Full-stack SDN: The Next Big Challenge?

Gianni Antichi
Queen Mary University of London
g.antichi@qmul.ac.uk

ABSTRACT

This paper challenges the common assumption that SDN networks
shall be run only at lowest layers of the stack, i.e., L2 and L3. Us-
ing as use case data center networks providing virtualized ser-
vices, we show how state-of-the-art solutions already employ some
application-level processing via a central controller. With this in
mind, we question if the lessons learned from a decade of SDN
networking can be also extended to the upper layers. We make the
case for a full-stack SDN framework that encompasses all protocol
layers in the network stack, and call for further research in the area.

CCS CONCEPTS
» Networks — Layering; Programming interfaces.

KEYWORDS

Software Defined Networks, service mesh, network architectures

ACM Reference Format:

Gianni Antichi and Gabor Rétvari. 2020. Full-stack SDN: The Next Big
Challenge?. In Symposium on SDN Research (SOSR ’20), March 3, 2020, San
Jose, CA, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3373360.3380834

1 INTRODUCTION

Are Service Meshes the Next-gen SODN?
DevOps Zone, 2017

Layer-7 is the New Layer-4
Cilium, future:net, 2017
Data center networks are hard to manage [22]. This is due to
their intrinsic complexity: Microsoft reported that just a single site
can be composed by hundreds of thousands of servers and switches,
combined across multiple components through millions of cables
and fibers [12]. The rise of end-host virtualization, consolidating
possibly a very large number of diverse services on a single sys-
tem, and the rapid convergence of cloud-native service access APIs
based on the HTTP communication protocol [26, 35], has further
increased the pressure on network operators with a new layer of
complexity.
In response to the above concerns, a dedicated communication
overlay (the service mesh [8, 15, 28]) has been recently proposed
as a potential technology to manage network communications at

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SOSR °20, March 3, 2020, San Jose, CA, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7101-8/20/03...$15.00
https://doi.org/10.1145/3373360.3380834

Gabor Rétvari
MTA-BME Information Systems Research Group
Ericsson Research, Hungary
retvari@tmit.bme.hu

| Service Mesh

—| Kubernetes |

—‘ Server '7 Server
pod d od

Control Plane

‘ Istio

Servicel| | |, Service

App A AppA 8 App A

transport {1 transport { transport 1

sockets L} sockets sockets {1

Layer 4-7 Sidecar|, __(Sidecar| Sidecar|
Data Plane Proxy Proxy | Pro;

il it

virtual virtual virtual

Layer2-3 || port Virtual pot | CNI irtual = P
Data Plane Switch Switch
1T

£e3 £e3
| Data center Fabric |

Figure 1: An L7-SDN: The Service Mesh.

the application layer (Layer-7, or L7). In this architecture (see Fig-
ure 1), services or applications! are generally connected to a sidecar
proxy, which is a L4-L7 design pattern abstracting features, such as
inter-service communications, monitoring and security, to ease the
tracking and maintenance of an application as a whole. The sidecar
proxy is then connected to a virtual switch (or vswitch) that acts as a
L2-L3 gateway to the physical network infrastructure. Applications
running on the same server interact only via the sidecar proxy and
the virtual switch, while services located in two different hosts need
the data center fabric to exchange traffic, through the respective
proxies and virtual switches [22, 49].

Interestingly, the last 15 years of fast-pace evolution has resulted
in a somewhat haphazard separation of concerns in data center
networking: the fabric is managed by a cloud orchestration frame-
work like OpenStack [48], Andromeda [4], or AccelNet [7], basic
node-level L3 network virtualization is provided by a container or-
chestration system like Kubernetes [16], Mesos [13], or Docker, on
top of which a service mesh framework, like Istio [15], linkerd [8],
or Consul, delivers enhanced L7 network virtualization [28]. This
“split-identity” network virtualization approach has obtained the
opposite result of the original proposition: a skyrocket complexity
in network management [22] which has introduced new security
concerns [49, 50] and performance bottlenecks [8, 11].

In this paper, we ask whether a unified, full-stack approach may
help alleviate mounting data center network management issues.
Our premise is the observation that, similarly to data center vir-
tual networking [22], the service mesh follows a design pattern
familiar to the SDN principles: a central authority (e.g., Istio [15])
that exerts fine-grained control over global L7 network policies by
programming the underlying L7 data plane (the sidecar proxies).
The difference is that the service mesh operates at higher layers in

1From now on, we will use those two terms interchangeably.

https://doi.org/10.1145/3373360.3380834
https://doi.org/10.1145/3373360.3380834
https://doi.org/10.1145/3373360.3380834

SOSR 20, March 3, 2020, San Jose, CA, USA

the protocol stack, while typical SDN deployments operate at L2
and L3, and partially at L4.

We thus wonder if the lessons learned from a decade of SDN
networking can be also extended into the service mesh model,
and to application-layer network virtualization as a whole. This is
challenging because the required API abstractions for higher layers
change much faster than at lower layers: applications’ needs rapidly
change while IP and transport protocols are less frequently subject
to complete redesigns.

We make the case for a full-stack SDN framework that encom-
passes practically all protocol layers in the network stack, from L2
to L7, and call for further research in the area. We consider two
prominent data-center networking use cases, the state-of-the-art
application of the service mesh to provision Web services and a
proof-of-concept L7 Network Function Virtualization (NFV) pro-
totype. The operational experience we obtain is then leveraged to
sketch a research program towards developing a full-stack SDN
framework.

