improvement require fun-

damentally different approximation strategies.

The rest of the paper is organized as follows. In Sec-
tion 2 we outline the literature that is closely related to

our work. Section 3 gives an overview of LFA, Shared

Risk Groups (SRGs) used to describe multiple failure

models, and we state the LFA network optimization
problems formally. Section 4 introduces the mathemat-

ical model and describes the optimal backtracking, and

the approximate SBT, RSBT, and MSBT algorithms.

Numerical results are described in Section 5 and finally,

Section 6 concludes the paper.

2 Related work

Besides Loop-Free Alternates, many other fast protec-
tion methods have surfaced for IP during the recent

years. The common theme shared by all these efforts

is that they attempt to reduce recovery time below

some tens of miliseconds in order to eliminate slow con-
vergence of regular IGPs for all possible single failure

cases.

With Failure Insensitive Routing (FIR), routers per-
form interface specific packet forwarding [9,26,49]. If a

packet arrives on an unusual input port, the router in-

fers that due to some network element failure the packet
has been redirected to a detour at an earlier stage of

its forwarding path. Based on this information, it tries

to retransmit the packet on an output interface that

it knows is not affected by the fault. Unfortunately, in
current commercial routers interface specific packet for-

warding is not available.

As its name foreshadows, the Not-via addresses [4]
IPFRR scheme introduces tunneling to route around

the failed component. When a router loses contact with

one of its neighbours, it encapsulates packets in a new
IP header with marking the destination as a special not-

via address. The semantics of this not-via address can

be translated like “forward me to the destination not-

via the failed element”. All the messages affected by
the failure are transmitted through this tunnel after-

wards. Unfortunately, computational and management

complexity of handling the numerous not-via addresses
the proposal requires can be daunting [28]. To reduce

these costs, authors in [11], and the subsequent Inter-

net draft [1], introduce a lightweight version of Not-via.
The idea is based on maximally redundant trees [6,10],

a pair of trees for each node with the useful property

that any single link or node failure will leave at least

one of the trees intact, under the assumption that at
least two disjoint paths existed in the network. Unfortu-

nately, neither Not-via addresses nor Lightweight Not-

via have been standardized yet, neither commercially
available implementations exist.

Multiple Routing Configurations (MRC, [24]) cal-

culates a small set of backup network configurations
(or overlays), maintaining the invariant that for any

source-destination pair at least one of the configura-

tions remains connected after any single failure. When

a link or node fails, packets are marked with the proper
backup configuration identifier that enables routers to

use the appropriate overlay topology. Unfortunately,

marking packets would consume invaluable bits from
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the IP header. Another approach, calledO2 routing [42],

is to keep two distinct loop-free next-hops towards each
destination. In case of link failure affecting one of the

next-hops a router can immediately switch packet for-

warding to the other one. The disadvantage of this con-
cept is that it breaks shortest path routing, fundamen-

tal to IGP operations today.

Protection routing [25] is different from the others
in the sense that routers are only responsible for packet

forwarding but routing information is stored in a central

server. The server calculates a set of different routing
trees, not necessarily coincident with shortest paths,

accompanied with a carefully chosen set of secondary

next-hops for each node that can be used when the pri-
mary next-hop disappears. After downloading precom-

puted information to the routers, if any next-hop be-

comes unreachable routers can quickly switch to their

standby next-hop. The main difficulty is in calculat-
ing the routing trees (more precisely, routing DAGs)

and the corresponding secondary next-hops to guar-

antee loop-free forwarding and 100% protection cov-
erage. This problem, similarly to most resilience maxi-

mization network optimization problems, turns out NP-

complete. Apart from this difficulty, implementing pro-
tection routing would also require centralized control,

which would mandate a deep reorganization of the way

today’s IP networks are managed [8].

Most of the existing IPFRR proposals strike to pro-

vide 100% failure case coverage (for some recent reviews

on the extent to which they attain this goal, see [13]
and [16]). It seems, however, that the price for this is

significant management overhead and/or new, currently

non-standardized and unimplemented features in the

IP control and data plane. Loop-Free Alternates, on
the other hand, does not require any of these. LFA is

a simple, standardized, and well-tested IPFRR mech-

anism, implemented by most major router vendors in
their products [7, 18, 21]. This is thanks to the delib-

erate decisions of the designers of LFA who, instead

of aiming for 100% failure coverage at the cost of in-
surmountable deployment barriers, from the beginning

made clear that LFA is optimized for simplicity and it

is not intended to guarantee fast protection for all pos-

sible failure scenarios in all network topologies. Indeed,
as simulation studies confirm, depending on the topol-

ogy and link cost settings, LFA can usually protect only

about 50-80% of the possible link failure scenarios, and
the level of node protection is even worse [13,16,35,39].

Consequently, the main motivation behind the LFA

network optimization problems we study in this paper
is to improve the network’s topology in a way as to

maximize the level of protection provided by LFA. This

gives a dependable and economic IPFRR solution to

operators, ready to be deployed until one of the IPFRR

proposals implementing complete protection becomes
available (if ever).

3 Preliminaries

Throughout this paper, we model the network topol-

ogy by a simple, weighted, symmetric directed graph

G(V,E) where V is the set of nodes and E is the set
of directed arcs. Let n = |V | and m = |E|, let E de-

note the complement arc set, let deg(v) denote the node

degree of v ∈ V and let neigh(v) be the set of out-
neighbors of v in G. Let the IGP link costs be repre-

sented by a cost function c : E 7→ Z
+. The cost of an

edge (i, j) is denoted by c(i, j). We assume that costs
are symmetric: c(i, j) = c(j, i). In addition, let dist(x, y)

denote the shortest path distance between some nodes

x ∈ V and y ∈ V .

Initially, we assume that the network contains point-

to-point links only and there are no broadcast LANs.
We also presume that there is no support for Equal-

Cost MultiPath (ECMP), and ties between equal cost

shortest paths are broken arbitrarily. These assump-
tions will be relaxed later.

3.1 Loop-Free Alternates

Below, we introduce a basic formalism for Loop-Free Al-

ternates under the single failure model. In this model,

it is assumed that in every IPFRR cycle either at most
one link or one router can fail, and when connectiv-

ity to some neighbor is lost a router is not able to de-

termine whether it is the link to the neighbor or the

neighbor itself that has failed, so it uses the pessimistic
assumption and presumes a node failure. Even though

this failure model is in line with current IP practice [32],

it might prove overly restrictive in a multi-layer envi-
ronment where physical outages in the lower layers can

present themselves as multiple failures in the IP layer.

Therefore, in the subsequent section we overview a sim-
ple model for handling such multiple-failure scenarios,

local Shared Risk Groups, and we extend the LFA for-

malism for this particular failure model.

Perhaps the easiest way to understand LFA is through

an example. Consider the network in Fig. 1 and, ini-
tially, assume that only a single link can fail at a time.

If a packet is sent from node a to node d, the first hop

along the shortest path is node e. If the link between a

and e fails, a has to look for another neighbor to for-
ward traffic to, which can then pass it on to d. Note,

however, that not all neighbors suit, because if a neigh-

bor’s shortest path to d went through a, then it would
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Fig. 1: A simple network without Shared Risk Groups

immediately pass the packet back to a causing a for-

warding loop (recall that the neighbor is not aware of
the failure). The neighbors of a whose shortest path to

d does not traverse a are called link-protecting LFAs

from a to d [2]. Formally:

Definition 1 For some source s and destination d, let
e be the default next-hop of s towards d. Then, some

neighbor n of s is a link-protecting LFA for s to d if

i) n 6= e, and

ii) the loop-free condition applies:

dist(n, d) < dist(n, s) + dist(s, d) . (1)

Less formally, we find that n is an s − d LFA if it

is not upstream to s in the shortest path tree rooted at

d. In the above example, dist(b, d) = 6, dist(a, d) = 4
and dist(b, a) = 5, and therefore b is a link-protecting

LFA from a to d. Note, however, that in the sample

network f does not have a link-protecting LFA to b as
both its candidate neighbors d and e are upstream. The

same applies to the e − a pair. The level of LFA link

protection ηLP(G) in a network G is measured as the

proportion of the protected vs. all source-destination
pairs [41]:

ηLP(G) =
# (s, d) pairs with link-protecting LFA

#all (s, d) pairs
.

