Dataplane Specialization for High-performance
OpenFlow Software Switching

Laszlé Molnar+, Gergely Pongracz*, Gabor Enyedi*, Zoltan Lajos Kis*,
Levente Csikorf, Ferenc Juhasz*1, Attila Kérdsit, Gabor Rétvarit
*TrafficLab, Ericsson Research
tDepartment of Telecommunications and Media Informatics, BME
IMTA-BME Information Systems Research Group

ABSTRACT

OpenFlow is an amazingly expressive dataplane program-
ming language, but this expressiveness comes at a severe
performance price as switches must do excessive packet clas-
sification in the fast path. The prevalent OpenFlow software
switch architecture is therefore built on flow caching, but
this imposes intricate limitations on the workloads that can
be supported efficiently and may even open the door to mali-
cious cache overflow attacks. In this paper we argue that in-
stead of enforcing the same universal flow cache semantics
to all OpenFlow applications and optimize for the common
case, a switch should rather automatically specialize its dat-
aplane piecemeal with respect to the configured workload.
We introduce ESWITCH, a novel switch architecture that
uses on-the-fly template-based code generation to compile
any OpenFlow pipeline into efficient machine code, which
can then be readily used as fast path. We present a proof-
of-concept prototype and we demonstrate on illustrative use
cases that ESWITCH yields a simpler architecture, superior
packet processing speed, improved latency and CPU scala-
bility, and predictable performance. Our prototype can eas-
ily scale beyond 100 Gbps on a single Intel blade even with
complex OpenFlow pipelines.

CCS Concepts

eNetworks — Bridges and switches; Network performance
modeling;

Keywords

OpenFlow software switching, packet classification, template-
based code generation

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions @acm.org.

SIGCOMM ’16, August 22-26, 2016, Florianopolis, Brazil
© 2016 ACM. ISBN 978-1-4503-4193-6/16/08. .. $15.00
DOTI: http://dx.doi.org/10.1145/2934872.2934887

1. INTRODUCTION

The OpenFlow switch is perhaps the most generic packet
processing device ever conceived [1,2]. Depending on the
configuration from the control plane, an OpenFlow switch
can identify flows based on a broad combination of layer-
2, layer-3, and layer-4 (L2-L4) protocol attributes and ap-
ply essentially any meaningful packet processing action on
the packets of these flows. This facilitates the rapid provi-
sioning and central administration of highly reconfigurable
network services on top of a potentially heterogeneous in-
ventory of switches and thereby providing Infrastructure-as-
a-Service capabilities [3,4]; it unlocks networks for radical
innovation, allowing to mix circuit and packet switched in-
frastructures [5], heterogeneous control paradigms [6], and
legacy with clean-slate protocols [1, 7]; and it still retains
the familiar network operations mental model in expressive
high-level declarative policies [§—10]. Accordingly, Open-
Flow has found its use in a wide range of application areas,
from enterprise networks [11], data centers [12] and multi-
tenant clouds [13], optical transport networks [14], software-
defined Internet exchanges [15], WANs [6] and WAN gate-
ways [16], all the way to telco load-balancers, stateless fire-
walls, and mobile access gateways [17, 18]. Crucially, the
OpenFlow dataplane must support all these diverse applica-
tions with reasonable efficiency.

Unfortunately, this genericity conflicts with performance;
to quote [19], “OpenFlow is expressive but troublesome to
make fast on x86”. Embedded intrinsically into the Open-
Flow fast path is a series of costly packet classification steps,
needed to associate packets with flows for applying corre-
sponding actions, and, in spite of decades of continuous re-
search and development [20-24], OpenFlow software packet
classification still remains too expensive for today’s line rates
[19]. Reasons for this all trace back to the rich packet pro-
cessing capabilities [25], the need to perform basically arbi-
trary wildcard matches on a broad selection of packet header
fields (40+ as of OpenFlow 1.4, [2]), flow priorities impos-
ing a firm ordering on classification that may break elemen-
tary networking conventions like IP longest prefix match-
ing (LPM), or the fact that a pipeline may include dozens
of stages and the corresponding classifications must be per-
formed successively, each stage using the results from the

previous stages. This rich semantics is already hard to sup-
port in hardware firewalls and intrusion-detection middle-
boxes, let alone in OpenFlow software switches [25]. With
the rise of server virtualization in data center networking and
network function virtualization, however, OpenFlow appli-
ances increasingly run on a stock x86 platform that lacks
the necessary hardware-based packet classification compo-
nents [5,6,11-13, 15-18].

Consequently, most OpenFlow softswitch implementations
recur to excessive flow caching at the fast path, in order
to amortize the computational costs of packet classification
over the packets of flows [26-28]. It is well-known, how-
ever, that flow caching performs poorly for many impor-
tant applications that require forwarding decisions depend-
ing on diverse “high-entropy” packet fields, like transport-
layer firewalls, or produce short-lived flows, e.g., peer-to-
peer protocols, MapReduce, or network monitoring [19,29].
Consequently, OpenFlow switches often exhibit abrupt per-
formance regressions in various hard-to-predict combinations
of flow tables and traffic patterns [29-34], opening the door
to malicious denial-of-service-like attacks even on as inno-
cently looking traffic patterns as port scans [19,29,35].

In this paper, we argue that these adverse phenomena stem
from the fact that flow caching over-generalizes: by enforc-
ing the same universal flow cache semantics to fundamen-
tally diverse use cases it optimizes for the lowest common
denominator. For instance, the prevalent OpenFlow software
switch implementation, Open vSwitch (OVS), uses a hash-
based wildcard match store as (one of the hierarchy levels
of) its flow cache, which works fairly well for simple Open-
Flow pipelines but inherently breaks down for large-scale IP
routing (that would rather require LPM, [30]) or flow tables
that heavily match across layer boundaries [19, 29].

Instead of relying on an overly general-purpose fast path,
we argue, an OpenFlow switch should rather automagically
specialize itself for the actual workload, into an optimal ex-
act matching switch when the flow tables specify pure L2
MAC forwarding [36], an LPM engine for L3 routing [37,
38], or a fast, optimized packet classifier for L4 ACLs [20-
24], and a reasonable combination of these building blocks
whenever the OpenFlow pipeline matches heterogeneous pro-
tocol header fields.

We present ESWITCH, a new OpenFlow switch frame-
work that radically breaks with general-purpose datapaths
and embraces a fully customized dataplane. We view Open-
Flow as a declarative language to program the dataplane [8,
9] and we cast ESWITCH as a compiler that transforms a
declarative pipeline specification into efficient machine code.
Underlying ESWITCH is the observation that, similarly to
many natural programming languages [39], most real-world
OpenFlow applications compose the same small set of sim-
ple forwarding behaviors, or patterns, and therefore Open-
Flow pipelines lend themselves readily to be rewritten in
terms of a small set of predefined static templates. ESWITCH,
accordingly, uses dynamic template-based code generation
to emit optimized OpenFlow fast paths that sidestep flow
caching altogether. Thanks to the template abstraction we
can even construct meaningful performance models for the

generated code and reason about the fast path in simple quan-
titative terms.