The main contributions of the paper are as follows:

e We position the service mesh as an L7-SDN by identifying
the sidecar proxy as the programmable L4-L7 data-plane
and Istio as the control plane.

e We consider two L7-SDN use cases to obtain operational
experience and we identify critical architectural concerns
regarding the current state-of-the-art.

o We sketch a research program towards the development and
associated challenges for a full-stack SDN solution.

2 THE CASE FOR FULL-STACK
NETWORKING

In this section we first discuss the need for insights into higher
layers of the protocol stack and draft the requirements for a generic
L7-aware data center network infrastructure.

The need for HTTP-aware insight. Traditionally, TCP/IP pro-
vided a minimal but sound elementary end-to-end network expe-
rience to applications. The increasing generality of higher-layer
protocols, such as HTTP, has led operators to explore their feasibil-
ity beyond the Web, i.e., for media streaming (WebRTC), remote-
procedure calls (gRPC), and data center networking [18]. Slowly
but steadily, this has made HTTP the new “narrow waist” in the
IT protocol stack [35]. Crucially, when everything is encoded into
HTTP then basic L2-L4-layer insight into traffic is no longer ad-
equate to exert full control over the network [26]. A “traditional”
firewall filters only on the “IP 5-tuple” (IP source and destination
addresses, transport protocol and ports), but this is of little use
when the destination port is uniformly 80 (HTTP) or 443 (HTTPS)
regardless of whether a particular traffic instance is a REST API
call or a long-lived media stream.

L2-L7 networking beyond HTTP. Beyond the Web application
space, wireline and mobile telecommunications, NFV, game net-
working, industrial automation, and finance still rely on use-case-
specific legacy L7 protocols. Similarly to HTTP-bound Web services,
these areas would likewise benefit from managing, load-balancing,
filtering and monitoring traffic at the granularity of individual L4~
L7 sessions. This requires generic application-specific insight into

Gianni Antichi and Gabor Rétvari

Table 1: Feature comparison between standard telco-grade
SDN/NFV frameworks and the service mesh.

Feature/Pattern (related NFV OSM + ONAP + NSM [31] K8s/Istio
literature) ‘ ‘ OpenStack ‘ OPNFV ‘

Declarative traffic management v v v v
[19, 33, 47]

Service discovery v v M M
Service gateways [44] v v X v
Monitoring v v C v
Adaptive load-balancing T T C v
[19, 33, 40, 47]

Transparent encryption [34, 37] X X X v
Canary, A/B testing, CI/CD X X X Vv
Fault injection, tracing [29] X X C v
Health-check, timeout, retries, T T C v
circuit breaking [23]

Public cloud deployability v v X v
Development activity (all time high high N/A very high
devs/commits as of 2019/08/01)* 118/4026 173/2965 457/10126
User on-boarding, ease of use™" moderate hard moderate very easy
QoS (throughput/latency) [51] v v C X
Telco standards compliance v v X X
Carrier-grade performance (packet v v C X
throughput/latency)

Vi supported, C: claimed/proof-of-concept, T, third-party/externally provided, X: not supported/provided
*: based on Open Hub [32] **: according to own experience

network communications. At the same time, L2-L3 networking
remains indispensable in the foreseeable future, for core data-center
networking and low-level network virtualization. In summary, a
modern SDN framework should be able to exert fine-grained pro-
gramatic control over any layer in the protocol stack in a protocol-
agnostic manner (not bound to HTTP).

SDN features at L7. Table 1 compares the features available in
traditional NFV/SDN frameworks? against Istio, taken as a rep-
resentative control plane for a service mesh architecture. We see
several overlapping features but, as we point out below, these fea-
tures are provided at different layers of the protocol stack, which
bears critical architectural consequences. For instance, both de facto
SDN frameworks and Istio enable rule-based traffic management,
but whereas in the former this is possible only at the granularity of
the IP 5-tuple, Istio can also route individual HTTP calls separately
depending on the targeted endpoint or request cookies [15] and
apply load-balancing policies on a per-application basis [27]. Simi-
larly, security and policy enforcement and tracing, monitoring, and
logging occurs at a much coarser grain in de facto SDN, whereas
for Istio L7-aware protocol insight allows to filter traffic even at
the granularity of individual REST API endpoints, selectively en-
crypt/decrypt privacy-sensitive application streams, and monitor
network operations beyond traditional L2-L4 statistics from live
data-plane traces [10, 20]. On top of these, Istio provides a unique
set of L7-specific features: timeouts/retries and circuit breaking al-
low Istio to handle failures gracefully by automatically retrying
and timing out failed L4-L7 connection attempts and removing
unavailable service endpoints from the load-balancing pools (circuit
breaking), and Istio’s support for canary rollouts, A/B testing, “dark
launch” [42], staged rollouts with percentage-based traffic splits,
and chaos testing through programmable failure injection unlocks
the best continuous integration/delivery practices (CI/CD) which are
currently unparalleled in the de facto SDN world.

2From now on, we refer to these as de facto SDN, to highlight that while SDN in
principle is oblivious to the specific layer at which the packet processing is enforced,
current deployments work mostly at L2 and L3.

Full-stack SDN: The Next Big Challenge?

The challenge: Full-stack SDN. At the moment, the L7-aware
features of Istio are available only for HTTP-based Web services
and, in a severely restricted form, for plain L4 TCP streams. At
the same time, the underlying cloud orchestration platform acts
as central control plane for basic L2-L3 network virtualization,
providing many of the same features at lower layers of the pro-
tocol stack. In addition, possibly another control plane may be in
charge of managing the underlying data center fabric. This creates
a split-stack SDN architecture, where multiple control planes and
data planes interact in complex ways to deliver a full-stack L2-L7
network experience to applications.