(2)

For our sample topology, ηLP(G) = 0.87.

Let us return to the node-pair (a, d). As we have

seen, the neighbor b provides a link-protecting LFA for
this node-pair. Observe, however, that b only protects

against the failure of link (a, e) but not against the fail-

ure of the next-hop e itself. This is because the shortest
(b, d) path traverses e. In fact, b in this example does

not have an LFA to d providing protection for the fail-

ure of the default next-hop. On the other hand, such a

node-protecting LFA does exist for instance from a to c,
because should its primary next-hop e go down, a could

still forward traffic destined to c towards b. The below

definition formalizes this property.

Definition 2 For some source s, destination d, and de-

fault s − d next-hop e, a neighbor n of s is a node-
protecting LFA for s to d if

i) n 6= e,

ii) dist(n, d) < dist(n, s) + dist(s, d), and

iii) the node-protection condition applies:

dist(n, d) < dist(n, e) + dist(e, d) . (3)

In fact, we simply applied the extra constraint (3)

in addition to Definition 1. Special care must be taken,

however, when evaluating the above condition for the
case when e = d, that is, when d is the immediate next-

hop of s. Since no LFA can protect against the failure

of the destination node itself, in such cases s relaxes the
pessimistic failure assumption and presumes that it is

only the link (s, d) that failed and not d itself, and thus

it can resort to a link-protecting LFA. This treatment

of the last-hop problem is common in IPFRR [4].

In our example, dist(b, c) = 4, dist(b, e) = 4 and

dist(e, c) = 6 and so (3) holds. Some quick calculation

yields that there are six source-destination pairs that
are without node-protecting LFA in the above exam-

ple. For instance (f, b), and (e, a) are unprotected as the

last-hop exception applies and no link-protecting LFA
is available, and (d, a) does not have node-protection

as its LFA only fulfills (1) but not (3). LFA coverage

ηNP(G) for the node-protection case is defined in sim-

ilar vein to (2), with the slight modification that for
(s, d) pairs for which d is the next-hop of s we only

check condition (1) but not (3), while for all other

source-destination pairs we check both. In our exam-
ple, ηNP(G) = 0.8.

3.2 Shared Risk Groups

So far, we have assumed that component failures in

the network are independent and affect only a single

network element at a time. Though, in practice this is
usually not the case. A common example of how this

assumption can fail is the case of high capacity trunks

that carry connections between several logically inde-
pendent networks. If the trunk goes down, all virtual

connections established on top of it go down as well,

which is perceived by the IP layer as multiple simultane-
ous link failures. Similar is the case of lightpaths in opti-

cal networks, Dense Wavelength-Division-Multiplexing

wavelength channels, Generalized MPLS label switched

paths, etc.; these low level connections may aggregate
multiple IP links and therefore can cause multiple si-

multaneous failures in the IP layer when being discon-

nected [17]. The main reason behind this issue is that
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in a multi-layer protocol architecture the logical repre-

sentation of the network as seen by the IP control plane
is often quite different from the physical layout.

A convenient way to express the statistical depen-

dency between a certain group of links or nodes that are

expected to fail jointly is Shared Risk Groups (SRGs).

In the SRG model, if a link (or node) fails then all the
links (nodes) that share an SRG with it will also fail,

and correspondingly all traffic will be interrupted on

these links (nodes).

In a general multi-layer network, SRGs can contain

arbitrary set of network components, even ones resid-
ing in far-away portions of the network. The LFA stan-

dard, however, restricts the set of SRGs considered to

so called local SRGs [2]. This sub-category of SRGs con-
sists of some set of links connected at one end to the

same router. The reason for this limitation is that lo-

cal SRGs, apart from being frequent in practice, can
be configured at each router locally and independently

from other routers, and routers can thus calculate local-

SRG-disjoint LFAs without being aware of the local-

SRGs configured at other routers. If, on the other hand,
we were to allow arbitrary SRGs, a separate signaling

protocol would need to be introduced to distribute SRG

information between routers, plus the computational
problem of selecting SRG-disjoint LFAs would become

substantially more difficult as well [2]. In what follows,

therefore, we shall restrict our attention to local-SRGs
exclusively.

According to the above considerations, we seek LFA
candidates that can be reached on a link that is not con-

tained in the same local-SRG set as the link between

the source node and its primary next-hop. We formalize
this requirement below for the case when SRGs can only

contain links (Shared Risk Link Groups). The treat-

ment is straight-forward to generalize to the case when
SRGs can contain nodes as well.

Let S = {(i, j) ∈ E} be an SRG containing a set
of links (i, j). The number of links can be arbitrary,

but for S to be a local SRG we require that for any

two (i, j) ∈ S and (u, v) ∈ S: i = u. Note that SRGs
in our model can, and usually are, asymmetric, that

is, (i, j) ∈ S does not imply (j, i) ∈ S. Now, for each

directed arc (i, j) ∈ E we can create the union of SRGs

that include (i, j):

S(i, j) =
⋃

S:(i,j)∈S

S .

Using this notation, we say that a candidate node

n is an SRG-disjoint link protecting LFA for some node
pair (s, d) if, in addition to the constraints in Defini-

tion 1, the link (s, d) is also SRG-disjoint from the link

of s to its next-hop. Formally:

Definition 3 For some source s, destination d, and de-

fault s − d next-hop e, a neighbor n of s is an SRG-
disjoint link-protecting LFA for s to d if

i) n 6= e,

ii) dist(n, d) < dist(n, s) + dist(s, d), and

iii) (s, n) /∈ S(s, e).

Similarly for the node-protecting case:

Definition 4 For some source s, destination d, and de-

fault s − d next-hop e, a neighbor n of s is an SRG-

disjoint node-protecting LFA for s to d if

i) n 6= e,

ii) dist(n, d) < dist(n, s) + dist(s, d),
iii) dist(n, d) < dist(n, e) + dist(e, d), and

iv) (s, n) /∈ S(s, e).

Easily, these definitions are trivial extensions of the

corresponding definitions given for the single-link fail-
ure case above. To demonstrate these definitions in prac-

tice, consider the sample network introduced above ex-

tended with 3 local SRGs as depicted in Fig. 2. For
instance, S3 is a local-SRG configured at node e con-

taining the links (e, d) and (e, f), with the interpreta-

tion that if link (e, d) fails then (e, f) is expected to
fail as well, and vice versa. Recall that when SRGs are

not considered, then f is a link-protecting LFA of e to-

wards c. However, as the link to the next-hop (e, d) and

the link to the candidate LFA (e, f) belong to the same
local-SRG, this LFA is indeed not SRG-disjoint. Simi-

lar is the case for node-protection. For instance, f does

not have SRG-disjoint node-protecting LFA to c due to
SRG S2. The LFA-coverage metrics ηLP and ηNP de-

fined for the single failure case are now easy to extend

to account for SRGs; we only need to swap the under-
lying LFA definitions. In what follows, unless otherwise

stated the term “LFA” will refer to SRG-disjoint LFAs

as of Definition 3 and Definition 4, and “LFA coverage”

will denote the extended interpretation of ηLP and ηNP.
In our example, ηLP(G) = 0.83 and ηNP(G) = 0.73.

Evidently, LFA coverage decreases when SRGs are con-

sidered because the SRG-compliant LFA definitions are
stricter than their non-SRG counterparts.