We implemented ESWITCH on top of the Intel DataPlane
Development Kit (DPDK, [40]). The dataplane is written
entirely in assembly, hand-optimized to the x86 and ARM
platforms. We present extensive measurements to show that,
compared to OVS, ESWITCH features predictable and supe-
rior performance, latency and multi-core scalability with up
to two orders of magnitude improvement on complex Open-
Flow pipelines, while supporting similar update intensities.
Our rudimentary prototype easily scales beyond 100 Gbps
transmission speeds, downright beating many contemporary
hardware OpenFlow switches by a large margin [41].

The rest of the paper is structured as follows. In Sec-
tion 2 we discuss OpenFlow switch architectures and present
our critiques for flow caching. In Section 3 we introduce
ESWITCH and in Section 4 we demonstrate pipeline compi-
lation on some common use cases, we analyze performance
related aspects, and we sketch simple analytic switch mod-
els. Finally, we review related work in Section 5 and we
conclude the paper in Section 6.

2. THE OPENFLOW PIPELINE

The crux of the OpenFlow dataplane is the pipeline, an ab-
stract description of the forwarding functionality programmed
into a switch. The pipeline is a linked hierarchy of flow ta-
bles, each flow table specifying a logically distinct stage of
packet forwarding in the form of a list of flow entries. A
flow entry in turn consists of a rule to be matched on packet
header fields, counters for maintaining statistics, and actions
to be applied to a packet whenever a match is found. Rules
designate flows and actions establish pipeline processing for
these flows, by triggering forwarding on a particular port,
updating packet contents, sending to a next stage flow table
for further processing, etc. Flow entries are managed by the
controller via a dedicated OpenFlow channel, either reac-
tively (online, in response to received packets) or proactively
(offline, e.g., after a topology change).

Packet processing starts at the first flow table (“Table 07),
trying to match the header field tuple against the first flow
entry and then, should this fail, against successive flow en-
tries in decreasing order of priority!. Processing terminates
when the matching flow entry does not specify a next table
to be visited (using a goto_table instruction), at which
point the actions associated with the packet are executed.
Unmatched packets cause a table miss and, depending on
switch configuration, can be dropped or sent to the controller
for further consideration.

Fig. 1a gives the pipeline for a simple firewall, arbitrating
packets between an Internet-facing external port and an
internal port connected to a web server hosted at the IP
address 192.0.2.1. The pipeline contains a single flow
table; the first flow entry requires that packets received at
the internal port are forwarded to the external port
unconditionally, while in the reverse direction only HTTP

"'When not stated otherwise, we use the convention that flow
entries are listed in decreasing order of priority.

Table:0

in_port | ip_src ip_dst | tcp_src | tcp_dst action
internal * * * * output:external
external * 192.0.2.1 * 80 output:internal
external * * * drop

(a) sample flow table

Table:0 Table:1
in_port | action ip_dst tcp_dst | action
internal | output:external j 192.0.2.1 | 80 output:internal
external | goto_table:1 * * drop

(b) equivalent pipeline
Figure 1: A simple firewall: (a) single-stage pipeline and (b)
an equivalent multi-stage pipeline. Flow entries are listed
in decreasing order of priority and priorities are not marked
explicitly. Note that in (b) we omitted irrelevant match fields
(ip_srcand tcp_src).

packets (t cp_dst=80) are admitted and the rest of the traf-
fic is dropped.

Industry best practices recommend to split the pipeline
into multiple consecutive stages, to modularize pipeline de-
sign by decoupling packet processing in different protocol
layers and to obtain simpler representations for complex for-
warding semantics and sidestep cross-product flow-state ex-
plosion effects [2, 17, 18]. For example, the VMware NVP
network virtualization controller sets up more than a dozen
stages in its packet processing pipeline [13]. For our sam-
ple firewall, an equivalent multi-stage OpenFlow pipeline is
specified in Fig. 1b. Here the first stage flow table forwards
between switch ports, directing external packets to a second
stage flow table that filters web traffic.

2.1 OpenFlow Software Datapaths

The art and science of OpenFlow switch architectures re-
volve around the organization of functionality inside the soft-
ware pipeline implementation (the datapath) in order to per-
mit processing flow entries and applying actions as fast as
possible, without sacrificing OpenFlow’s inherent expres-
siveness. Existing implementations fall into the below two
coarsely defined categories.

Direct datapath. A direct datapath performs packet classi-
fication right on the flow tables. A simple implementation
strategy would be to organize flow entries into a linked list
according to the order imposed by priorities and iterating
over this list priority-wise, possibly jumping to another table
whenever a match is found and starting linear iteration anew.
Thusly, a direct datapath in the worst case loops through all
flow entries in all flow tables until it finally finds a matching
flow or can signal a table miss. Correspondingly, direct dat-
apaths are generally considered an inferior implementation
strategy but, thanks to their simplicity, they still find impor-
tant use in reference designs and experimental implementa-
tions (OpenFlow Reference Switch [42], CPqD [43], xDPd
[44], LINC [45]), or as a last resort for complex pipelines to
which no fast specialized classification strategies apply [19].
Indirect datapath. Indirect datapath designs adopt the ven-
erable fast-path/slow-path separation principle [46]. Here,
the switch maintains multiple “views” of the pipeline: the
fast path is constituted by one or more increasingly compact

ki in kt_out
2 controller pd_ou
table miss flow entry update very slow path

generic match-action tables
(wildcard match over

prioritized flow entries) cache slow path
hit
cache miss # cache update !

megaflow cache
(tuple space search: linear —

>
iteration over disjoint wildcard masks) cache slower fast path
hit
cache miss lcache update
icroflow cache

header microl cach execute stats
rx_gqueues (perfect match over - - tx_queues
- parsing full header tuple) hit actions update

C
fast path

Figure 2: Open vSwitch datapaths.

and incomplete pipeline representations, while a complete
representation serves as the slow path, used as a fallback
when the fast path cannot decide on the fate of a packet. This
way, only the first packet of a flow is subjected to full-scale
slow path pipeline processing, the resulting flow-specific rules
and actions are registered in the fast path classifier and the
rest of the flow’s packets take the fast path without having
to recurse to the slow path again. In fact, the fast path func-
tions as a flow cache, storing the forwarding decisions for
recent flows. Aggressive flow caching, consequently, allows
to amortize the cost of packet classification over subsequent
packets of a flow [26-28], contributing to increased perfor-
mance without loss of expressiveness and genericity (see
OVS [19], 6WINDGate [47]).

2.2 A Sophisticated Indirect Pipeline: OVS

The most popular OpenFlow software switch implemen-
tation today is undoubtedly Open vSwitch (OVS, [19]). In
this paper, we use OV'S to showcase the pros and cons of the
indirect datapath approach. Indeed, OVS brings this design
to the extreme by adapting a datapath hierarchy of as many
as four levels (see Fig. 2).