This paper challenges current operational practices in data center
networking and questions if the lessons learned from a decade
of SDN networking can be also extended to higher layers in the
protocol stack. In particular, we ask:

(1) Can we extend SDN best-practices from the current
L2-L3-SDN model to higher protocol layers, up to
L7?

(2) Can we build a unified full-stack SDN, spanning
L2-L7 in the protocol stack, to alleviate mounting
network management issues?

3 THE SERVICE MESH AS AN L7-SDN

Starting from Figure 1 as a reference, in this section we investigate
the similarities between the current service mesh architecture and
the de facto SDN approach.

The Istio architecture. Originally, different subsets of the service
mesh feature set existed scattered throughout piecemeal implemen-
tations, software libraries, and SDKs, which made it difficult to reuse
these features across different programming languages and devel-
opment frameworks, and to centrally impose global communication
policies. This has led to the development of the programmable L4-
L7 service proxy, a language and framework agnostic tool to apply
advanced application-layer communication policies on network
traffic. The service proxy acts as a single point of policy enforce-
ment and network service abstraction. The policies themselves are
programmed into proxies by a centralized control plane in concert
with the high-level intents defined by the mesh operator. The resul-
tant service mesh architecture (recall Fig. 1) then lends itself readily
to be casted in the framework of L7-SDN.

Data plane: Envoy, a programmable L4-L7 proxy. Envoy is
an open-source L4-L7 proxy that can act as a load-balancer, a
service gateway or a service proxy, depending on the deployment
model. In the application-layer SDN framework, Envoy acts as a L7
counterpart of the “de facto SDN” switch: it receives incoming traffic
through “L7 ports” (Listeners), e.g., on a server-side WebSocket
or plain TCP receiver socket; processes ingress traffic using the
familiar match-action abstraction (Filters), e.g., to load-balance on
session cookies, rewrite headers, or to route requests per REST API
endpoints; and forwards requests to upstream services (Clusters)
and service backends (EndPoints) through client-side sockets. The
individual components are loaded dynamically via a northbound
API (xDS). The high-level architecture of Envoy is depicted in Fig. 2.

SOSR 20, March 3, 2020, San Jose, CA, USA

‘xDSAPI‘ ‘ stats ‘ ‘ admin ‘

o]

Load-balancer 1

Health-checks -
’:> Circuit breaker [{ [_EndPoint 2

Retry/timeout EndPoint 3

 —

Listeners

Match-action
logic

Figure 2: The programmable L7 data plane: Envoy.

Upstream
connection

Downstream
connection
requests requests

Control-plane: Istio. The Istio control plane accepts a high-level,
human-readable configuration describing global communication
policies, synthesizes a configuration for each service proxy and
applies it through xDS (istio-pilot). Furthermore, Istio contains
a component to securely distribute secrets (istio-citadel) and
another one to extract monitoring information from the service
proxies and report these to a central store (istio-mixer).

The “Universal Dataplane API”, xDS. Envoy accepts dynamic
configuration from the control plane through the xDS APL Of
particular importance here is the Listener Discovery Service (LDS),
an API to manage ingress sockets, the Route Discovery Service
(RDS) to determine the route for incoming session requests by
matching on connection metadata, and the Cluster Discovery API
(CDS) to dynamically configure the backends for each service. The
collection of all these APIs is called the “Universal Dataplane API”
[21], even though, as we argue later, it may not be that universal
after all.

In summary, we see that Istio nicely fits into the SDN paradigm,
with the control plane and the data plane cleanly separated and
the former dynamically configuring the latter via an open API.
Curiously even the data-plane architectures, from a mile high view,
are similar, in that both the “de facto SDN” programmable switches
and L7 service proxies are built on the venerable match-action
abstraction [36], just the metadata matched differ (per-packet L2-L3
metadata versus per-connection HTTP header fields).

4 USE CASES

In this section, we take a closer look at two prominent data-center
networking use cases and we argue that the state-of-the-art “split-
stack” SDN approach incurs considerable management complexity.
First, we point out that the default service mesh deployment model,
where the vswitch and the service proxy are deployed separately,
raises concerns even for the service mesh killer application, Web
services. To gather further operational experience on an especially
network-heavy use case, we also built an NFV prototype on top Istio;
we summarize the takeaways and briefly report on the performance.

4.1 Web Services

There is a rising trend to provision cloud-based Web applications
following the micro-service model, whereby the application is struc-
tured as a collection of loosely coupled distributed services that
communicate over the network to collectively deliver the com-
pound business logic. Cloud-native micro-services are usually im-
plemented as Linux containers or pods and use technology-agnostic
protocols, like HTTP, to serve and consume RESTful APIs. In the

SOSR 20, March 3, 2020, San Jose, CA, USA

Virtual Machine
C C
Sidecar Sidecar
Web App Proxy Proxy Web App ‘
User space
Kernel space;
vSwitch/Container Network Interface
Guest OS
Hypervisor switch
Hostos T >

Figure 3: The sidecar proxy pattern.

micro-service model, the service mesh acts as a dedicated network
infrastructure that automatically manages micro-service commu-
nication workloads across possibly hundreds of pod/container in-
stances.

The sidecar proxy pattern. Figure 3 presents the state-of-the-
art deployment model of Istio. In this model, basic L2-L3 network
virtualization is provided by a virtual switch, or an equivalent policy
routing pipeline (e.g., iptables) administered by the Container
Network Interface (CNI) plugin, in the Guest OS kernel space. In
order to enforce L4-L7 communication policies on top of this L2-L3
network virtualization layer, the service proxy (Envoy) needs to
intercept all ingress and egress network connections to and from
the application; this is ensured by injecting the service proxy as
a sidecar alongside the application code and installing a complex
policy routing chain in the pod namespace. We note that both
the L2-L3 virtualization layer and the L4-L7 service proxies are
managed by the same operator (the former via Kubernetes and
the latter via Istio), yet the corresponding data planes are fully
separated (but see [11] for an integrated approach). The sidecar
proxy model has a number of critical consequences to service mesh
operations, as we discuss next.

