
Full-stack SDN:

The Next Big Challenge?

Gianni Antichi, Gábor Rétvári

Disclaimer

● This is a "Challenge" paper

● Don’t expect answers, only some (hopefully) interesting questions

Switch

TLDR;

Application

Transport

Network

Link

Ethernet bridges handle packets at

L2, IP routers at L3, and middleboxes

add L4 processing capability

Switch

TLDR;

Application

Transport

Network

Link

Ethernet bridges handle packets at

L2, IP routers at L3, and middleboxes

add L4 processing capability

Software Defined Networking (SDN):

impose L2-L4 network policies

centrally

S
D

N
 C

o
n
tr

o
lle

r

Switch

TLDR;

Application

Transport

Network

Link

Ethernet bridges handle packets at

L2, IP routers at L3, and middleboxes

add L4 processing capability

Software Defined Networking (SDN):

impose L2-L4 network policies

centrally

We argue it is time to extend SDN

up into the Application layer (L7) S
D

N
 C

o
n
tr

o
lle

r

TLDR;

Questions? :D

Cloud 1.0: Monolithic apps deployed into VMs

Fabric

Virtual

Switch

Virtual
Machine

Server Virtual
Machine

Virtual

Switch

Virtual
Machine

Server Virtual
Machine

Full app instances

deployed into VMs

Exchange traffic over

L2 and L3 protocols

Ethernet, IP

Fabric

Virtual

Switch

Virtual
Machine

Server

Virtual
Machine

Virtual

Switch

Virtual
Machine

Server

Virtual
Machine

Cloud 2.0: Microservices

Micro-

service

Container

Micro-

service

Container

Micro-

service

Container

Micro-

service

Container HTTP, gRPC SOAP,
WebSocket..

Fine-grained decompo-

sition of business logic

into loosely coupled

microservices

Lightweight isolation in

Linux containers

Expose/consume

services over

application-layer (L7)

protocols

Takeaway 1

With the transition to the microservice

architecture, the main network

communication pattern becomes

application-layer (L7) protocols

Looking glass on microservices

Micro-

service

Container L7

L4

L3

L2

App logic
N

e
tw

o
rk

s
ta

c
k

RDMA

Virtual

Port

Virtual

Port

Virtual

Switch

Microservice communication relies on

critical L7 network functions that are

hardcoded into applications

Examples: Load-balancing, L7 ACLs,

circuit breaking, L7 health-checking,

encryption, policing, observability,

authentication and authorization

Cannot impose L7 network policies

centrally

Example 1: Filter HTTP REST API calls

Microservices typically expose/consume

services over RESTful HTTP APIs

These look the same for a conventional

L2-L4 SDN switch (TCP, port=80/443)

The network SHOULD be able to filter

connections based on HTTP header

fields

The control plane SHOULD be able to

set L7-ACLs in switches

HTTP POST

Micro-

service

query

Micro-

service

read-only

Virtual network

HTTP GET

Example 2: Differentiate/route based on VXLAN ID

Micro-

service

Micro-

service

production

Micro-

service

test

Normal
traffic

Test
traffic

VXLAN
Network
Identifier?

If a new service version is deployed

alongside production code..

VXLAN tunnels look the same for an L2-

L4 SDN switch (UDP port is 4789)

The network SHOULD be able to handle

traffic at the granularity of VXLAN

Network Identifier!

The control plane SHOULD be able to

install VXLAN routing rules in the

dataplane

Virtual network

Example 3: Police RTP streams by user ID

Micro-

service

Micro-

service

Micro-

service

Micro-

service

User 2: 100 Kbps

User 1: 10 Kbps

RTP streams look the same for

an L2-L4 SDN switch

The network SHOULD be able to

rate-limit RTP streams based on

user ID (SSRC)

The control plane SHOULD be

able to set/query counters at the

granularity of individual RTP

streams

Virtual network

Takeaway 2

Application-layer network functions

SHOULD be moved out from

applications into the dataplane to

allow the enforcement of L7 network

policies centrally

State-of-the-art: The service mesh

Istio

Kubernetes

Microservice

Container

Virtual

Port

Application

Virtual Switch

L2-L3 policies

Service Proxy

L4-L7 policies

Business Logic

The service mesh is an L7-

SDN to manage HTTP-based

microservice communication

Achieved by injecting an HTTP

service proxy to each

microservice

State-of-the-art: The sidecar proxy model

Virtual Switch

L2-L3 policies

Microservice

Container

Application

Service Proxy

L4-L7 policies

Business Logic

Microservice

Container

Application

Service Proxy

L4-L7 policies

Business Logic

The proxy runs side-by-side with the app and intercepts all ingress/egress traffic

State-of-the-art: The sidecar proxy model

Virtual Switch

L2-L3 policies

Microservice

Container

Application

Service Proxy

L4-L7 policies

Business Logic

Microservice

Container

Application

Service Proxy

L4-L7 policies

Business Logic

Even a local packet exchange requires stitching 3 connections one after the other

This is 6 kernel-space--user-space context switches (remote calls are even worse)

State-of-the-art: The sidecar proxy model

Virtual Switch

L2-L3 policies

Microservice

Container

Application

Service Proxy

L4-L7 policies

Business Logic

Microservice

Container

Application

Service Proxy

L4-L7 policies

Business Logic

Check the paper for some numbers on how this architecture might affect network

function performance!

Takeaway 3

The state-of-the-art L7 SDN is

restricted to HTTP and runs on top

of the inefficient sidecar-proxy

model

The challenge: Full-stack SDN

Virtual Switch

L2-L3 policies

Microservice

Container

Application

Service Proxy

L4-L7 policies

Business Logic

Microservice

Container

Application

Service Proxy

L4-L7 policies

Business Logic

The challenge: Full-stack SDN

 Full-Stack Virtual Switch

 L2-L7 policies

Microservice

Container

Application

Business Logic

Microservice

Container

Application

Business Logic

A local packet exchange would require now only 1 simple connection

This is only 2 kernel-space--user-space context switches!!!!

Full-stack SDN: How?

Process traffic at any layer in the protocol stack (UDP, TCP, RTP,

WebSocket, Ethernet, IP, etc..)

Key components:

○ Full-stack SDN switch

○ Full-stack SDN control plane

See a couple of initial ideas in the paper

Conclusions

Takeaway 1

With the transition to the microservice architecture, the main network

communication pattern becomes application-layer (L7) protocols

Takeaway 2

Application-layer network functions SHOULD be moved out from

applications into the dataplane to allow the enforcement of L7 network

policies centrally

Takeaway 3

The state-of-the-art L7 SDN is restricted to HTTP and runs on top of

the inefficient sidecar-proxy model

Challenge: Full-stack SDN

Thanks!