Microflow cache: per-transport-connection exact match
store. The microflow cache stores the forwarding decisions
for the least recently seen transport connections in a very
fast collision-free hash. Since exact matching occurs over
all relevant tuple fields, essentially any change in the packet
header inside an established flow (e.g., the IP TTL field) re-
sults in a cache miss. The microflow cache is managed by
the second-level cache, the megaflow cache (see below), in
that the microflow cache indexes into the megaflow cache
and megaflow cache hits trigger a microflow cache update.

Megaflow cache: wildcard match store for traffic aggre-
gates. The second-level megaflow cache allows to bundle
multiple microflows into a single megaflow aggregate and
impose common forwarding behavior to the entire bundle,
saving on cache entries (e.g., by applying the same action
to all incoming HTTP connections, regardless of the source
TCP port) at the cost of increased processing time. The
megaflow cache uses a tuple space search strategy [23]: flow
entries are divided into groups based on the combination of
header fields they match on and every group matches on
only the fields relevant for the group. In practice, this en-
tails linearly iterating over a list of key/mask pairs for each

packet. The megaflow cache is managed by the third data-
path level (vswitchd, see next) reactively: packets miss-
ing the cache are encapsulated and sent to vswitchd that
returns the packet with the actions to be applied and up-
dates the cache accordingly. Since the megaflow cache does
not “know” about flow priorities, matches can never over-
lap and so megaflows must be disjoint. Consequently, all
header fields from all flow entries a packet traverses, those
that caused a match as well as those higher priority ones that
did not, need to be taken into consideration in tuple space
search. Note also that OVS uses a single megaflow cache
for the entire pipeline, hence cache entries collapse together
the behavior from all relevant flow tables.

vswitchd: complete OpenFlow pipeline. The penul-
timate level is a fully blown realization of the OpenFlow
pipeline. Besides the use of standard techniques like multi-
threading, read-copy-update (RCU), and extensive batching,
OVS adopts a number of clever tricks to improve tuple space
search and megaflow cache management, like tuple prior-
ity sorting (to cut down on pipeline stage iterations), staged

lookup (per-protocol-layer caches for opportunistic early exit),

prefix tracking (optimal prefix masks for IP address range
tracking), and classifier partitioning (by metadata fields).
OpenFlow controller. Somewhat unconventionally, we con-
sider the controller as the highest level of the OV S datapath
hierarchy as it fulfills precisely the same role for vswitchd
as vswitchd does for the megaflow cache: it manages en-
tries at the next lower level of the datapath hierarchy plus
serves as a last resort for packets missing that level.

2.3 The Case Against Flow Caching

Indirect pipelines proved a remarkably successful imple-
mentation strategy to break down the complexity of Open-
Flow software packet processing. Yet, we argue that inherent
to general purpose flow caches are a number of under-the-
hood limitations, which not only significantly curtail achiev-
able switch performance but also raise a number of deep ar-
chitectural concerns.

Unpredictable packet processing. Flow caches work best
when traffic exhibits sufficient spatial locality (header fields
vary in a small range and thus only a few megaflows are
enough to cover all traffic) and temporal locality (flows’ pack-
ets are finely spaced in time to keep cache entries warm)
and/or when the pipeline omits high-entropy header fields
[26-28]. But only a single fine-grained rule is enough to
“punch a hole” in all aggregates, leading to heavy megaflow
fragmentation [13,19]. We found that even the same packets
and the same pipeline can yield vastly different flow caches
depending on the packet arrival sequence (see Fig. 3). Cor-
respondingly, in a flow-cache-oriented architecture it is very
difficult to reliably predict when and how a particular packet
will traverse the switch dataplane.

Performance artifacts. As long as flow caching assump-
tions hold, indirect datapaths work reliably and efficiently.
Failing these, however, brings undue cache thrashing and
packets recurring to the slow path. This is then perceived by
the user as perplexing throughput drops, latency spikes, and

decimal binary # decimal binary

159 10011111 175 10101111
191 10111111 159 10011111
(b) pkt port seq 1 (c) pkt port seq 2
Figure 3: The flow table (a) yields 7 megaflow cache entries
when the TCP destination port arrivals are as of seq 1 (b) (for
each zero bit in positions 2, . . ., 8), while if destination port
191 arrives first as of seq 2 (c) then only a single entry arises
(matching at position 2, covering all subsequent packets).

dtype | top dst | action T 190 10111110 1 197 T0TITil1
00800 | 255 |owputport | 2 189 10111101 2 190 10111110
: arop 3187 10111011 3 189 10111101
4 183 10110111 4 187 10111011
(a) flow table 5 175 10101111 5 183 10110111

6 6

7 7

downright service interruptions, on various hard-to-predict
combinations of flow tables and input traffic [29-34].
Vexing cache management complexity. The flip side of
flow caching is the complexity of managing the cache. First,
computing “good” megaflows is already a very hard prob-
lem [29,33] (cf. Fig. 3). But updating cache contents when
changes to the switch configuration are made is also rather
onerous, due to the difficulty of tracking exactly which cache
entries are affected by a change and need invalidation?. En-
suring cache coherence across switch threads, furthermore,
necessitates fine-grained locking, impeding multi-core scal-
ability. This complexity can also make dataplane debugging
cumbersome and conceal software bugs and security flaws.
Opens the door to malicious attacks. It is well-known that
caches are inherently vulnerable to a wide spectrum of secu-
rity threats, like cache poisoning or cache overflow [35], and
may leak information through side-channel attacks [48]. An
attacker may easily spawn a denial-of-service attack, by ex-
ecuting timing attacks on an OpenFlow switch to infer flow
table contents and crafting a malicious packet trace to over-
flow flow caches. This is especially troublesome for cloud
infrastructure switches because only a single misbehaving
user can produce a widespread service disruption, by ex-
ploiting that shared flow caches break tenant isolation and
create a coupling between logical pipelines (see Section 4.3).
Brittle architectural constraints. Flow caches bring along
some insidious but inevitable architectural choices. For in-
stance, OV'S must recreate essentially the entire functional-
ity of the OpenFlow protocol at the vswitchd-megaflow-
cache interface, complete with flow entry management and
packet in/out operations, and it does this in a rather ineffi-
cient reactive way, forcing packets to the slow path in or-
der to populate the caches. But flow caching may also hin-
der dataplane innovation, since cache semantics must be fit
piecemeal to new proposals like NOSIX [34] or P4 [49].

3. DATAPLANE SPECIALIZATION

ESWITCH is a new OpenFlow switch architecture we cre-
ated with the aim to discover the design space beyond gen-
eral purpose switch fast paths. ESWITCH occupies just the
opposite extreme of the spectrum: it fully embraces the con-

20VS adopts the brute-force strategy to invalidate the entire
cache after essentially all changes [19].

cept of dataplane specialization and makes the datapath de-
pendent on, and actually carefully tailored to, the configured
OpenFlow pipeline.