3.3 Problem formulation

There are several ways to improve the LFA protection in

a network. A plausible choice would be to optimize the

IGP link costs [34,40,48], but this would alter shortest

paths. In many deployments, touching shortest paths is
decidedly ruled out by operators who usually have their

own intricate (and often proprietary) operational con-

cerns they want to materialize in the way forwarding
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Fig. 2: The sample network with local Shared Risk

Groups S1, S2, and S3 each containing two links

paths are provisioned [12, 46, 47]. Consequently, in this

paper we adopt the approach from [41] and [37], and we
aim for increasing the LFA coverage by cleverly adding

new links to the network without touching the shortest

paths in any way. The LFA graph extension problem is

defined as the task to augment a weighted graph with
the minimum number of new links with properly se-

lected costs, so that LFA coverage becomes 100% and

shortest paths remain in place.

Definition 5 LFA graph extension problem (minLFA):

Given a simple, weighted, symmetric digraph G(V,E),
a set of SRGs S = {S}, and an integer l, is there a sym-

metric arc set F ⊆ E with |F | ≤ l and properly chosen

costs, so that (i) for the SRG-disjoint link-protecting

LFA coverage ηLP(G(V,E ∪F )) = 1 and (ii) the short-
est paths in G(V,E) coincide with the shortest paths

in G(V,E ∪ F )?

Here, a symmetric arc set F is a set of arcs such that

(i, j) ∈ F ⇒ (j, i) ∈ F . In other words, when aug-

menting the digraph with a new arc we immediately

add the reverse arc (j, i) as well. This case seems to be
more relevant in practice, but we note that our model

does not mandate this limitation in any way. The above

definition is straightforward to adapt to the the node-
protecting case as well by substituting ηLP(G) with

ηNP(G).

In [41], the following complexity characterization is
given for the non-SRG case.

Proposition 1 The LFA graph extension problem for

the link-protecting case is NP-complete when S = ∅.

Easily, this characterization remains valid for the

case when we allow arbitrary local-SRGs, as the latter is
a more general problem than the former. Furthermore,

the optimization version, which asks for the minimal l

for which the above condition holds, is also intractable,

and similar is the case for the node-protecting version
of the problem.

LFA graph extension asks for a link extension to

attain 100% failure coverage. This, as it turns out, is

often case too ambitious a goal. Therefore, we also con-

sider a relaxed version of the problem, called the LFA
graph improvement problem, which asks for realizing

the highest improvement possible by adding only a lim-

ited number of new links.

Definition 6 LFA graph improvement problem: Given

a simple, weighted, symmetric digraph G(V,E), a set of

SRGs S = {S}, and two integers l and k, is there a sym-
metric arc set F ⊆ E with |F | ≤ l and properly chosen

costs, so that (i) at least k source-destination pairs have

an SRG-disjoint link-protecting LFA in (G(V,E ∪ F ))
and (ii) the shortest paths in G(V,E) coincide with the

shortest paths in G(V,E ∪ F )?

Easily, the LFA graph improvement problem is also
NP-complete, because otherwise we could solve minLFA

with solving LFA graph improvement with setting k =

|V 2| = n(n− 1).
As both LFA network optimization problems we aim

to solve are intractable, it seems hopeless to obtain op-

timal solutions in large networks within acceptable run-
ning time. This calls for efficient heuristics. Therefore,

the rest of the paper is devoted to present such heuristic

algorithms, to reason about their theoretical properties,

and to evaluate their performance in real-life networks.

4 Solving the LFA graph extension problem

In this section, we show algorithms to obtain optimal

and approximate solutions to the LFA graph extension
problem. The objective is to find the smallest number

of new links that increase η(G) to 1 both for the link-

protecting and the node-protecting cases without alter-
ing the shortest paths. Note that this latter requirement

is easy to satisfy, as it is enough to ensure that the links

we add to the network are of sufficiently large cost, say,

larger than the length of the longest shortest path.
Below, we first discuss if LFA graph extension is

solvable in general. As it turns out, when there are no

SRGs provisioned in the network then a simple prepro-
cessing step is enough to guarantee solvability, but when

SRGs do exist in the network then there are cases when

we can not add new links in any way to reach perfect
LFA coverage. Next, we give an elaborate graph model

of the problem and then we turn to the algorithmic

strategies.

4.1 Conditions for solving minLFA

Before trying to solve the problems, we need to know

whether they are solvable in the first place. In [41], the

authors find that there are cases when LFA coverage
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cannot be improved to 100% just by adding new links of

large cost to the network. The reason is that there might
exist nodes to which all other nodes are upstream and

therefore no LFA candidates might exist. Such is the

case when the network contains a node into which all
traffic enters via a single last-hop router. Let us consider

the example in Fig. 3a. There is no LFA from c to b

as a is upstream, neither we can create one by adding
a new link because the graph is complete and so the

complement arc set is empty. In such cases, we need to

resort to changing some link costs in the network.

When there are no SRGs provisioned, this is fairly

simple. In our example, we only need to ensure that not

all shortest paths to b traverse c. This can be done by
changing the cost of, say, link (a, b) to 1. This imme-

diately makes all nodes protected. The authors in [41]

propose a polynomial time preprocessing algorithm, which
changes at most two shortest path and/or adds at most

one link per problematic node, and yields a slightly

modified graph on which the problem is guaranteed to
be solvable. This substantiates the below proposition:

Proposition 2 Given a graph G on n nodes and m
arcs in which no SRGs are provisioned and a cost func-

tion c, there is a modified graph G′ containing at most

m + n arcs and a modified cost function c′ differing
from c on at most n arcs, so that minLFA is solvable

in G′ over c′. In addition, G′ and c′ can be obtained in

polynomial time.

In the course of our numerical evaluations, we found

that it is usually not necessary to add as many as n new

arcs and change n costs. In fact, in most cases adding
some 2−4 new links and/or changing a similar number

of costs is enough. Contrarily, when the network con-

tains SRGs there are cases when not even changing link
costs help. Consider the below observation.

Observation 1 There exist a graph G with properly
chosen local SRGs and a corresponding cost function c,

so that there is no cost function c′ and no extension arc

set F ⊆ E for which minLFA is solvable in G(V,E∪F )

over c′.

The counter-example is depicted in Fig. 3b. Easily,

there are some node pairs (e.g., (c, b)) between which no

LFA exists, plus we cannot change this situation with
altering link costs and we cannot add new links either.

Interestingly, we have met this issue only a few times

during our numerical evaluations. As shall be seen, in

all the networks examined only less than 3 nodes per
network were affected by this issue, and the eventual

LFA coverage was always above 99%. It seems thus that

the above pathological case rarely arises in practice.

(a) Graph w/o SRGs (b) Graph with SRGs

Fig. 3: Networks without (a) and with (b) SRGs on

which minLFA is not solvable

4.2 Model

The first step to solving the LFA graph extension prob-

lem is to build a suitable model. First, we discuss the

link-protecting case, then we extend the model to LFA
node-protection and finally we cover some practical con-

cerns.

Consider the sample topology in Fig. 1. Previously,

we found that the graph does not have full link-protecting
LFA coverage. For example, node e does not have an

LFA to a. Our aim is to install a new link of high cost

into the network so that e gains an LFA to a. One
easily sees that link (e, b) is suitable, as with this link

in place e could use b as an LFA. Similarly, adding

link (e, c) would create an LFA for other unprotected
source-destination pairs, (e, d) and (e, f). Observe, how-

ever, that not all the complement arcs provide addi-

tional protection. For example, adding a link between

a and d would not increase the link-protecting LFA cov-
erage. In general, a new link can provide LFA to several

source-destination pairs, and an unprotected source-

destination pair can obtain an LFA from several com-
plement arcs. Our task is to find the smallest symmetric

subset of the complement arc set E so that each unpro-

tected source-destination pair gets an LFA. The follow-
ing bipartite graph model for the LFA graph extension

problem is based on the idea that this task can be rep-

resented as a minimum cover problem over a suitably

defined bipartite graph.

