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Motivation

Oblivious routing asks for a static routing that
serves arbitrary user demands with minimal
performance penalty. Performance is mea-
sured in terms of the competitive ratio, the
proportion of the maximum congestion to the
best possible congestion. In undirected net-
works, the competitive ratio is upper-bounded
by a logarithmic function of the number of
nodes, and its value usually remains under 2
in directed networks. Is the oblivious rout-
ing really that good? Or the competi-
tive measure hides some crucial details
on how oblivious routing performs?

The throughput polytope T is the set of
traffic matrices 6 for which there is a routing
u that accommodates 6 in the network with no
link over-utilization:
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For a static routing function &, the feasible
region R(S) is a down-monotone a polytope:

R(S)={0:) Pufubp<c, 6>0}. (1)
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New Perfor

The probability of congestion (PoC) 7 is
the probability that at least one network link
gets overloaded by oblivious routing:

B Vol(R)
n=1 Vol(T) (2)

where Vol denotes the K-dimensional volume.

Given a static routing function S, the
expected value of congestion (EVoC)
is the mean value of the maximum link
utilization produced by S:

L ks (0)] - (3)

Approximati
The EVoC can be approximated as

K 1
K+1\1-

where K 1s the number of source-destination
pairs.
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PoC and EVoC

e our most important observation is that the probability of congestion grows beyond 80% for
as few as about 10 users, and as the number of users enters the range of the number of
nodes, and it approaches 100% with very high confidence

e the expected value of congestion grows beyond 1, indicating symptoms of grave congestion
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PoC: K < 9 exact results were computed using Vinci; K > 9 approx. result (the chance of relative error larger than 10% is less than 10%)

Future Works

e more exhaustive numerical evaluations

e theoretical lower bounds

e fast approx. algorithm for PoC