We cast dataplane specialization as the process to com-
pile from a declarative description of the OpenFlow pipeline
into an efficient machine code representation, together with
a runtime that effectively realizes the switch using the com-
piled datapath as the fast path. ESWITCH builds on the in-
sight that OpenFlow pipelines usually combine only a small
selection of simple but generic patterns into complex dat-
aplane programs and, accordingly, they can be represented
in terms of a few simple templates. ESWITCH then uses
template-based code generation to derive the customized dat-
apath: it first applies flow-table analysis to decompose a
pipeline into a series of templates, followed by template spe-
cialization to patch pre-compiled templates with flow keys,
and finally a linking phase to relocate jump pointers, com-
bining template code fragments into a single binary.

3.1 Templates

ESWITCH pipeline compilation revolves around the con-
cept of templates. A template in this context is some unit
of common OpenFlow packet processing behavior that ad-
mits a simple and composable machine code implementation
out of which more complex functionality can be constructed.
ESwWITCH differentiates between packet parser templates,

matcher templates, flow table templates, and action templates.

Packet parser templates are used, as the name suggests,
to generate code that transforms packet headers into an in-
ternal representation that can be subjected to rule matching.
ESWITCH separates header parsing at layer boundaries: it
includes a separate L2, 1.3, and L4 parser. The motivation
is to save on parsing for layers that do not participate in
flow formation: e.g., for pure L2 MAC forwarding it is com-
pletely superfluous to parse L3 and L4 header fields for each
packet, L3 routing in turn can omit parsing L4 headers alto-
gether, etc. Note that parsing is incremental; the L3 header
parser composes an L2 parser to find the starting position of
the L3 header and the L4 parser composes both parsers.
The general functionality of parser templates is as below;
a protocol bitmask (stored in register r15) is used to mark
the presence of a particular protocol header in the packet and
then each protocol’s header position is saved into a register.
PROTOCOL_PARSER: <set protocol bitmask in rl15>
L2_PARSER: mov rl2, <pointer to L2 header>

L3_PARSER: mov rl3, <pointer to L3 header>
L4_PARSER: mov rl4, <pointer to L4 header>

Matcher templates allow matching on header fields; a sep-
arate template belongs to every field defined in the Open-
Flow specification [2]. For instance, the rule ip_dst =
ADDR/MASK would be represented with the below template:
macro IP_DST_ADDR_MATCHER (ADDR, MASK) :

mov eax, [r13+0x10] ; IP dst address in eax

xor eax,ADDR ; match ADDR

and eax,MASK ; apply MASK
jne ADDR_NEXT_FLOW ; no match: next entry

The rule t cp_dst=PORT is matched as follows:

macro TCP_DST_PORT_MATCHER (PORT) :

cmp [r14+0x2],PORT ; port field equals key?
jne ADDR_NEXT_FLOW ; no match: next entry

Note that actual flow keys will be patched into the tem-

plates in the template specialization step, while jump point-
ers will be resolved during linking (see Section 3.3).
Flow table templates capture common flow table patterns.
Our design has settled with four elemental table templates:
the direct code, the compound hash, the LPM, and the linked
list templates (see Fig. 4). Further table templates, like range
search for port matches, can easily be added in the future.

The direct code template is a faithful machine code repre-
sentation of the classification rules in a flow table. ESWITCH
uses this template when the flow table does not contain enough
entries to justify a complex data structure (like a hash or a
trie). The maximum number of flow entries under which a
table is directly compiled is controlled by a parameter; we
will present CPU-level measurements to fine-tune this pa-
rameter later in Section 4.3.

Consider an example with the below flow entries:

ip_dst=ADDR_1/MASK_1, tcp_dst=PORT,action=ACTION_1
ip_dst=ADDR_2/MASK_2,action=ACTION_2

ESWITCH in this case takes the ip_dst and tcp_dst
matcher templates and concatenates these into the direct code
template below:

FLOW_1: first flow entry
mov eax,IP | TCP ip and tcp?

cmp eax,rlbd

7
’

or eax,rl5d ; check protocol bitmask
7

jne ADDR_NEXT_FLOW ;

not an IP & TCP packet
; Jjump to next flow entry
IP_DST_ADDR_MATCHER (ADDR_1,MASK_1)
; ip_dst=ADDR_1/MASK_17?
TCP_DST_PORT_MATCHER (PORT)
tcp_dst=PORT?

Jmp ACTION_1 action=ACTION_1

FLOW_2: second flow entry
bt rl5d, IP ip?
jae ADDR_NEXT_FLOW ; Jump to next flow entry

IP_DST_MATCHER (ADDR_2, MASK_2)
; ip_dst=ADDR_2/MASK_27?
jmp ACTION_2 ; action=ACTION_2
FLOW_3:

For larger flow tables, the compound hash template might
be the fastest choice. This template is used for tables com-
prising one or more fields whereas every field is matched by
exactly the same mask in each entry. For instance, in the
below example the first two entries would lend themselves
to the compound hash template (as ip_dst is masked with
/24 in both entries and t cp_dst is unmasked) while adding
the third entry would violate the prerequisite (as tcp_dst
is now a wildcard):

ip_dst=192.0.2.0/24,tcp_dst=80,action=ACTION_1
ip_dst=198.51.100.0/24,tcp_dst=21,action=ACTION_2
ip_dst=203.0.113.0/24,action=ACTION_3

The template works as follows: first, the code runs to-
gether relevant header fields into a single key, applies the
global mask, and then looks up the key in a hash. Our imple-
mentation uses a collision free hash; even though it requires

Name: direct code

Prerequisite: #flows < CONST
Match type: arbitrary
Implementation: machine code
assembled on-the-fly

Application: universal

Fallback: compound hash

Name: compound hash
Prerequisite: global mask
Match type: exact match
Implementation: perfect hash
Application: MAC switching &
port filtering

Fallback: LPM

Match type: longest prefix match
Implementation: DPDK LPM lib
Application: IP forwarding
Fallback: linked list

Name: LPM)) Name: linked list
Prerequisite: prefix masks, consistent | | Prerequisite: none
with priorities Match type: tuple space search

Implementation: machine code
with shared tuple matcher functions
Application: complex pipelines
Fallback: none

Figure 4: Flow table templates in ESWITCH.

more memory and more time to build, it supports fast con-
stant time lookups, a key to a robust datapath performance.

Whenever a flow table does not fulfill the prerequisite for
compound hashes, ESWITCH falls back to an LPM template.
The LPM template applies to single-field tables that contain
prefix rules: each mask is such that it wildcards the last con-
secutive bits of the field and whenever rules overlap the more
specific one has higher priority. For instance, the below ex-
ample would violate the latter principle:

priority=100,ip_dst=192.0.2.0/24,action=ACTION_1
priority=20,ip_dst=192.0.2.12/30,action=ACTION_2

Our prototype uses the Intel DPDK built-in rte_lpm li-
brary for implementing the LPM template.