Suppose first that no SRGs are configured in the

network, let (si, di) : i ∈ 1, . . . , k be the set of unpro-

tected source-destination pairs and let {(uj , vj) : j ∈
1, . . . , l} be the set of complement arcs E from which

reverse arcs were eliminated, i.e., the set contains ei-

ther (uj , vj) or (vj , uj), but not both. Let G′(A,B, F )
be an undirected bipartite graph with node set A ∪ B

and edge set F , where we add a node ai ∈ A corre-

sponding to each unprotected (si, di) : i ∈ 1, . . . , k and

a node bj ∈ B for each arc (uj , vj) : j ∈ 1, . . . , l, and
we connect some ai ∈ A to some bj ∈ B in G′ if and

only if arc (uj , vj) or (vj , uj), when added with suitably

large cost to G, would create a link-protecting LFA to
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(a) Link-protection (b) Node-protection

Fig. 4: Sample bipartite graph representations.

(si, di). This amounts to checking whether Definition 1
would hold for (si, di) on the graph augmented with

(uj , vj) and (vj , uj).

One easily sees that G′(A,B, F ) has O(n2) nodes

and O(n4) arcs, and it can be built in O(n2(n2 log n+

nm)) time as we need to perform an all-pairs-shortest

path calculation for each of the O(n2) complement arcs.
Furthermore, the operation of adding a link (uj , vj) to

G corresponds in G′ to deleting the node bj and all

its neighbors from A. Since we take care of leaving the
shortest paths in G intact, the resultant bipartite graph

remains a valid representation of the LFA graph exten-

sion problem on the augmented graph. We conclude
that the LFA graph extension problem in some G is

equivalently posed as a Minimum set cover problem

over the corresponding bipartite graph G′(A,B, F ), a

well-known NP-complete problem (SP5, [15]):

Definition 7 Minimal set cover problem (minSC): Given

some positive integer p, is there a set of nodes Bc ⊆ B

with |Bc| ≤ p, such that every node in A has a neighbor
in Bc?

Note that the problem is directly equivalent to the
Minimum hypergraph transversal problem as well [33].

The bipartite graph representation for the link-pro-
tecting LFA graph extension problem over the sample

network of Fig. 1 is depicted in Fig. 4a. As it turns

out, we need to add 3 complement arcs (and the corre-

sponding reverse arcs): (b, e), (c, e), and either (a, f) or
(c, f).

Next, we extend this model to the node-protecting
case and we also improve the complexity of constructing

it to O(n3). The node set of G′ is built similarly. We

add a node to A corresponding to each (s, d) that has

no node-protecting LFA. Additionally, we add a node to
B for each complement arc in E eliminating the reverse

arcs. Finally, we need to connect the right nodes in G′.

Below, we show an optimized condition based on the

observation that, on the one hand, the dist(.) function

is invariant to adding high cost arcs to G and, on the
other hand, an (u, v) arc, if added to G with high cost,

can provide an LFA only for source-destination pairs

whose source coincides with u. In particular, for some
ai ∈ A and some bj ∈ B we add an (ai, bj) arc to F

if for the corresponding source-destination pair (si, di),

complement arc (uj , vj) and next-hop n of si towards
di, one of the below conditions holds:

– n = di, uj = si and dist(vj , di) < dist(vj , si) +
dist(si, di); or

– n = di, vj = si and dist(uj , di) < dist(uj , si) +

dist(si, di); or

– n 6= di, uj = si, vj 6= n, dist(vj , di) < dist(vj , si) +
dist(si, di) and dist(vj , di) < dist(vj , n)+dist(n, di);

or

– n 6= di, vj = si, uj 6= n, dist(uj , di) < dist(uj , si) +
dist(si, di) and dist(uj , di) < dist(uj , n)+dist(n, di).

This can be done in O(n3) time, checking the above
conditions for each of the O(n) neighbors for each O(n2)

node in B.

There are some very appealing properties for solv-

ing minLFA over the above bipartite graph model. For
instance, the below claim is immediate.

Observation 2 The LFA graph extension problem is
solvable, if and only if there are no isolated nodes in A.

A further attractive aspect is easy extendability.
First, we observe that the model is completely indiffer-

ent to whether there are local SRGs configured in the

network. When SRGs are to be considered, we only need
to verify the SRG-disjointness conditions as of Defi-

nition 3 and Definition 4 in addition to the standard

conditions. This does not affect either the size of the

bipartite model or the time needed to build it, neither
it has effect on the minimum set cover algorithms later

executed on the model to obtain a solution.

Second, for simplicity we ignored Equal Cost Mul-

tiPath so far. In ECMP, a router might have several
next-hops towards a prefix along equal cost shortest

paths and the task is to find an LFA for each of them.

The problem is that a particular alternate might be a
node-protecting LFA for one next-hop but only link-

protecting for another, and would not be an LFA at

all to the third. Fortunately, ECMP can be seamlessly
incorporated into the above model: we add a node to A

in G′ for each unprotected source-destination-next-hop

tuple and connect this node to a node in B if the cor-

responding complement arc would create LFA for this
tuple. Thanks to this generality of the model, support

for broadcast LANs, an elemental feature of IGPs, is

also easy to add.
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4.3 Algorithms

The authors in [41] propose an Integer Linear Program

of O(n2 −m) binary variables to obtain an optimal so-
lution for the LFA graph extension problem. Due to its

complexity, the ILP is not expected to work in large

networks, therefore, in this section we present several
efficient heuristics. The idea is that instead of work-

ing directly on the original network we rather solve the

corresponding minimum set cover problems on the re-

spective bipartite graph representations, as there are
various well-tested heuristics available in the literature

for this important class of combinatorial optimization

problems. In particular, we discuss the Lovasz-Johnson-
Chvatal algorithm from [30], the SBT algorithm from [23],

the RSBT, MSBT algorithms from [33] and a straight-

forward backtracking algorithm. An added benefit of
using these heuristics is that they immediately provide

solutions to the LFA improvement problem beside LFA

graph extension; we only need to terminate the algo-

rithms after a pre-defined number of iterations, i.e., af-
ter adding a pre-defined number of new links.

4.3.1 The Lovász-Johnson-Chvatal (LJC) method

In [41], a greedy heuristic to obtain an approximate so-

lution is proposed, which in every iteration adds the

link that improves the LFA coverage the most. This al-
gorithm, when interpreted in the bipartite graph model,

corresponds to the Lovász-Johnson-Chvatal algorithm

(LJC, [30]). In every iteration, LJC adds the highest
degree node v ∈ B to the cover Bc, v and its neighbors

in A are deleted from G′ and the algorithm proceeds to

the next iteration.

Algorithm 1 LJC algorithm on graph G′(A,B, F )

1: Bc ← ∅
2: while A 6= ∅
3: v ← argmax

b∈B
deg(b)

4: Bc ← Bc ∪ {v}
5: A← A \ neigh(v)
6: B ← B \ {v}
7: end while

Lovász shows that the size of the cover provided by

this algorithm is within a logarithmic factor of the op-
timum: topt ≤ tLJC ≤ topt ∗ (1 + log2|B|) where topt
is the cardinality of the optimal cover and tLJC de-

notes the cardinality of the cover Bc from LJC [30].

This means that the algorithm solves the LFA graph
extension problem by adding only logarithmically more

new links than necessary. Besides, the greedy algorithm

is remarkably fast. Unfortunately, it is not guaranteed

that the cover returned by the LJC algorithm is min-

imal in the sense of inclusion, which basically means
that some proper subset of the solution would also be

an adequate cover. This might render the LJC algo-

rithm hugely impractical in certain cases.

