
Dataplane Specialization for
High-performance OpenFlow

Software Switching

László Molnár, Gergely Pongrácz, Gábor Enyedi, Zoltán Lajos Kis
Levente Csikor, Ferenc Juhász, Attila Kőrösi, Gábor Rétvári

TrafficLab, Ericsson Research, Hungary
Department of Telecommunications and Media Informatics, BME

MTA-BME Information Systems Research Group
SIGCOMM’16, August 22-26, 2016, Florianopolis, Brazil

TL;DR

“OpenFlow is expressive but troublesome to make fast on x86.”
B. Pfaff et al. “The design and implementation of Open vSwitch,” NSDI, 2015.

Dataplane specialization may help to alleviate the
“expressibility vs. performance” tension.

Expressibility vs. Performance

How to support diverse workloads
in a single device efficiently?

Datapath Programmability Is Hard

• Packet forwarding: map received packets to the
action(s) to be executed on them (and execute these)

packet 7→
fast-path packet classifier︷ ︸︸ ︷

header tuple 7→ flow entry 7→ action(s)

• Supporting OpenFlow’s expressibility makes the
fast-path packet classifier rather complex

• But software-based packet classification is slow

OpenFlow softswitch architectures are all
about working around the complexity of

fast-path packet classification

Simple Load Balancer + ACL

Generic Switch Architectures

• Universal dataplane that supports all use cases “well”
(CPqD, xDPd, LINC, OVS, 6WINDGate)

• Tackle difficultly of packet classification by avoiding it
◦ do the classification for flows’ first packets
◦ use result for subsequent packets: flow caching

• But flow caching introduces its own share of problems
◦ breaks on widely changing traffic/header fields:

hidden assumptions and performance artifacts
[PAM 2009], [HotSDN 2013], [CCR 2014], [EANTC 2015]

◦ cache management hard: complex architecture
[NSDI 2015]

◦ breaks tenant isolation: DOS attacks on caches
[NSDI 2014], [CCR 2014]

Our Idea: Dataplane Specialization

• Generic switch architectures over-generalize: optimize
for the lowest common denominator

• Instead, let the switch automagically optimize its
dataplane for the given workload
◦ into an Ethernet softswitch for L2 use cases
◦ an LPM engine for IP
◦ an optimal combination for mixed workloads

• This allows to choose the best fast-path classifier
for each flow table in the pipeline separately

• Very efficient for simple pipelines, achieve what’s
possible for complex ones

ESWITCH

• A new dataplane compiler to transform OpenFlow
programs into custom fast-paths

OpenFlow pipeline ESWITCH−−−−−−−→ custom fast-path

• Rebuild the datapath for each add-flow/del-flow:
compilation speed is crucial

• ESWITCH invokes template-based code generation
◦ deconstruct the pipeline into simple packet

processing primitives
◦ represent primitives with precompiled codelets
◦ link templates into executable machine code

ESWITCH: Templates

• Unit of pkt processing behavior that admits a simple
and composable machine code implementation

• Parser template: raw packets→ matchable tuples
• Separate parser for each protocol in OpenFlow spec

PROTOCOL_PARSER : <set protocol bitmask in r15 >

L2_PARSER : mov r12 , <pointer to L2 header >

L3_PARSER : mov r13 , <pointer to L3 header >

L4_PARSER : mov r14 , <pointer to L4 header >

• Matcher template: match on some header field
• E.g., a matcher for entry ip_dst = ADDR/MASK:

macro IP_DST_ADDR_MATCHER (ADDR , MASK):
mov eax ,[r13 +0 x10] ; IP dst address in eax
xor eax ,ADDR ; match ADDR
and eax , MASK ; apply MASK
jne ADDR_NEXT_FLOW ; no match : next entry

ESWITCH: Templates

• Flow table template: basic classification types
Name: direct code
Prerequisite: #flows ≤ 4
Match type: arbitrary
Implementation: machine code
Application: universal
Fallback: compound hash

Name: compound hash
Prerequisite: global mask
Match type: exact match
Implementation: perfect hash
Application: MAC switching & port filtering
Fallback: LPM

Name: LPM
Prerequisite: prefix masks
Match type: longest prefix match
Implementation: DPDK LPM lib
Application: IP forwarding
Fallback: linked list

Name: linked list
Prerequisite: none
Match type: tuple space search
Implementation: machine code
Application: complex pipelines
Fallback: none

• Start with best template, fallback if prerequisite fails
• Action template: packet processing functionality
• Separate for each action type, shared across flows

Directly Compiled Datapath

• An OpenFlow pipeline with the below flow entry
...
priority =i, ip_dst =ADDR/MASK , action = ACTION
...