As a final fallback, ESWITCH includes a linked list table

template for doing tuple space search [23]: for every rel-
evant combination of fields a separate matcher function is
constructed (out of the matcher templates introduced above)
and these matchers are called iteratively with subsequent
flow entry keys as input. Since this template is rarely seen in
practice, we omit the details for brevity.
Action templates, finally, are used to construct packet pro-
cessing functionality. In this regard, ESWITCH takes a re-
freshingly simple approach: every action type (e.g., output
to a port, flood, or modify header field) is a separate action
template and action templates are collapsed into composite
action sets. Identical action sets are shared across flows.

3.2 Flow Table Analysis

Template-based code generation, understandably, relies on
some mechanism to recognize the very templates in the in-
put. This is the responsibility of the flow table analysis pass
in ESWITCH pipeline compilation.

Recognizing packet parser, matcher, and action templates
is fairly simple, but deciding on table templates is more in-
volving. In ESWITCH this occurs incrementally during code
generation: ESWITCH always attempts to compile into the
most efficient table template available; whenever it detects
that the prerequisite no longer applies it gradually falls back
to the next most efficient representation and rebuilds the ta-
ble with the new template (see Fig. 4 for template fallbacks).

In order to avoid that complex OpenFlow pipelines end up
with inefficient templates, ESWITCH actively tries to trans-
form tables that may not fit well with our templates into ones
that do, thereby promoting such “difficult” flow tables to-
wards faster templates. In the firewall example, for instance,
the single-stage pipeline (Fig. 1a) would fit only the slow
linked list template (disregarding the direct code template for
a moment), while the multi-stage pipeline (Fig. 1b) would
admit a series of two hash-templates, which is much faster.

Pipeline transformation is done in the flow table decom-
position pass. For brevity, herein we limit ourselves to a
heavily simplified exposition, which we believe is still suffi-
cient to demonstrate the main points. In this setting, we are
given a flow table 7" with m flow entries defined on n fields:

T = {(Fi’l,FLQ, .. ~3Fi,n) — Q; 1€ [].,TI’L]} N

in which rules F; ; can be of only two types: either an exact-
match or a full wildcard (arbitrary masks are disallowed for
now). Further suppose that we have only a single table tem-
plate available: a single-field exact-match (hash) template
with a potential final catch-all rule. Our task is to transform
T into a semantically equivalent [24, 37] pipeline compris-
ing the minimal possible number of flow tables, each one
compliant with the template. An example is given in Fig. 5.

In the Appendix, we show that this simplified problem
is already intractable. Correspondingly, our flow table de-
composition algorithms rely on heuristics, focusing on speed
instead of efficiency. The main iterative step is DECOM-
POSE(T) given in Fig. 6; this routine is called first on 7" and
then recursively on all the tables produced.

The key to the algorithm is step (4), which decomposes
a table 7" along one of its columns, in this case p, into a
new table that replaces 7' and matches only on p, plus a set
of further tables 7' for each separate key f in column p of
T. Note that the new table for T is already compliant with
the exact-match template and the rest of the tables will also
become compliant after the recursion terminates. The proce-
dure processes the entries in 7' one by one and takes the p-th
column: for each non-wildcard key f it merely just strips
column p from the rule and appends it to the table 7', while
rules with a wildcard will go (stripped) to all tables.

One easily sees that the procedure terminates with a se-
mantically equivalent representation, with as many new ta-
bles as there are different keys in column p. On that ground,
decomposing along the column of minimal diversity gives a
heuristic algorithm that greedily minimizes the number or
tables produced (as of step (1) and (2) in Fig. 6).

An example is shown in Fig. 5: given the table in Fig. Sa,
decomposition along column ip_dst with 3 distinct keys
(plus the wildcard) would yield the tables at Fig. 5b at the
first iteration and eventually terminate with 9 tables, while if
we chose column tcp_dst first (of diversity 2) we would
end up with only 4 tables (Fig. 5¢). ESWITCH will then
automatically substitute the initial table, and the ensuing in-
efficient linked list template, with the decomposed pipeline
and hence promote it to a sequence of fast hash templates.

Astute readers will recognize here a decision-tree-based
packet classifier scheme, each node of which is a separate

Table: q

Table: p Table: q ip_dst action
tcp_src | tcp_dst action tcp_src | tcp_dst action Table: x —

Table: x " y - 192.0.2.0 | output:1
e . Table: x 80 output:1 10 80 output:3 tcp_dst action N
ip_dst | tcp_src | tcp_dst action ip_dst action 10 80 outputa " 80 output4 50 goto,_table:p 192.0.2.1 | output:3

192.0.2.0 * 80 output:1 192.0.2.0 | goto_table:p . " drop " " drop " d_rop 192.0.2.2 | output:2

192.0.2.2 10 80 output:2 192.0.2.1 | goto_table:g Table: 1 * output:3
" 10 80 output:3 192.0.2.2 | goto_table:r N tep_src | tcp_dst action Table: r
192.0.2.1 * 80 output:4 - goto_table's Table: s 1’0 870 U2 Table: p ip_dst action
_table:s [/ i output: -
. drop tep_sre | top_dst | action P tcp_src action 192.0.2.0 | output:l
10 80 | output3 10 80 | output3 10 | goto_tableq 102.02.1 | output:4
: | - .0.2. output:
* * * * droj
(a) 1nput drop d * goto_table:r * drop

(b) first iteration of a suboptimal decomposition (c) optimal decomposition

Figure 5: Flow table decomposition: (a) a sample flow table, (b) first iteration of the heuristics after (suboptimally) decompos-
ing along field ip_dst, and (c) an optimal decomposition containing only 4 tables. Observe that each table in the optimal

decomposition is consistent with the exact-match template. Table ids will be resolved after the algorithm terminates.

Procedure DECOMPOSE(T)
1. Find distinct keys in each column: S; = U 1,5, V7 € [1,n]
=1
2. Find column of minimal diversity: p = argmin |Sj|
je{1,..., n}
3. Initialize an empty table T’ for each field value f € S,
4. Decompose table 7" along column p, suppose n > 1
foriel,...,mdo
if F; ;, = * then
for f € Sp in descending order of priority do
Ty.add((Fi1, . Fip—1, Fipy1, s Fin) — a3)

else
Tr, ,-add((Fi1, ., Fip—1, Fipt1, s Fin) = ai)
T.reset
for f € Sp: Sp ={f1,f2,...,x} do

T.append(f — goto_table T’y)
for f € Sp : DECOMPOSE(T'y)

Figure 6: Table decomposition routine.

flow table, organized similarly to the the set-pruning trie data
structure [20] and HyperCuts [50] but doing matching field-
wise and with a greedily optimized matching order. This
is then easy to extend to additional templates and arbitrary,
possibly overlapping, masked keys; we omit the details.