The Good. Deploying the service proxy in user space opens up the
service mesh data plane to fast-pace innovation. Since the sidecar
proxy is usually injected at application bootstrap time from an open
container repository, new versions can be deployed rapidly and
selectively for individual applications/services.

The Bad. Istio installs a fairly involved policy routing pipeline into
the network namespace of each pod in order to transparently medi-
ate ingress/egress communication from/to the application through
the user-space sidecar proxy [46]. On the one hand, this enables
tight control over application traffic, e.g., the mesh operator can
close down TCP/HTTP access to all external services from an ap-
plication. At the same time, the OS-based infrastructure to capture
application traffic required by the sidecar proxy model introduces
substantial extra complexity and latency/jitter. Currently, the cap-
turing pipeline is restricted to TCP in Istio.

The Ugly. Container networking already takes a nontrivial tax on
network performance [55], to which the sidecar proxy adds consid-
erable extra overhead [8, 11]. In particular, in the user-space sidecar
proxy model even a local packet exchange involves 3 separate
phases (sender app to the sender sidecar proxy, between sidecars,
and receiver sidecar proxy to the destination application) with 3

Gianni Antichi and Gabor Rétvari

|| NFV/SDN | Service Mesh
Orchestration ONAP, OP-NFV, OpenNetVM Kubernetes + Istio
Protocol Layer 1.2/L3/L4 + NSH L7
Transport GRE/MPLS/VXLAN + vSwitch | HTTP, gRPC, Websocket + Envoy
Communication Long-lived connections, proxy | Short-lived request-response
Pattern mode (passthrough) traffic (server mode)

Service Routing/ Network Service Header (NSH) | HTTP Headers/Cookies + Istio

Chaining + ToR/vswitch routing HTTP routing

QoS Per-flow Per-request

Language/Platform dataplane: C/C++ + DPDK, ctrl | dataplane: Node.js + OS network
plane: Java stack, ctrl plane: Go

Performance Rate: 10-100 mpps, Latency: < 5 | Rate: 100+ Kreq/sec, Latency: 10+

millisec/packet

Table 2: NFV/SDN vs. the service mesh.

millisec/req

full round trips and 6 context switches between the two applica-
tions, the sidecar proxies, and the underlying vswitch/OS kernel
(see again Fig. 3). For a remote packet exchange, the overhead is
even larger. For comparison, if we were to substitute the sidecars
and the vswitches with a single integrated L2—-L7 SDN data plane
component, then the overhead would reduce to 2 context switches
and a single user-space to kernel-space roundtrip.

Takeaway. Even the killer service mesh application, Web services,
struggle with certain complexities and performance penalties that
arise from the current “split-stack” approach. A unified full-stack
design would allow to sidestep some of these limitations.

4.2 Network Function Virtualization

After experimenting with Web services, where Istio truly shines,
we turned to evaluate it with a traditional SDN-centric use case: we
built a proof-of-concept NFV prototype on top of an unmodified
Istio stack. In NFV, packet processing logic is decomposed into
primitive network functions (NFs), each NF performing one single
processing step on traffic traversing it, and the required packet
processing logic is realized by dynamically chaining NFs one after
the other. The NFV use case lends itself readily to be constructed on
top of Istio, with NFs implemented as Kubernetes containers/pods
and “NF plumbing” encoded as Istio routing rules.

Unfortunately, the target audiences for NFV and Istio are com-
pletely different; see a summary in Table 2. In order to bridge these
gaps, we had to make a number of, sometimes rather taxing, design
decisions.

Application-layer overlay. Istio exposes an application-layer net-
work abstraction that is not transparent to typical NFV workloads:
as packets progress from one NF to the other the data plane actively
rewrites L2-L4 headers, which fundamentally interferes with most
NFV use cases that require transparent IP forwarding. This confines
us to manage NFV traffic at a higher level in the protocol stack, e.g.,
VXLAN, GTP, RTP. However, Istio currently does not handle these
protocols natively. Accordingly, we had to resort to building our
NFV prototype as an overlay with all NF-NF traffic encapsulated in
HTTP, either natively (HTTP GET/POST) or using an HTTP-based
messaging protocol (Websocket/gRPC). In this way, the original IP
5-tuple is exposed to the service mesh in HT TP headers, which allows
to take full advantage of Istio’s HTTP-based routing, security, and
monitoring capabilities.

Full-stack SDN: The Next Big Challenge?

SOSR 20, March 3, 2020, San Jose, CA, USA

Table 3: Performance evaluation results. Dynamic: number of successful connection setup requests per second and 99" call
setup latency. Static: throughput and latency measured with iperfv2 TCP/UDP test.