4.3.2 The SBT algorithm

SBT was proposed in [23] to find an approximate cover

that is, in contrast to LJC, minimal in the sense of in-

clusion. SBT seeks for the node v ∈ B with the smallest

degree and removes it from B. Additionally, if neigh(v)
contains a node a that is covered by v only, then v is

added to Bc as otherwise we could not cover A. In this

case, we consider all v’s neighbors as covered, remove
them from A and proceed to the next iteration.

Algorithm 2 SBT algorithm on graph G′(A,B, F )

1: Bc ← ∅
2: while A 6= ∅
3: v ← argmin

b∈B
deg(b)

4: if ∃n ∈ neigh(v) with deg(n) = 1 then

5: Bc ← Bc ∪ {v}
6: A← A \ neigh(v)
7: end if

8: B ← B \ {v}
9: end while

4.3.3 The RSBT algorithm

The Reverse SBT algorithm [33], as the name says, does

the reverse of SBT in that in every iteration it chooses

the node with the highest degree instead of the smallest

degree. Consequently, the pseudo-code is the same as
given in Algorithm 2 with the slight modification that

instead of line 3 we write v ← argmaxb∈B deg(b).

Algorithm 3 RSBT algorithm on graph G′(A,B, F )

1: Bc ← ∅
2: while A 6= ∅
3: v ← argmax

b∈B
deg(b)

4: if ∃n ∈ neigh(v) with deg(n) = 1 then

5: Bc ← Bc ∪ {v}
6: A← A \ neigh(v)
7: end if

8: B ← B \ {v}
9: end while

4.3.4 The MSBT algorithm

The Modified SBT algorithm [33] applies a small opti-

mization step to SBT. Similarly to the SBT algorithm,
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in each iteration we choose the node v ∈ B with the

smallest degree and, if there are nodes in A covered only
by v, we add v to Bc . If, on the other hand, B \ {v}
remains a cover, then we search for all the nodes a ∈ A

that are covered by exactly two nodes in B: v plus some
other node, say, w 6= v, we add these ws to Bc and we

remove them from B and all their neighbors from A.

Algorithm 4 MSBT algorithm on graph G′(A,B, F )

1: Bc ← ∅
2: while A 6= ∅
3: v ← argmin

b∈B
deg(b)

4: if ∃n ∈ neigh(v) with deg(n) = 1 then

5: Bc ← Bc ∪ {v}
6: A← A \ neigh(v)
7: else

8: for each a ∈ neigh(v) with deg(a) = 2
9: w ← u ∈ neigh(a) \ {v}
10: Bc ← Bc ∪ {w}
11: A← A \ neigh(w)
12: end for

13: end if

14: B ← B \ {v}
15: end while

Note that the SBT, RSBT and MSBT algorithms

generate covers that are minimal in the sense of inclu-

sion.

4.3.5 An optimal backtracking algorithm

The backtracking algorithm implements a brute force
strategy to solve the problem optimally. This scheme

generates all possible covers and finds the one with the

smallest cardinality. In order to avoid visiting a certain
cover twice, the algorithm uses an arbitrary complete

order (≺) on the nodes of B to perform a recursive lexi-

cographic traversal on the subsets of B. The subsets are
examined in ascending order and the smallest cardinal-

ity cover found along the way is stored, which is eventu-

ally returned as the optimal cover. The pseudo-code for

the backtracking algorithm is presented in Algorithm 5.
In every iteration, the recursive procedure BACKTR R

gets the set of nodes W yet to be visited, the current

best estimate on the minimum cover Bc, and the node
v that was last removed from the cover, and it attempts

to remove every w ∈ W that is larger than v accord-

ing to ≺ checking if the resultant set W \ {w} is still a
cover. If it is, then the algorithm recurses with the new

cover. Otherwise, the search is stopped at this point as

removing further elements from W \ {w} cannot result
in a cover either. Essentially, this pruning of the search
tree is what differentiates the backtracking algorithm

from a naive exhaustive search. Note also that the al-

gorithm does not need to maintain a map of the visited

subsets, as the lexicographic traversal guarantees that

each subset of B is visited at most once. The iteration
starts with calling BACKTR R with the complete node

set B, the trivial cover Bc = B, and a virtual node v′

that is smaller than all nodes in V according to the
order (≺), i.e.: v′ ≺ v for all v ∈ V .

Algorithm 5 Backtracking algorithm on graph
G′(A,B, F )

1: return BACKTR R(B, B, v′)
2: procedure BACKTR R(W , Bc, v)
3: for w ∈W : v ≺ w

4: if W \ {w} is still a cover then

5: if |W \ {w}| < |Bc| then
6: Bc ←W \ {w}
7: end if

8: return BACKTR R(W \ {w}, Bc, w)
9: end if

10: end for

11: return Bc

12: end procedure

Unfortunately, the complexity of the algorithm is

exponential as there are O(2|B|) potential covers that

might all need to be visited in the worst case.

5 Numerical studies

The main task we undertook in our numerical studies

was to determine which of the above heuristics works

best for LFA graph extension. In particular, we were
curious as to how many new links are needed to achieve

full LFA protection with the different algorithms both

for the link-protecting and the node-protecting cases.

Therefore, we implemented the bipartite graph model
and the optimization algorithms in C++ with the help

of the LEMON graph library [27] and we compared

their performance on numerous real-life ISP topologies.
The evaluations were run on a Linux PC with an Intel

Xeon 2.53GHz CPU and 3G RAM.

The topologies we tested were as follows. We used

the collapsed AS1221, AS1755, AS3257, AS3967 and

AS6461 topologies from the Rocketfuel dataset [31].
These graphs are the maps of real service provider net-

works and come with inferred link costs. We also used

the Abilene, Italy, NSF, Germany, AT&T and the ex-
tended German backbone (Germ 50) from [44]. Unfor-

tunately, except for the last network no valid link costs

were available, so we set each cost to 1. We also used

some network topologies from the Topology-Zoo project’s
dataset [22]. For this dataset, we set costs randomly

wherever link costs were not available. The topologies

were chosen so as to ensure that the ILP proposed in
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Table 1: Link-protecting LFA graph extension results: topology name, number of nodes (n) and arcs (m); number

of link costs and arcs added in the preprocessing phase (“Pre. c/e”), initial LFA coverage (η0), number of new

arcs in the optimal solution (ILP), and the number of added arcs (“ext”) and execution time in seconds for each

algorithm

LJC SBT RSBT MSBT Backtr.