In line with the fundamental (rather prohibitive) lower
bounds for packet classification [22], for very complex flow
tables our decomposer cannot help but output an immense
number of tables. However, the depth of the hierarchy, and
thus the time it takes to send a packet through the pipeline,
is constrained by the number of header fields in the input ta-
ble only, which is usually not too large. Note that we are not
restricted by OpenFlow’s limit on maximum flow table num-
ber (255) here, since decomposition is internal to ESWITCH.
Further note that decomposition does not necessarily occur
over layer boundaries (even though in many practical cases
it just happens to be the most efficient decomposition strat-
egy); later we shall show an example in Fig. 7.

We evaluated the algorithm on a handful of real pipelines,
collected from a production multi-tenant OpenStack cloud
and a telco’s Border Network Gateway. Strikingly, in es-
sentially all cases our decomposer simply returned its in-
put intact, indicating that the pipeline had already been de-
composed optimally. In fact, real-world controllers often
emit optimally decomposed pipelines out of the box for rea-
sons we alluded to in earlier sections: modularization, layer-
based processing, and avoidance of cross-product effects [2,

17,18]. Correspondingly, we see table decomposition as an
optional feature for ESWITCH, which can be freely disabled
for most “well-behaved” control programs.

To still stress the algorithm to its limits, we fed it with a
complete firewall setup, consisting of arbitrarily wildcarded
five-tuple ACLs (“snort community rules v2.9”, stripped to
OpenFlow compatible rules): with the active 72 rules we
obtained only 50 separate tables in the decomposition, while
adding obsolete rules resulted in 197 tables on an input of
369 ACLs. This shows that, thanks to table decomposition,
ESWITCH can efficiently implement complex firewall and
intrusion detection functionality entirely in OpenFlow, with-
out having to recur to middleboxes.

3.3 Template Specialization & Linking

ESWITCH keeps the templates as a library of precompiled
object code fragments to avoid online assembling/compiling.
After the flow table analysis pass, it builds the skeleton of
the compiled datapath by simply hoarding all the necessary
template objects into a single binary. At this point the bi-
nary still contains placeholders for the flow keys, which will
be patched into the code in the femplate specialization pass.
Note that this step is not necessarily inevitable; the code
could as well include pointers to the memory locations of
the flow keys instead of the keys themselves. We still de-
cided to patch keys right into the code; we found that stan-
dard OpenFlow datapath processing burdens the CPU data
caches extensively, but compiling match keys right into the
code directs some of this load to the CPU instruction caches,
which gives greater locality, better distribution of CPU cache
load, and hence faster processing (see Section 4.3).

The code still contains many dangling jump pointers, like
ADDR_NEXT_FLOW. These are resolved in the final link-
ing pass; jump pointers are again statically compiled into
the code, with the exception of goto_table action jumps
which go via a trampoline. The reason for this indirection is
to improve the granularity of datapath updates.

3.4 Updates

For templates that support incremental updates (compound
hash, LPM, and linked list), ESWITCH performs updates
non-destructively: whenever the controller modifies a flow
ESWITCH simply updates the data structure underlying the
template. Complete rebuilding happens only for the direct

code template (unconditionally), for the hash template to
minimize hash collisions (periodically), or when the modifi-
cation would violate the prerequisite for the current template
and a fallback must be constructed. But even then ESWITCH
can continue processing packets during the rebuild, as the
new template representation is constructed side by side with
the running datapath and then inserted into the pipeline by
atomically redirecting all referring goto_table jumps to
the address of the new code via the trampoline.

This update mechanism gives two important benefits. First,
datapath updates in ESWITCH are transactional, with partial
updates automatically rolled back, which eliminates incon-
sistent behavior common to many OpenFlow switches [51].
Second, updates are of per-flow-table granularity, which is
certainly an improvement over OVS that needs to invalidate
the entire megaflow cache (shared across the pipeline) on
any update and re-populate it, again reactively, from scratch.

4. EVALUATION

Next we turn to discuss the practical aspects of ESWITCH
and make our case for dataplane specialization. We take
four illustrative use cases from operational OpenFlow de-
ployments [17, 18, 30], which will serve for demonstrating
the ESWITCH pipeline compilation process and also as basic
scenarios for performance evaluations. First, we present the
use cases themselves, then we give a detailed description of
our ESWITCH prototype and present the measurement stud-
ies, and finally we derive a rudimentary performance model
and we show that this simple model can already supply use-
ful performance characterizations.

In what follows, we shall weigh ESWITCH against OV,
the flagship OpenFlow softswitch, and show major perfor-
mance improvements. The subsequent discussion, however,
is nowhere meant to be a critique on OVS per se; in fact,
during working on this paper we have come to truly admire
the amount of engineering that went into OVS datapaths;
our goal is, accordingly, not to call out OVS but rather to
point out the advantages of dataplane specialization over a
flow-caching-centered architecture.

4.1 Use Cases

The first two use cases are Layer-2 switching, i.e., packet
forwarding by exact-matching on a MAC table, and Layer-
3 routing, i.e., longest-prefix-matching IP addresses from a
routing table. These use cases model pure run-to-completion
pipelines, whereas all processing is specified in a single flow
table (see e.g., L2 in [12], L3 in [13]). Notably, ESWITCH
attains optimal dataplane specialization in both cases: the L2
pipeline compiles into the hash table template, effectively re-
ducing into a conventional Ethernet software switch, while
the L3 pipeline is compiled into the LPM template yield-
ing a datapath identical to that of an IP softrouter. For each
use case we prepared a suite of flow tables with different
number of entries in order to measure switches’ robustness
to pipeline complexity and we also generated a sequence of
traffic mixes to test robustness against the number of active
flows. The L2 flow tables contained random MAC addresses

and the L2 destination addresses in the flow mix were ade-
quately aligned to avoid frequent table misses; for the L3 use
case routing tables were randomly sampled from a real In-
ternet router and again the traces were adjusted accordingly.

The rest of the use cases, a load balancer and an access
gateway, model multi-stage pipeline applications [17, 18].

The load balancer use case captures the functionality of
a web frontend, which distributes HTTP traffic for different
web services, available at different IP addresses, between
backend servers. Load distribution happens based on the
first bit of the source IP address in the incoming packets. In
the ingress direction only web traffic is allowed, while traf-
fic is forwarded unconditionally in the other direction (see
Fig. 7a). A naive compiler would represent this single-table
pipeline with the linked list template, leading to an ineffi-
cient datapath. However, our table decomposition algorithm
can infer an equivalent multi-stage pipeline (see Fig. 7b),
whereas all tables fit the direct code template as well as the
hash template. This gives rise to a more efficient fast path,
demonstrating the power of table decomposition. Flow table
complexity was set by varying the number of web services
between 1 and 100 and traffic traces were generated so that
half of the packets go to a random web service and the rest
of the traffic be dropped.