• ESWITCH compiles it into a sequence of templates
PROTOCOL_PARSER : <set protocol bitmask in r15 >
L2_PARSER : mov r12 , <pointer to L2 header >
L3_PARSER : mov r13 , <pointer to L3 header >
...
FLOW_i : ; flow entry starts

bt r15d , IP ; packet contains IP header?
jae ADDR_NEXT_FLOW ; jump to next flow entry if not
IP_DST_MATCHER (ADDR , MASK) ; ip_dst = ADDR / MASK?
jmp ACTION ; jump to ACTION

FLOW_ (i+1):
...
ACTION : ... ; execute ACTION

Compilation Process

• ESWITCH divides code generation into 3 stages
1. Flow table analysis: divide pipeline into templates
• ESWITCH uses flow table decomposition to promote

tables to efficient table templates

• Theorem: optimal table decomposition is NP-hard
• We use fast greedy heuristics

Compilation Process

2. Template specialization: patch templates with flow
keys, masks, etc.

• Code contains constants to avoid memory references
3. Linking: resolve dangling pointers to direct address
• goto_table pointers go through per-table trampolines
• Thus updates are transactional and per-flow-table
◦ new code built side-by-side with running datapath
◦ trampoline updated when ready
◦ all goto_table pointers thus updated atomically

Implementation/Evaluation

• PoC ESWITCH prototype on top of the Intel DPDK
• Measured against Open vSwitch (OVS): generic

dataplane with multi-level flow cache hierarchy
• Mobile access gateway use case (among others)

10 CEs, 20 users per CE, IP routing table: 10K IP prefixes, couple of dozen flow tables
Intel, “Network function virtualization: Quality of Service in Broadband

Remote Access Servers with Linux and Intel architecture.”, 2014.

Access Gateway: Custom Dataplane

Throughput

2M

6M

10M

12M

1 10 100 1K 10K 100K 1M

pa
ck

et
 ra

te
 [p

ps
]

number of active flows

ESwitch
OVS

single core, 64-byte packets, Intel Xeon, XL710 @ 40 Gb

Latency

 100

 1000

 10000

1 10 100 1K 10K 100K 1M

C
P

U
 c

yc
le

s/
pa

ck
et

number of active flows

ESwitch
OVS

single core, 64-byte packets, Intel Xeon, XL710 @ 40 Gb

Throughput Under Updates

0.2

0.4

0.6

0.8

1.0

0 1 10 100 1K 10K 100K

no
rm

ed
 p

ac
ke

t r
at

e
[p

ps
]

number of updates per seconds

ESwitch
OVS

single core, 64-byte packets, random updates to IP routing table

Conclusions

• For a switch to be truly programmable, the dataplane
itself must also be adaptable

• ESWITCH is a datapath compiler to turn OpenFlow
programs into runnable fast-paths
◦ (at least) twice the packet rate of OVS
◦ orders of magnitude smaller latency
◦ even under heavy update load

• Admits analytic performance models (see paper)
• ESWITCH is now in production at Ericsson!

Hope you’ve seen the demo! If not, please talk to us,
we may find a way to show you ESWITCH in operation

ESWITCH is about to become open-source (as soon as
we resolve IPR issues)!

Besides, we are looking for visiting researcher
positions...

ESWITCH vs P4

• Both P4 and ESWITCH are datapath compilers, but
ESWITCH is restricted to OpenFlow while P4 is generic

• OTOH, P4 is static (knows pipeline semantics only),
while ESWITCH sees the actual pipeline contents

• The allows ESWITCH to use several runtime
optimization techniques, similar to JIT compilers:
◦ template specialization with full constant inlining
◦ direct jump pointers
◦ small tables JITted to the direct code template

• Potentially more efficient code with ESWITCH than with
equivalent P4 program

• There is no reason why dataplane specialization could
not be extended to P4