Topology n m Pre. c/e η0 ILP ext time ext time ext time ext time ext time

AS1221 7 9 1/1 0.833 2 2 0.001 2 0.001 2 0.001 2 0.001 2 0.0007

Abilene 12 15 1/1 0.666 7 8 0.001 9 0.006 14 0.004 8 0.004 7 14592

AS6461 17 37 1/1 0.933 3 3 0.001 3 0.012 4 0.002 3 0.012 3 1.9

Germany 17 25 0/0 0.694 9 12 0.002 12 0.039 13 0.015 11 0.036 N/A N/A

AS1755 18 33 0/0 0.873 7 7 0.001 9 0.027 12 0.009 7 0.024 N/A N/A

InternetMCI 19 45 2/2 0.956 5 6 0.001 5 0.015 5 0.001 5 0.015 N/A N/A

AS3967 21 36 0/0 0.786 8 11 0.003 10 0.092 16 0.036 9 0.091 N/A N/A

AT&T 22 38 0/0 0.822 10 12 0.004 12 0.104 12 0.028 11 0.101 N/A N/A

BtEurope 24 37 13/14 0.982 5 5 0.001 5 0.018 5 0.001 5 0.018 N/A N/A

NSF 26 43 0/0 0.860 11 12 0.004 13 0.182 28 0.093 13 0.168 N/A N/A

AS3257 27 64 5/5 0.930 10 11 0.002 10 0.133 12 0.020 10 0.125 N/A N/A

BBNPlanet 27 28 16/16 0.806 17 19 0.008 17 0.278 17 0.030 18 0.257 N/A N/A

Gambia 28 28 15/15 0.637 16 18 0.020 19 0.707 23 0.227 18 0.651 N/A N/A

AS1239 30 69 0/0 0.874 6 6 0.003 7 0.429 11 0.086 6 0.475 N/A N/A

Digex 31 35 0/0 0.316 22 27 0.806 27 2.020 46 1.803 27 1.745 N/A N/A

Italy 33 56 0/0 0.784 17 22 0.025 28 1.037 39 0.434 19 0.896 N/A N/A

BICS 33 48 8/8 0.784 20 24 0.037 24 1.038 29 0.264 22 0.820 N/A N/A

BtNorthAm 36 76 4/5 0.847 20 22 0.004 20 1.706 27 0.420 20 1.622 N/A N/A

GRNet 36 41 16/16 0.734 23 27 0.052 24 2.260 24 0.392 23 1.995 N/A N/A

Geant 37 57 8/8 0.853 21 23 0.002 21 1.289 25 0.222 21 1.175 N/A N/A

Arnes 41 65 9/9 0.819 24 29 0.071 24 3.008 30 0.450 24 2.845 N/A N/A

ChinaTelecom 42 66 28/28 0.969 13 13 0.004 13 0.419 13 0.018 13 0.412 N/A N/A

Carnet 44 43 34/34 0.818 16 19 0.044 16 4.332 16 0.254 16 4.210 N/A N/A

BellCanada 48 64 9/11 0.629 32 38 0.219 35 11.869 48 4.136 34 10.673 N/A N/A

Germ 50 50 88 0/0 0.900 18 21 0.044 29 4.804 44 1.536 25 4.323 N/A N/A

Cudi 51 52 35/34 0.771 24 29 0.135 24 11.677 24 0.778 27 11.070 N/A N/A

BellSouth 51 66 32/32 0.836 26 29 0.092 26 7.825 27 0.467 27 7.550 N/A N/A

Bestel 84 93 11/12 0.343 68 91 5.575 82 378.41 128 276.22 75 312.50 N/A N/A

Deltacom 113 183 11/10 0.614 80 100 9.226 94 1222.5 131 490.3 91 989.68 N/A N/A

Average: 35.3 53.1 0.781 18.6 22.2 0.565 21.4 57.11 28.5 26.83 20.3 46.67 N/A N/A

Mean deviation[%]: 115.3 114.11 147.86 107.77

[41] still runs and so we can compare the performance

of the heuristics to each other as well as to the opti-

mum. Before actually running the algorithms, parallel
arcs were removed, links and costs were symmetrized

and the preprocessing algorithm from [41] was executed

in order to ensure that the optimization problems were
always solvable, at least in the case when no SRGs were

provisioned. For the case when SRGs were present, we

also observed the number of source-destination pairs
that could not be covered with an LFA (c.f., Observa-

tion 2). First, we discuss the non-SRG case and then

we turn to the results for networks with Shared Risk

Groups.

5.1 Results in networks without SRGs

In the first round of the numerical studies, we assumed

single link and single node failures. The number of new

links added and the running time by the different al-
gorithms for link-protecting LFAs are given in Table 1,

and the same results for the node-protecting case are

presented in Table 2. The tables also report on the av-

erage number of new links added by the different algo-

rithms and the mean deviation from the optimum.

The most important observations are as follows. First,
the initial LFA coverage is usually about 70-90% in

the link-protecting case and only 55-75% in the node-

protecting case. This is expected, as node-protection
is a stricter requirement than link-protection. Second,

on most small and middle-sized networks adding only

about a dozen or less new links is often enough to

achieve 100% link-protection. This marks the huge po-
tential to LFA-based network optimization. For node-

protection, however, significantly more new links are

needed, to the point that in larger topologies we need to
virtually double or triple the number of links. Third, all

heuristics perform surprisingly well, only overshooting

the optimum by at most 5-15% in most cases and even
finding the optimum for some networks. The MSBT

algorithm is the clear winner both for link- and node-

protection, with the SBT and LJC algorithms also work-

ing reasonably, while RSBT is the worst performer. Fi-
nally, we find that the execution time of the heuristics

is acceptable except for backtracking. LJC is obviously

the fastest, while the backtracking algorithm did not
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Table 2: Node-protecting LFA graph extension results: topology name, number of nodes (n) and arcs (m); number

of link costs and arcs added in the preprocessing phase (“Pre. c/e”), initial LFA coverage (η0), number of new

arcs in the optimal solution (ILP), and the number of added arcs (“ext”) and execution time in seconds for each

algorithm.

LJC SBT RSBT MSBT Backtr.

Topology n m Pre. c/e η0 ILP ext time ext time ext time ext time ext time

AS1221 7 9 1/1 0.500 3 3 0.000 3 0.000 5 0.000 3 0.000 3 0.004

Abilene 12 15 1/1 0.591 9 12 0.001 11 0.006 17 0.004 11 0.004 N/A N/A

AS6461 17 37 1/1 0.746 12 14 0.001 12 0.023 15 0.009 12 0.021 N/A N/A

Germany 17 25 0/0 0.562 18 22 0.005 22 0.043 27 0.031 19 0.032 N/A N/A

AS1755 18 33 0/0 0.765 16 19 0.003 18 0.033 27 0.016 18 0.023 N/A N/A

InternetMCI 19 45 2/2 0.775 23 26 0.004 26 0.037 30 0.018 23 0.027 N/A N/A

AS3967 21 36 0/0 0.643 17 19 0.013 20 0.129 32 0.087 20 0.111 N/A N/A

AT&T 22 38 0/0 0.580 38 43 0.017 43 0.129 54 0.084 40 0.102 N/A N/A

BtEurope 24 37 13/14 0.757 31 32 0.007 31 0.094 49 0.025 31 0.081 N/A N/A

NSF 26 43 0/0 0.634 18 24 0.021 34 0.418 38 0.261 23 0.333 N/A N/A

AS3257 27 64 5/5 0.768 34 36 0.015 34 0.237 50 0.115 34 0.248 N/A N/A

BBNPlanet 27 28 16/16 0.751 35 37 0.012 35 0.207 42 0.055 35 0.165 N/A N/A

Gambia 28 28 15/15 0.541 49 53 0.042 58 0.498 64 0.215 50 0.389 N/A N/A

AS1239 30 69 0/0 0.757 19 24 0.025 25 0.604 34 0.226 20 0.509 N/A N/A

Digex 31 35 0/0 0.312 29 36 0.980 39 1.722 50 1.632 34 1.556 N/A N/A

Italy 33 56 0/0 0.570 35 43 0.082 48 1.490 60 0.949 38 1.229 N/A N/A

BICS 33 48 8/8 0.692 37 42 0.047 44 0.986 57 0.403 40 0.742 N/A N/A

BtNorthAm. 36 76 4/5 0.779 46 50 0.057 47 1.193 63 0.378 46 0.993 N/A N/A

GRNet 36 41 16/16 0.607 64 70 0.116 72 1.741 83 0.596 67 1.219 N/A N/A

Geant 37 57 8/8 0.592 58 70 0.252 70 2.971 84 1.431 59 2.518 N/A N/A

Arnes 41 65 9/9 0.550 90 104 0.264 103 3.397 127 1.465 92 2.451 N/A N/A

ChinaTelecom 42 66 28/28 0.866 62 66 0.033 62 0.695 82 0.253 62 0.623 N/A N/A

Carnet 44 43 34/34 0.746 100 102 0.157 101 2.680 107 0.746 100 2.072 N/A N/A

BellCanada 48 64 9/11 0.488 70 83 0.601 80 11.50 97 6.832 76 8.997 N/A N/A

Germ 50 50 88 0/0 0.828 34 44 0.138 57 6.353 81 3.410 50 5.754 N/A N/A

Cudi 51 52 35/34 0.732 75 80 0.263 77 8.115 86 1.279 77 6.993 N/A N/A

BellSouth 51 66 32/32 0.730 93 97 0.252 94 6.527 123 1.256 93 5.158 N/A N/A

Bestel 84 93 11/12 0.312 106 137 7.780 134 351.9 173 274.9 124 262.3 N/A N/A

Deltacom 113 183 11/10 0.527 171 212 20.735 214 1220.2 255 599.43 197 890.21 N/A N/A

Average: 35.3 53.1 0.644 48 55.2 1.1 55.6 56.0 69.4 30.9 51.5 41.2 N/A N/A

Mean deviation[%]: 115.41 117.86 152.81 107.97
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Fig. 5: LFA coverage in each iteration of different heuristics in the link-protecting case for AS3967 and Italy, and

node-protecting case for the AS1239 topology.

even run till optimum in most of the cases and had to
be shut down after 5 hours of execution.