Chain Dynamic Static, single-flow Static, 8 flows
Request/sec ‘ Latency (99lh perc.) Throughput (TCP) ‘ Throughput (UDP) Per-Packet Latency (avg/min/95-th/max) Sum Throughput
Chain 1 235.5 qps 98 ms 100 Mbps 35 Mbps/4,375 pps 1.37/0.18/7.1/96.7 ms 1.24 Gbps
Chain 2 222.5 qps 88 ms 100 Mbps 25 Mbps/3,125 pps 2.17/0.53/13.2/97.1 ms 946 Mbps
Chain 3 184.5 qps 91 ms 100 Mbps 20 Mbps/2,500 pps 4.58/1.03/44.1/96.7 ms 655 Mbps

Minikube v1.0.0, Kubernetes v1.14.0, Istio v1.1.5, Virtualbox: 4 x Intel Xeon CPU E5-2620v3 @ 2.40GHz, HT enabled, 32 Gbyte DRAM, iperf v2.0.12, Fortio v1.3.2pre: load test, max qps, 6 threads.
Static Rate: TCP: Read buffer size: 128 KB, window size: 85.3 KB / UDP: 500 byte/packet, avg latency: <40 ms / Static Latency: UDP, 1.6 Mbps @ 200 byte packets, 1000 pps
Single-flow: from Host to Minikube VM via NodePort back to the Host / Concurrent: 8 TCP flows between two pods provisioned in the mesh, via the Istio ingress gateway

Ingress/egress protocol conversion. Typically, user traffic is posed
to the NFV framework, and consumed from the system, encapsu-
lated in use-case specific “niche” protocols, e.g., UDP, SCTP, RTP,
that Istio currently does not understand. Correspondingly, a gate-
way functionality is necessary which maps user traffic into, and
out from, the service mesh, transparently converting from conven-
tional encapsulations to HTTP and vice versa. Some of this gate-
way functionality can be readily implemented with standard Linux
CLI tools; in our prototype we used socat(1) [45], websocat, and
httptunnel(1) for this purpose.

Conntrack, a first class citizen in L7 networking. In L7-SDN
the main attachment point of NFs is BSD sockets and not plain ports as
in “conventional” SDN [55]: each NF terminates HT TP sockets and
either originates new HTTP sessions (proxy mode) or sends the pro-
cessed traffic back in the HTTP response (server mode). Connection
requests received at the gateway will trigger the establishment of a
new HTTP session through the service mesh, building per-session
conntrack state at session creation time. Handling connectionless
(per-packet) transport, such as ICMP, is difficult in this design; our
prototype falls back to tunneling this traffic in aggregate HTTP
tunnels and letting the NFs do classification, header parsing, and
basic IP processing by themselves.

Evaluation. We coded our prototype in about 600 lines of Javascript/
Node.js and we implemented a simple WAN acceleration service
with 3 NFs: encrypt-decrypt, compress-decompress, and passthrough.
We deployed our prototype into a Minikube Kubernetes cluster
alongside a full installation of Istio and we configured 3 service
chains: Chain 1 is an empty chain traversing only the ingress and
egress gateways to test plain ingress and egress mapping to and
from HTTP; Chain 2 implements a full AES-256 payload encrypt-
decrypt cycle on top of the empty chain; and Chain 3 extends the
latter with a back-to-back gzip compress-decompress cycle. The
details of the configurations and the results are shown in Table 3.
Depending on the workload, our L7-NFV prototype can set up
hundreds of user calls per second with at most 100 msec latency per
call setup, providing 100 Mbps rate in TCP (stream) and about a
third of that on UDP (datagram) traffic. The prototype delivers 1-5
ms average per-packet latency, but with a fairly large uncertainty
envelope of 100 ms; this is clearly attributed to the inefficiencies
of the sidecar proxy model. The workload elastically scales to 8
concurrent flows reaching an aggregate throughput in the order of
gigabits per second. This seems enough for request-response and
unsegmented byte-stream workloads, but for per-packet datagram
workloads the measured 5,000-10,000 pps (packet per second)
throughput is orders of magnitude short of the performance we

have grown to expect from a telco-grade NFV framework [19, 25,
33, 34, 39, 51].

The Good. The application-layer approach provides a number of
unique advantages in L7-NFV. First, the design and implementa-
tion of NFs is simplified a lot compared to the L2-L4 case; in L2-L4
each NF needs a separate classifier to sort input traffic into per-user
flows [3], while in L7-NFV this is done automatically by the un-
derlying network stack. Correspondingly, the full implementation
of the 3 NFs takes only 15 SLOC(!) of Javascript/Node.js. Second,
traffic management is smooth at L7 as there is no need to worry
about dynamic IP addresses and routing tables; this is automati-
cally handled by Kubernetes/Istio. Third, many of the resiliency,
security, and elastic scaling features that in NFV currently require
additional frameworks [34, 52] and extra management burden [43]
are provided off-the-shelf by Istio. Finally, notorious pain points
in “traditional” NFV [43], like maintaining session affinity [40] and
session identity across NFs, load-aware load-balancing [27], or in-
workload encryption, are particularly easy at L7 and come natively
supported in Istio.

The Bad. Some of the design decisions we had to make (recall
Table 2) adversely affect the present viability of L7-SDN on top of
Istio. First, application-layer network virtualization would at the
minimum require the data plane to implement said application-
layer protocols. Unfortunately, Istio’s lack of support for basically
any L7 protocol beyond HTTP, and above all, everything running
on top of UDP, required us to bolt the entire NFV framework on
top of HTTP, which proves a poor fit for datagram workloads.
Furthermore, while off-the-shelf offerings in Kubernetes/Istio are
unmatched when it comes to monitoring and tracing, these seem of
limited use when the KPIs we can observe are mostly meaningless
in the NFV context; e.g., Istio KPIs are “requests per second” and
“call setup latency”, while in NFV we are concerned with throughput
and per-packet latency. Similar is the case for enforcing Service
Level Objectives and Quality of Service. Nonetheless, we believe
these problems would be feasible to address within the existing
service-mesh frameworks with sufficient effort.

