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Motivation

Oblivious routing asks for a static routing that
serves arbitrary user demands with minimal
performance penalty. Performance is mea-
sured in terms of the competitive ratio, the
proportion of the maximum congestion to the
best possible congestion. In undirected net-
works, the competitive ratio is upper-bounded
by a logarithmic function of the number of
nodes, and its value usually remains under 2
in directed networks. Is the oblivious rout-

ing really that good? Or the competi-

tive measure hides some crucial details

on how oblivious routing performs?

Model

The throughput polytope T is the set of
traffic matrices θ for which there is a routing
u that accommodates θ in the network with no
link over-utilization:

T = {θ : ∃u ≥ 0 so that
∑

P∈Pk

uP = θk ∀k ∈ K

∑

k∈K

Pkuk ≤ c}

For a static routing function S, the feasible
region R(S) is a down-monotone a polytope:

R(S) = {θ :
∑

k∈K

Pkfkθk ≤ c, θ ≥ 0} . (1)

New Performance Metrics

The probability of congestion (PoC) η is
the probability that at least one network link
gets overloaded by oblivious routing:

η = 1−
Vol(R)

Vol(T )
, (2)

where Vol denotes the K-dimensional volume.

Given a static routing function S, the
expected value of congestion (EVoC)
is the mean value of the maximum link
utilization produced by S:

µ(S) = E [κS(θ)] . (3)

Approximating EVoC

The EVoC can be approximated as

K

K + 1

(

1

1− η

)1/K

≤ µ ≤ α , (4)

where K is the number of source-destination
pairs.
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Example
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(s1, d1) = (3, 4)

(s2, d2) = (1, 4)

P1 = {(3, 4)}

P2 = {(3, 2), (2, 4)}

P3 = {(1, 2), (2, 4)}
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PoC and EVoC

• our most important observation is that the probability of congestion grows beyond 80% for
as few as about 10 users, and as the number of users enters the range of the number of
nodes, and it approaches 100% with very high confidence

• the expected value of congestion grows beyond 1, indicating symptoms of grave congestion

NSFNET Phase II (directed and undirected)
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PoC: K ≤ 9 exact results were computed using Vinci; K > 9 approx. result (the chance of relative error larger than 10% is less than 10%)

Future Works

• more exhaustive numerical evaluations

• theoretical lower bounds

• fast approx. algorithm for PoC