It seems that for larger networks, and especially in

the node-protecting case, we need dozens of new links

to achieve 100% LFA protection. This is clearly out of

scope for most operators. Instead of aspiring to 100%
protection, the LFA graph improvement problem there-

fore aims towards the more realistic goal of boosting the

LFA coverage by adding only a small number of new

links. Thusly, we also examined how the LFA coverage
increases with each added new link in the subsequent

iterations of the algorithms. The results for some select

topologies are depicted in Fig. 5. The most important

observation is that while MSBT is the most efficient
in attaining 100% coverage with the smallest number

new links, it is the LJC algorithm, by nature, that im-

proves the LFA coverage the most in the initial steps.
The RSBT algorithm also performs well in this regard.
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With LJC, about 10-15% improvement in the LFA cov-

erage can be realized by adding only at most 5 new
links and another 10% with the next 5 links, putting

the coverage in the 90-95% range, which may be enough

in many practical scenarios.

5.2 Results in networks with SRGs

In the second round, we have extended our investigation

to the case when certain sets of links are configured into
local SRGs. Local SRG sets were generated according to

an SRG-density parameter δ ∈ [0, 1], denoting the frac-

tion of all possible adjacent dual-link sets to be selected
as local SRGs. For δ = 0 we add no SRGs at all (i.e.,

this case corresponds to the single failure scenario), and

for the settings δ = 0.1 (δ = 0.5, δ = 0.9, respectively),
we add every adjacent link pair with probability 0.1

(respectively 0.5 and 0.9) as an SRG. Since δ is in fact

only a statistical expectation on the density of SRGs,

we generated 10 different sets of SRGs to each network
and we executed the algorithms on all these scenarios,

eventually reporting the average of the results.

As it was mentioned in Section 4.1, when local SRGs
are present in the network then sometimes we can-

not protect every source-destination pair with adding

new links. Therefore, before executing the algorithms
we used Observation 2 to identify such pairs and we

eliminated the corresponding nodes from the bipartite

graph model. In our results, we also report the maxi-

mum attainable LFA coverage in the network ηmax as
well as the number of unprotectable source-destination

pairs in the worst case. The results themselves for some

select topologies are in Table 3 for the link-protecting
case and Table 4 for node protection under different

choices of the SRG density δ. As a consequence of the

complexity of the ILP, we have omitted calculating the
optimal results for each SRG set and thus the tables do

not highlight the mean deviation.

Our observations are as follows. First, we see that

as SRG density increases the initial LFA coverage drops
drastically. When the SRG density is only 10% the ini-

tial LFA coverage lags behind the single-failure case

by only a mere 2-6% in both the link- and the node-
protecting cases. However, for δ = 0.5 the difference

increases to about 20-25% for the better protected net-

works and about 10% for the less protected ones, to
the point that only about half of the source-destination

pairs can be protected by an LFA. Finally, when the

SRG density is set to δ = 0.9 the initial link-protecting

LFA coverage falls to about 10-20%, and a bare 3-12%
for the node-protecting case. Surprisingly, we find that

the number of new links to be added does not grow at

a similar pace: in the link-protecting case for δ = 0.1

we need about 2-3 more links than in the no-SRLG

case, while δ = 0.5 introduces about 3-4 more links
and even in the case of very large SRG density δ = 0.9

we only need about 7-12 links more (depending on the

network size) than when we do not have SRGs at all.
This essentially means that even when 90% of every

possible adjacent link pair is configured as an SRG we

can still improve link-protecting LFA coverage to 100%
with only a dozen or so new links. A possible cause

behind the insensitivity of our results to SRG density

might be that the new links we add never appear in an

SRG, and therefore can provide massive improvement
in LFA coverage. Similar observations can be made for

the node-protecting case as well. We also observe that

the rank of the algorithms, in terms of efficiency, does
not change under the SRG model: the MSBT algorithm

is still the most efficient. Finally, we note that in the

majority of the cases the LFA graph extension prob-
lem could be solved to optimality (or very close to it),

suggesting that the pathological case identified in Ob-

servation 2 rarely appears in practice.

The results for the LFA graph improvement prob-
lem under the SRG model for some select topologies

are shown in Fig. 6. The observations are similar as in

the non-SRG case: when the goal is merely to improve
the coverage instead of shooting for 100% the LJC al-

gorithm is clearly the best algorithmic strategy.

6 Conclusions

Currently, Loop-Free Alternates seems the most plausi-

ble choice to provide fast protection in IP networks. By

using LFA, ISPs can gain a solid level of protection with
minimal effort and with the help of the LFA-based net-

work optimization algorithms presented in this paper

the failure case coverage can be improved even further.
We have extended the bipartite graph model from [41]

to solve this problem under essentially any failure model

relevant to practice, and we applied several heuristics

from the literature to this representation to obtain ap-
proximate and optimal solutions. The most important

conclusion is that, even-though NP-complete, the LFA

graph extension problem is efficiently approximable. To
support this claim, we presented a logarithmic upper

bound on the worst case performance of the heuristic

based on Lovász-Johnson-Chvatal (LJC) minimum set-
cover method and we also reported on the results of ex-

tensive numerical studies. We argued that, depending

on the optimization objective, different approximation

strategies should be pursued: when the aim is 100%
LFA protection then the MSBT algorithm is a solid

choice, whereas the LJC algorithm is the best option

when the aim is to improve LFA coverage with only a
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Table 3: Link-protecting LFA graph extension results for some select topologies with SRGs: topology name;

maximum attainable LFA coverage (ηmax) and the worst-case number of unprotectable source-destination pairs

in parentheses; initial LFA coverage (η0); and the average of number of added arcs (“ext”) for each algorithm for

small (δ = 0.1), medium (δ = 0.5), and large (δ = 0.9) SRG density

δ = 0.1 δ = 0.5 δ = 0.9

Topology ηmax η0 LJC SBT RSBT MSBT ηmax η0 LJC SBT RSBT MSBT ηmax η0 LJC SBT RSBT MSBT

AS1239 1(0) 0.849 8.3 8.4 13.4 7.8 0.999(1) 0.662 15.3 15.8 24.5 14.6 0.999(1) 0.216 21.2 20.6 32.5 18.4

AS1755 1(0) 0.844 7.9 9.2 12.1 7.8 1.000(0) 0.599 12.1 12.9 15.0 11.5 1.000(0) 0.151 15.1 12.9 17.7 12.1

AS3967 1(0) 0.748 11.1 10.9 17.0 9.6 1.000(0) 0.510 12.9 13.3 21.0 12.0 1.000(0) 0.159 15.2 13.7 24.2 13.5

AT&T 1(0) 0.769 13.1 12.8 13.9 12.5 1.000(0) 0.506 17.2 15.0 19.8 14.6 0.996(2) 0.105 20.1 17.3 23.3 16.5

Digex 1(0) 0.274 26.9 27.4 45.9 25.9 1.000(0) 0.171 28.4 28.2 44.8 26.1 1.000(0) 0.036 28.3 26.3 42.9 25.4