The Ugly. Some problems, however, seem deeply immersed in the
current design of Istio and the split-stack SDN architecture. Since
the targeted workload of the service mesh is short-lived HTTP
request-response communication, the typical sidecar proxy does
not track and expose individual sessions to the control plane. This
means that there is no way to list or kill individual user sessions,
and one cannot dynamically reroute or re-connect a live session.
Moreover, we found that there is limited support in Istio/Envoy
for basic telco data plane functionality [25], like encapsulation/

SOSR 20, March 3, 2020, San Jose, CA, USA

decapsulation, stream multiplexing/de-multiplexing, or explicit pro-
tocol conversion, and adding these may easily amount to rewriting
Envoy from scratch. But perhaps most compellingly, Envoy’s data
plane is closely and intricately tied to the OS socket interface and
thus the usual NFV performance-boosting tricks, like fast user-
space network stacks [1, 14, 41], cannot be used under Istio. This
is exacerbated by the inefficiencies of the sidecar proxy model,
enforced by the “split-stack” design.

Takeaway. An L4-L7 approach to NFV has a number advantages
over conventional L2-L3 approaches, most notably, simplified NF
development and native support for some of the pain-points in
traditional NFV. Unfortunately, the restrictions inherent to the state-
of-the-art L7-SDN design enforce a number of compromises that
seem to greatly hinder its applicability to network-intensive use
cases, like NFV. Addressing these issues would require significant
innovation in data plane abstractions and new control plane models.

5 TOWARDS A CLEAN-SLATE FULL-STACK
SDN

We believe that a full-stack SDN architecture would be a plausible
way to overcome the current limitations of L7 SDN frameworks.

We envision the full-stack SDN switch to be able to terminate
and originate traffic at any level of the protocol stack, e.g., a raw
L2-L3 datagram socket bound to a local port for receiving and
sending pure Ethernet or IP packets, an unconnected datagram
socket (UDP) or connected stream socket (TCP, SCTP) at L4, or
an L7 session (RTP, WebSocket, etc.). The switch would then be
able to transparently pipe any two streams together, driven by a set
of match-action rules programmed into it from the control plane.
The match-action rules in turn should work on a per-packet (for
unconnected datagram sockets) or a per-connection (for connected
streams) basis. To maximize efficiency, the switch should be able to
dynamically offload the pipeline partially or as a whole to hardware
accelerators [2, 6, 24].

Since it is not practical to wire-in all possible application-layer
protocols into the data plane, a full-stack SDN switch should be
able to dynamically accept configuration for defining new protocols.
This would make it possible, e.g., to implement VXLAN on top of a
primitive UDP stream on-the-fly or build full MPLS support from
raw Ethernet frames, the same way as P4 allows to compile new
protocols into the data plane dynamically.

We envision the full-stack SDN control plane to work either in
legacy “split mode”, where different controllers are responsible for
different layers of the protocol stack as in today’s data center virtu-
alization, or in a “full-stack mode” where a single controller frame-
work exerts full control and performs “cross-layer optimization” on
the entire pipeline. In both modes, the control plane should be able
to authorize access to different portions/layers of the pipeline and
to manage overlapping or conflicting configurations.

6 RELATED WORK

The motivations for a full-stack SDN are many and well-documented:

declarative L4-L7-aware traffic management [19, 33, 47], policy

Gianni Antichi and Gabor Rétvari

enforcement [26] and monitoring [29]; seamless application scale-
out [17, 52] and legacy applications support [53]; simplified appli-
cation side packet classifiers [3]; reduced configuration complexity
eliminating the need to “micro-manage” NF chains at L2-L4 [43] or
virtualized data-center networks separately at different layers of the
protocol stack [22]; and value-added L7 network services, includ-
ing adaptive load-balancing [27], timeouts/retries/circuit breakers,
transparent encryption [34, 37], or CI/CD support.

Currently, the vision of full-stack SDN is largely unfulfilled. In
the data plane, the well-known dynamically configurable service
proxies, like Envoy, Traefik, HAProxy or nginx, are constrained
to HTTP and TCP and completely lack the abstractions for native
stream processing. In the control plane, Kubernetes/Istio/xDS offer
good models for an extensible L7 SDN. However, to realize the
full-stack SDN at its complete feature set, radically new ideas and
abstractions and substantial further research is needed.

In the IT world, the enterprise service bus (ESB) and API gate-
ways were the first attempts at an application-aware universal com-
munication framework [38]. Meanwhile, the research community
also observed the need to extend the network data plane towards
L4-L7 processing: Slim implements an accelerated socket-layer net-
work virtualization framework [54]; the congestion control plane
splits the transport layer into a fast data-plane and a separate con-
gestion control logic in a framework that can be best described as
an L4-SDN [30]; and XTRA [2], PicNIC [24] and NICA [6] address
the need to efficiently offload reconfigurable L4 network functions
to SmartNICs.

More recently, Trident has called for a unified L2-L7-SDN control
plane and defined a set of abstractions and algorithms to implement
this vision, but the data plane is still assumed to be at L2-L4 [9].
In the context of NFV, the need for full-stack L2-L7 networking
was raised in [53] and [5], but these works are hard to generalize
beyond the setting of NFV.

ACKNOWLEDGMENTS

This research is (in part) supported by the UK’s Engineering and
Physical Sciences Research Council (EPSRC) under the EARL project
(EP/P025374/1), and project no. 123957, 129589 and 124171 provided
by the National Research, Development and Innovation Fund of
Hungary under the FK-17, KH-18 and K-17 funding schemes. The au-
thors wish to thank Balazs Sonkoly, Felician Németh, Péter Megyesi,
and Maté Nagy for the useful input they provided to the paper.

REFERENCES

[1] Advanced Networking Lab/KAIST. Packet I/O Engine. https://github.com/
PacketShader/Packet-10-Engine.