The most complex use case is a telco access gateway,
which models a virtual Provider Endpoint (VPE) providing
users Internet access via Customer Endpoints (CEs). Each
CE is identified by a unique VLAN tag and each user is
assigned a per-CE unique private IP address (see Fig. 8).
The gateway pipeline is as follows. Table O separates user—
network traffic on a per-CE basis from network—user traf-
fic; user—network traffic in turn goes to separate per-CE ta-
bles that identify users and swap the (private) source IP ad-
dress with a unique public address (realizing a simple NAT)
and then to the Internet based on an IP routing table (Ta-
ble 110). Packets missing the per-CE tables are passed to
the controller that does admission control, allocates a public
IP, and installs per-user “NAT” rules into the proper tables.
In the reverse direction, packets are mapped from the pub-
lic IP back to the adequate combination of VLAN tag and
user private address. ESWITCH compiles this pipeline using
the hash template for each table except for Table 110 that is
mapped to the LPM store. In each measurement we provi-
sioned 10 CEs with 20 users per CE and the IP routing table
contained 10K IP prefixes, and the traffic mix was generated
by varying the number of per-user flows.

4.2 Prototype & Evaluation Platform

We implemented a proof-of-concept ESWITCH prototype
on top of the Intel DataPlane Development Kit (DPDK, [40]).
The DPDK provides a highly efficient user space network-
ing toolchain, with NIC polling drivers, batch processing,
direct cache access, and NUMA optimized memory pools,
as well as some prefab flow table templates (LPM). Our pro-
totype implements a useful subset of OpenFlow 1.3 along
with the main ESWITCH features with one notable excep-
tion: at the moment it defaults to a combined L2-L4 packet
parser. Adding full support for parser templates is underway.

Table:11

i i i i user 1 -
in_port |ip_src ip_dst tcp_dst | action o | ip_src | action
external | 0.0.0.0/1 192.0.2.1 | 80 output:serverl CE1 (Customer " " -
- user 2 Endpoint 1) IP_1 write_actions(strip_vlan,mod_nw_src:
external | 128.0.0.0/1 | 192.0.2.1 | 80 output:server2 P2 IP_11), goto_table:200
external | 0.0.0.0/1 |192.0.2.2 | 80 output:server3 VLANL Controller P_2 write_actions(strip_vlan,mod_nw_src:
external | 128.0.0.0/1 | 192.0.2.2 | 80 output:server4 user 1 IP_12), goto_table:200
(P_1) CE2 (Customer
user 2 Endpoint 2) controller
external | * * * drop (IP_2) _ I Table:12
internal | * * * output:external user 1 VLANZ port: w ip_src | action
. . (P_1) CE3 (Customer VPE (Virtual | net] . - "
(a) plpehne Endpoint3) | viana| [Frovider i IP_1 write_actions(strip_vlan,mod_nw_src
Table:0 user 2 Endpoint) | port; :IP_21), goto_table:200
in_port |action (P2) netz * controller
external |goto_table:1
internal |output:external Table:3 : (a) access gateway Setup Table:200
ip_dst action ip_dst action
Table:1 192.0.2.1 |output:serverl Table:0 AB.C0.24 | outputnetl
tcp_dst |action 192.0.2.2 |output:server3 in_port | action XlY‘Z 6/'24 . 2
. Y.Z. output:ne
80 3010_Y6b|e~2 —‘ * drop vianl goto_table:11 J Table:110 e
*
rop Table:4 PKT_ | vian2 | goto_table:12 ip_dst | action
Table:2 y ip_dst action IN
- - IP_11 h_vlan:vlan1,mod. dst:IP_1,output:vianl
ip_src action 192.0.2.1 |output:server2 = push_vian-viant,moc_nw_dstiP_2,oufputvian PKT
0.0.0.0/L |goto_table:3 192.0.2.2 |output:serverd netl goto_table:110 — IP_12 push_vlan:vlanl,mod_nw_dst:IP_2,output:vlanl ouT
128.0.0.0/1 |goto_table:4 * drop net2 goto_table:110 IP_21 push_vlan:vlan2,mod_nw_dst:IP_1,output:vlan2
(b) decomposed pipeline (b) pipeline

Figure 7: Load balancer use case.

Figure 8: Access gateway use case.

— 14M j Rk
g‘ direct code —H=— 3 12M > L
2 hash —<—
S 30 linked list —— Tyom : g10M ¢ Es1 ovsi <
2 =) ES() —F— OvS(1) S ES(0) S ove(o) —a]
& © ES(10) —<— OVS(10) —o— © ESUK) VSR
= © ES(100) —%— OVS(100) —e—| © K —
°§’ 5 oM ES(1K) —5— OVS(1K) —&— 8 6M ¢
o & &
% Q Q
5 oM oM |

1 2 3 4 5 6 7 8 9 1 10 1K 10K 100K 1 10 100 1K 10K 100K

number of flow entries

of the number of flow entries for the dif-
ferent flow table templates.

When not stated otherwise, the system-under-test (SUT)
was set up as of Table 1, connected via a 40 Gbps inter-
face back to back to a similarly configured system that ran
the Network Function Performance Analyzer (NFPA, [52]),
a home-grown measurement platform using the DPDK pk-
tgen packet generator, configured in loopback mode. All
evaluations were done using the DPDK datapath of OVS
compiled with the same DPDK version as ESWITCH, with
minimum sized (64 byte) packets on a single CPU core; we
found that both ESWITCH and OVS scale to larger packet
sizes and more cores as expected (but see later). The max-
imum single-core packet rate attainable with DPDK on this
platform is 15.7 million packets per second (Mpps), mea-
sured in port-forward mode with the DPDK 12 fwd tool; we
shall set this metric as a benchmark for the measurements.

4.3 Measurement Results

Fine-tuning template application. Our first series of mea-
surements were aimed at calibrating the code generation pro-
cess. Of particular interest were designating the flow table
template fallbacks and adjusting the rules of when to invoke
these fallbacks. For a series of increasingly larger synthetic
flow tables with the N-th entry set to

vlan_vid=3,ip_src=10.0.0.3,ip_proto=17,udp_dst=N ,

the execution time (in terms of CPU cycle count at 99% con-
fidence level) needed to perform a flow lookup by the direct

number of active flows
Figure 9: Running time as the function Figure 10: Packet rate for L2 switching

over MAC tables of size 1, 10, 100, and
1K entries, as the active flow set grows.

number of active flows
Figure 11: Packet rate for L3 routing
over 1, 10, and 1K IP prefixes, as the
active flow set grows.

Table 1: System-under-test datasheet.