Germ 50 1(0) 0.850 25.4 35.7 49.5 27.6 1.000(0) 0.594 33.0 40.4 64.1 35.9 1.000(0) 0.139 38.6 35.2 69.0 34.8

Germany 1(0) 0.631 13.5 12.0 14.2 11.5 1.000(0) 0.409 14.4 13.2 14.7 12.6 1.000(0) 0.085 16.1 13.9 16.1 13.0

Italy 1(0) 0.738 22.4 27.9 39.2 20.9 0.998(2) 0.489 27.4 28.7 42.6 24.9 0.998(0) 0.112 31.6 29.1 43.8 27.4

NSF 1(0) 0.811 13.5 16.1 29.0 13.0 1.000(0) 0.503 18.1 20.7 32.5 16.9 1.000(0) 0.116 21.3 20.0 34.5 19.3

Average: 1 0.723 15.8 17.8 26.0 15.2 0.999 0.493 19.9 20.9 31.0 18.8 0.999 0.124 23.1 21.0 33.8 20.0

Table 4: Node-protecting LFA graph extension results for some select topologies with SRGs: topology name;

maximum attainable LFA coverage (ηmax) and the worst-case number of unprotectable source-destination pairs

in parentheses; initial LFA coverage (η0); and the average of number of added arcs for the LJC, SBT, RSBT, and
MSBT heuristics for small (δ = 0.1), medium (δ = 0.5), and large (δ = 0.9) SRG density

δ = 0.1 δ = 0.5 δ = 0.9

Topology ηmax η0 LJC SBT RSBT MSBT ηmax η0 LJC SBT RSBT MSBT ηmax η0 LJC SBT RSBT MSBT

AS1239 0.999(1) 0.730 24.7 26.4 36.9 21.8 0.999(1) 0.568 30.7 34.8 45.9 29.4 0.999(1) 0.170 37.9 37.1 52.1 35.5

AS1755 1.000(0) 0.730 18.9 18.4 27.0 17.7 1.000(0) 0.494 22.7 22.8 28.4 20.9 1.000(0) 0.115 26.6 25.6 30.8 24.1

AS3967 1.000(0) 0.604 19.4 21.0 31.7 19.3 1.000(0) 0.402 21.6 24.6 31.5 21.9 1.000(0) 0.117 24.5 26.4 32.4 25.1

AT&T 0.996(2) 0.538 43.0 43.6 52.6 40.1 0.996(2) 0.314 45.2 45.2 50.0 41.7 0.996(2) 0.065 47.1 47.0 51.5 42.3

Digex 1.000(0) 0.270 37.2 38.8 50.3 34.6 1.000(0) 0.170 38.2 39.9 52.2 37.5 1.000(0) 0.036 39.4 39.3 49.0 38.9

Germ 50 1.000(0) 0.770 44.9 62.6 81.7 49.1 1.000(0) 0.512 51.0 64.4 85.1 56.2 1.000(0) 0.113 56.8 56.5 88.3 54.6

Germany 1.000(0) 0.509 21.5 22.2 26.6 19.1 1.000(0) 0.295 23.2 23.9 26.7 20.3 1.000(0) 0.050 25.2 25.0 26.3 22.3

Italy 0.996(2) 0.534 43.2 48.7 61.3 39.2 0.994(2) 0.348 46.6 49.4 61.2 44.4 0.998(2) 0.084 48.8 47.0 59.9 46.3

NSF 1.000(0) 0.572 25.4 31.3 38.2 23.4 1.000(0) 0.334 28.9 30.4 40.6 26.7 1.000(0) 0.070 32.0 30.7 39.9 28.4

Average: 0.999 0.584 30.9 34.8 45.1 29.4 0.998 0.381 34.2 37.3 46.8 33.2 0.998 0.091 37.6 37.2 47.8 35.3
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Fig. 6: LFA coverage in each iteration of different heuristics in the link-protecting case for AT&T with SRG density

δ = 0.5, and node-protecting case for Germany topology with δ = 0.9

limited number of new links. Future work involves inte-

grating these algorithms into a common approximation
framework which would be suitable to tackle both prob-

lems equally efficiently.
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Fast ReRoute: lightweight Not-Via without additional
addresses. In: INFOCOM Mini-conf (2009)

12. Fortz, B., Rexford, J., Thorup, M.: Traffic engineering
with traditional IP routing protocols. IEEE Comm. Mag.
40(10), 118–124 (2002)

13. Francois, P., Bonaventure, O.: An evaluation of IP-based
fast reroute techniques. In: ACM CoNEXT, pp. 244–245
(2005)

14. Francois, P., Filsfils, C., Evans, J., Bonaventure, O.:
Achieving sub-second IGP convergence in large IP net-
works. SIGCOMM Comput. Commun. Rev. 35(3), 35–44
(2005)

15. Garey, M., , Johnson, D.: Computers and Intractability;
A Guide to the Theory of NP-Completeness. W. H. Free-
man & Co. (1990)

16. Gjoka, M., Ram, V., Yang, X.: Evaluation of IP fast
reroute proposals. In: IEEE Comsware (2007)

17. Gomes, T., Simoes, C., Fernandes, L.: Resilient routing in
optical networks using SRLG-disjoint path pairs of min-
sum cost. Springer Telecommunication Systems Journal
(2010)

18. Hewlett-Packard: HP 6600 Router Series: QuickSpecs
(2008). Available online: http://h18000.www1.hp.com/

products/quickspecs/13811_na/13811_na.PDF

19. Hock, D., Hartmann, M., Menth, M., Piro, M.,
Tomaszewski, A., Zukowski, C.: Comparison of IP-Based
and Explicit Paths for One-to-One FastReroute in MPLS
Networks. Springer Telecommunication Systems Journal
(2011)

20. Hokelek, I., Fecko, M., Gurung, P., Samtani, S., Cevher,
S., Sucec, J.: Loop-free IP Fast Reroute using local and
remote LFAPs. Internet Draft (2008)

21. Juniper Networks: JUNOS 9.6 Routing protocols config-
uration guide (2009)

22. Knight, S., Nguyen, H.X., Falkner, N., Bowden, R.,
Roughan, M.: The Internet Topology Zoo. http://www.

topology-zoo.org

23. Kulaga, P., Sapiecha, P., Sej, K.: Approximation Algo-
rithm for the Argument Reduction Problem. In: Com-
puter recognition systems: proceedings of the 4th Inter-
national Conference on Computer Recognition Systems,
CORES’05, p. 243. Springer Verlag (2005)

24. Kvalbein, A., Hansen, A.F., Čičic, T., Gjessing, S., Lysne,
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Máté Nagy was graduated at
Budapest University of Tech-
nology and Economics in elec-
trical engineering in 2010. He
spent a semester in Mikkeli
University of Applied Sciences
that raised up his interest in
infocommunication. Now he is
a first-year PhD student at the
High Speed Networks Labora-
tory, Department of Telecom-
munications and Media In-
formatics, BME and takes
part in researching IP Fas-
tReRoute solutions. He has ex-

perience in C/C++/LEMON,
Java, Python and Linux.

János Tapolcai received his
M.Sc. (’00 in Technical In-
formatics), and Ph.D. (’05
in Computer Science) degrees
in Technical Informatics from
Budapest University of Tech-
nology and Economics (BME),
Budapest, Hungary. Currently
he is an Associate Profes-
sor at the High-Speed Net-
works Laboratory at the De-
partment of Telecommunica-
tions and Media Informat-
ics at BME. His research in-
terests include applied math-

ematics, combinatorial opti-
mization, mathematical pro-

gramming, optical and IP level routing and survivability,
availability analysis and distributed computing. He has been
involved in several related European and Canadian projects.
He is an author of over 80 scientific publications, and is the
recipient of the Best Paper Award in ICC’06 and in DRCN’11.
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