[2] G. Bianchi, M. Welzl, A. Tulumello, F. Gringoli, G. Belocchi, M. Faltelli, and
S. Pontarelli. XTRA: Towards portable transport layer functions. IEEE Transac-
tions on Network and Service Management, PP:1-1, 10 2019.

[3] A.Bremler-Barr, Y. Harchol, and D. Hay. OpenBox: a software-defined framework
for developing, deploying, and managing network functions. In ACM SIGCOMM,
pages 511-524, 2016.

[4] M. Dalton et al. Andromeda: Performance, isolation, and velocity at scale in
cloud network virtualization. In USENIX NSDI, pages 373-387, 2018.

[5] L.Dunbar, R. Parker, N. So, and D. E. Eastlake. Architecture for Chaining Legacy
Layer 4-7 Service Functions. Internet-Draft draft-dunbar-sfc-legacy-14-17-chain-
architecture-05, Internet Engineering Task Force, July 2014. Work in Progress.

[6] H.Eran, L. Zeno, M. Tork, G. Malka, and M. Silberstein. NICA: An infrastructure
for inline acceleration of network applications. In USENIX ATC, pages 345-362,
2019.

https://github.com/PacketShader/Packet-IO-Engine
https://github.com/PacketShader/Packet-IO-Engine

Full-stack SDN: The Next Big Challenge?

[10]
[11]
[12]
[13]
[14]
[15

[16
[17]

(18]

19]

[20]

[21

[22]

[23]

[24]

[27]

[28]
[29]

[30]

[36]

[40]

[41]

D. Firestone et al. Azure accelerated networking: SmartNICs in the public cloud.
In USENIX NSDI, pages 51-66, 2018.

T. Fromm. Performance benchmark analysis of Istio and Linkerd. https://kinvolk.
io/blog/2019/05/performance-benchmark-analysis- of-istio-and-linkerd, 2019.
K. Gao, T. Nojima, and Y. R. Yang. Trident: Toward a unified SDN programming
framework with automatic updates. In ACM SIGCOMM, pages 386—401. ACM,
2018.

M. Ghasemi, T. Benson, and J. Rexford. Dapper: Data plane performance diagnosis
of TCP. In ACM SOSR, pages 61-74. ACM, 2017.

T. Graf. Accelerating Envoy and Istio with Cilium and the Linux kernel. CNCF
KubeCon, 2018.

Guo et al. Pingmesh: A Large-Scale System for Data Center Network Latency
Measurement and Analysis. In ACM SIGCOMM, 2015.

B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz,
S. Shenker, and L. Stoica. Mesos: A platform for fine-grained resource sharing in
the data center. In USENIX NSDI, volume 11, pages 22-22, 2011.

Intel. Data Plane Development Kit. http://dpdk.org.

Istio: Connect, secure, control, and observe services. https://istion.io.
Kubernetes: Production-grade container orchestration. https://kubernetes.io.
M. Kablan, A. Alsudais, E. Keller, and F. Le. Stateless network functions: Breaking
the tight coupling of state and processing. In USENIX NSDI, pages 97-112, 2017.
A. Kalia, M. Kaminsky, and D. Andersen. Datacenter RPCs can be General and
Fast. In USENIX NSDI, 2019.

G. P. Katsikas, T. Barbette, D. Kostic, R. Steinert, and G. Q. Maguire Jr. Metron:
NFV service chains at the true speed of the underlying hardware. In USENIX
NSDI, pages 171-186, 2018.

C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J. Wobker. In-band
network telemetry via programmable dataplanes. In ACM SIGCOMM, 2015.

M. Klein. The universal data plane APL https://blog.envoyproxy.io/the-universal-
data-plane-api-d15cec7a, 2017.

T. Koponen and others. Network virtualization in multi-tenant datacenters. In
USENIX NSDI, pages 203-216, 2014.

S. G. Kulkarni, G. Liu, K. Ramakrishnan, M. Arumaithurai, T. Wood, and X. Fu.
REINFORCE: achieving efficient failure resiliency for network function virtual-
ization based services. In ACM CoNEXT, pages 41-53, 2018.

P. Kumar, N. Dukkipati, N. Lewis, Y. Cui, Y. Wang, C. Li, V. Valancius,]. Adriaens,
S. Gribble, N. Foster, and A. Vahdat. PicNIC: Predictable virtualized NIC. In ACM
SIGCOMM, pages 351-366, 2019.

T. Lévai, G. Pongracz, P. Megyesi, P. Voros, S. Laki, F. Németh, and G. Rétvari.
The price for programmability in the software data plane: The vendor perspective.
IEEE Journal on Selected Areas in Communications, 36(12):2621-2630, Dec. 2018.
L. MacVittie. What does "HTTP is the new TCP" mean for you. F5 dev/central,
2014. https://devcentral.f5.com/s/articles/what-does- http-is-the-new-tcp-mean-
for-you.

R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. SilkRoad: Making stateful Layer-4
load balancing fast and cheap using switching ASICs. In ACM SIGCOMM, pages
15-28, 2017.

W. Morgan. What’s a service mesh? and why do i need one? https://buoyant.io/
2017/04/25/whats-a-service-mesh-and-why-do-i-need-one, 2017.

J. Nam, J. Seo, and S. Shin. Probius: Automated approach for VNF and service
chain analysis in software-defined NFV. In ACM SOSR, pages 1-13, 2018.

A. Narayan, F. Cangialosi, D. Raghavan, P. Goyal, S. Narayana, R. Mittal, M. Al-
izadeh, and H. Balakrishnan. Restructuring endpoint congestion control. In ACM
SIGCOMM, pages 30-43. ACM, 2018.

Network Service Mesh: An L2/L3 service mesh for Kubernetes.
networkservicemesh.io.

Open Hub. Discover, Track and Compare Open Source.

S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo, and S. Shenker.
E2: A framework for NFV applications. In ACM SOSP, pages 121-136, 2015.

A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker. Netbricks:
Taking the v out of NFV. In USENIX OSDI, pages 203-216, 2016.

L. Peterson. Http is the new narrow waist. Systems Approach Blog, 2019.
https://www.systemsapproach.org/blog/http-is-the-new-narrow-waist.

B. Pfaff et al. The design and implementation of Open vSwitch. In USENIX NSDI,
pages 117-130, 2015.

R. Poddar, C. Lan, R. A. Popa, and S. Ratnasamy. Safebricks: Shielding network
functions in the cloud. In USENIX NSDI, pages 201-216, 2018.

C. Posta. Application network functions with ESBs, API management, and
now, service mesh? https://blog.christianposta.com/microservices/application-
network-functions-with-esbs-api-management-and-now-service-mesh, 2017.
Z. A. Qazi, M. Walls, A. Panda, V. Sekar, S. Ratnasamy, and S. Shenker. A high per-
formance packet core for next generation cellular networks. In ACM SIGCOMM,
pages 348-361, 2017.

S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield. Split/merge: System
support for elastic execution in virtual middleboxes. In USENIX NSDI, pages
227-240, 2013.

L. Rizzo. Netmap: A novel framework for fast packet i/o. In USENIX ATC, pages
9-9, 2012.

https://

[42]
[43]

[44]

SOSR 20, March 3, 2020, San Jose, CA, USA

D. Schenck. Istio dark launch: Secret services. https://developers.redhat.com/
blog/2018/04/17/istio-dark-launch-secret-services, 2018.

S. Shenker, S. Ratnasamy, and C. Polychronopoulos. Accelerating innovation
with Lean NFV. ONS Keynote, 2019.

J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V. Sekar.
Making middleboxes someone else’s problem: Network processing as a cloud
service. In ACM SIGCOMM, pages 13-24, 2012.

socat: Multipurpose relay. http://www.dest-unreach.org/socat.

J. Song. Understanding how envoy sidecar intercept and route traffic in istio
service mesh. Medium, 2019.

C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu. NFP: Enabling network function
parallelism in NFV. In ACM SIGCOMM, pages 43-56, 2017.

The OpenStack project. OpenStack Neutron integration with OVN. https:
//docs.openstack.org/networking-ovn/latest.

K. Thimmaraju, S. Hermak, G. Rétvari, and S. Schmid. MTS: Bringing multi-
tenancy to virtual networking. In USENIX ATC, pages 521-536, 2019.

K. Thimmaraju, B. Shastry, T. Fiebig, F. Hetzelt, J.-P. Seifert, A. Feldmann, and
S. Schmid. Taking control of SDN-based cloud systems via the data plane. In
ACM SOSR, pages 1-15, 2018.

A. Tootoonchian, A. Panda, C. Lan, M. Walls, K. Argyraki, S. Ratnasamy, and
S. Shenker. Resq: Enabling SLOs in network function virtualization. In USENIX
NSDI, pages 283-297, 2018.

S. Woo, J. Sherry, S. Han, S. Moon, S. Ratnasamy, and S. Shenker. Elastic scaling
of stateful network functions. In USENIX NSDI, pages 299-312, 2018.

C. Zhang, S. Addepalli, N. Murthy, L. Fourie, M. Zarny, and L. Dunbar. L4-L7
service function chaining solution architecture. ONF TS-027, 2015.

D. Zhuo, K. Zhang, Y. Zhu, H. H. Liu, M. Rockett, A. Krishnamurthy, and T. An-
derson. Slim: OS kernel support for a low-overhead container overlay network.
In USENIX NSDI, pages 331-344, 2019.

D. Zhuo, K. Zhang, Y. Zhu, H. H. Liu, M. Rockett, A. Krishnamurthy, and T. An-
derson. Slim: OS support for a low-overhead container overlay network. In
USENIX NSDI, pages 331-344, 2019.

https://kinvolk.io/blog/2019/05/performance-benchmark-analysis-of-istio-and-linkerd
https://kinvolk.io/blog/2019/05/performance-benchmark-analysis-of-istio-and-linkerd
http://dpdk.org
https://istion.io
https://kubernetes.io
https://blog.envoyproxy.io/the-universal-data-plane-api-d15cec7a
https://blog.envoyproxy.io/the-universal-data-plane-api-d15cec7a
https://devcentral.f5.com/s/articles/what-does-http-is-the-new-tcp-mean-for-you
https://devcentral.f5.com/s/articles/what-does-http-is-the-new-tcp-mean-for-you
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one
https://networkservicemesh.io
https://networkservicemesh.io
https://www.systemsapproach.org/blog/http-is-the-new-narrow-waist
https://blog.christianposta.com/microservices/application-network-functions-with-esbs-api-management-and-now-service-mesh
https://blog.christianposta.com/microservices/application-network-functions-with-esbs-api-management-and-now-service-mesh
https://developers.redhat.com/blog/2018/04/17/istio-dark-launch-secret-services
https://developers.redhat.com/blog/2018/04/17/istio-dark-launch-secret-services
http://www.dest-unreach.org/socat
https://docs.openstack.org/networking-ovn/latest
https://docs.openstack.org/networking-ovn/latest

	Abstract
	1 Introduction
	2 The case for full-stack networking
	3 The Service Mesh As an L7–SDN
	4 Use Cases
	4.1 Web Services
	4.2 Network Function Virtualization

	5 Towards a Clean-Slate Full-stack SDN
	6 Related Work
	Acknowledgments
	References