CPU: Intel Xeon CPU E5-2620 @ 2.00GHz, Sandy Bridge
Caches: 32k L1i and L1d, 256 KB L2, 15 MB L3

Cache latency: L1 =4 cycles, L2 = 12 cycles, L3 = 29 cycles
Memory: 64 GB DDR3 @ 1333 MHz, 4-channels

NIC: Intel XL710, PCI Express 3.0/x8, 40 Gb

DPDK v2.2.0, Open vSwitch (DPDK datapath) version 2.5.90

code, the compound hash, and the linked list template, is
shown in Fig. 9 (the LPM template does not apply to this
flow table). Until about 4 entries the direct code template is
the most efficient choice, but from that point the hash tem-
plate becomes faster thanks to its constant lookup time. Ac-
cordingly, we fixed the fallback constant for the direct code
template at 4; tables with at most that many entries are di-
rectly compiled while for larger tables the hash template is
preferred. We set the linked list as the last-resort fallback for
complex flow tables despite being consistently slower than
the direct code, since it supports fast incremental updates.

Packet rate. The raw packet throughput for ESWITCH (ES)
vs Open vSwitch (OVS) is given for the L2 use case in
Fig. 10, for L3 in Fig. 11, for the load balancer in Fig. 12,
and for the gateway in Fig. 13, respectively, over different
pipeline complexities and increasingly more diverse traffic
mixes. The main observations are as follows. As the number
of active flows increases, that is, as traffic locality is gradu-

S
S

ES(1) —— OVS()
ES(10) —<— OVS(10) —H

“§;{_
_FS(100) —%— OVS(100) 4&:

packet rate [pps]
[=2]
<

n
<

100 1K 10K
number of active flows
Figure 12: Packet rate for the load bal-
ancer use case over 1, 10, and 100 web
services, as the active flow set grows.

1 10 100K

ES ——
5 10 fOVS —<—
S
©
o
@ 1t
Q
2
e |
< 0.1
[5]
o
Jo.o01

1 10 100 1K 10K

number of active flows
Figure 15: Last-level CPU cache (LLC)
misses per packet measured with the
perf tool, as the active flow set grows
(gateway use case).

100K 1M

[
<

/}

ES (model-ub)
ES (measured) —<—
ES (model-lb) ——

ovVs —&—

packet rate [pps]
[o2}
<

N
<

100 1K 10K 100K M
number of active flows
Figure 13: Packet rate for the gateway
use case with 10 CEs, 20 user/CE, and
10K IP prefixes, with estimated lower
and upper bounds.

1 10

ES'(model-ub) —
s ES
= L ES (model-Ib)
g ovs —5—
g
% 1K |
<@
s
S500 |
o i
(@]
200

100 1K 10K 100K 1M
number of active flows

Figure 16: Latency in terms of mean
CPU cycles/packet on the gateway
pipeline as the active flow set grows,
with estimated lower and upper bounds.

1 10

-

2038

[$]

s

©06

©

o

=

<04

(o]

<

[5]

80.2
megaflow
vswitchd ST

o

10K

number of active flows
Figure 14: Fraction of packets for-
warded at different levels of the OVS
cache hierarchy as the active flow set
grows (gateway use case).

100K 1M

ES (CLI) —— ‘ R

< 10 & ES (ctrl) —<— L
3 OVS (CLI) —%—
o, OVS (ctrl) —5—
£ 1}
o
801
310" t
=]
310'2>

& ‘ ‘ ‘ ‘

1 10 100 1K 10K 100K

number of web services
Figure 17: Total time to set up the
load-balancer pipeline with a command
line tool (CLI) and OpenFlow controller
(ctrl), as the number of services grows.

ally removed, so the performance of OVS flow caching de-
teriorates. We already experience major performance drops
at as few as 10 active flows, and for 100 flows the packet
rate essentially halves (or even worse). The reason is re-
vealed in Fig. 14, which gives a rundown on cache hit inten-
sities experienced at different levels of the OVS flow cache
hierarchy: as the active flow set grows packet processing
gradually shifts from the very fast microflow cache to the
slower megaflow cache and finally to the vswitchd slow
path. This goes hand in hand with a degradation of CPU
cache affinity (Fig. 15): as long as packet processing occurs
entirely inside the microflow cache (up to ~1K flows) OVS
basically never misses the CPU cache, while the megaflow
cache and vswitchd make excess out-of-cache memory
references. ESWITCH, on the other hand, sidesteps flow
caching and exhibits robust and high packet rate over essen-
tially all OpenFlow pipelines and all traffic mixes examined,
consistently reaching 12—-14 Mpps packet rate (close to the
platform benchmark of 15 Mpps) when the active flow set is
not too large, and 9—12 Mpps with many flows.

In summary, ESWITCH generally achieves 2—7 times higher

packet throughput than OVS but the factor can grow up to
two orders of magnitude(!) for complex pipelines with many
active flows. For the gateway use case, OVS throughput
drops hundredfold to a mere 90K packets per second at 1M
flows, which, if exploited by a malicious user, means a full-
blown denial of service to the entire user population. Mean-
while, ESWITCH robustly delivers over 9 Mpps packet rate,

suggesting that it is not susceptible to such attacks. Since
both switches use the DPDK, the slowdown of OVS is clearly
attributed to some overhead in the datapath code; we sug-
gest that the culprit is generic flow-caching. In contrast,
ESWITCH’s compact custom datapaths deliver high switch
performance and stable and small working set size.
Latency. The mean time for a packet to traverse the dat-
apath is given in Fig. 16. For ESWITCH, we get about 0.1
psec packet processing time independently of the active flow
set, while latency for OV'S varies between 0.2—13 psec. This
shows that a compiled datapath yields smaller and predictable
latency compared to a flow-caching-based switch.

Update processing. For the first sight, one would consider
template-compilation prohibitive for update-intensive work-
loads, like cloud hypervisor switches. To show that this is
not the case, we measured the time it takes for OVS and
ESWITCH to set up the complete load-balancer use case at
different scales of pipeline complexity. The switches were
fed first from a command line tool (ovs—ofctl, CLI) and
then using the Ryu OpenFlow controller (we got similar re-
sults with OpenDaylight). The results are in Fig. 17 (note the
log-log scale). Both switches scale linearly, but in general it
takes just one fifth the time for ESWITCH to set up the use
case than for OVS, when using the CLI tool. With the con-
troller the two perform similarly. Overall, this indicates that
it is the OpenFlow controller, rather than ESWITCH itself,
that bottlenecks update rates, which justifies our choice of
template-based compilation over slower methods that may

‘ ‘ [ES (100 flow) ——— eli -

z O\ég —t M ER ((10K flowg Pipeline stage |CPU cycles g;))grlr(lent . .
1 ES (500K flow) —k— acket receive
=08 = OVS (100 flow) —F— F |[PKT_IN 40 0 P
a 810M | OVS (10K flow) —m—
5 06 o PVS (500K flow) —& — parser template |28 Parse header fields
‘é % oM | | hash template 1 {8 4+ L1 Table 0 lookup
% 04 f ‘c:; hash template 2 |8 4+ Lz Per-CE table lookup
g I = oM 7 LPM template |13+ 2% La|Routing table LPM
=02 action templates 25 Action set processing
1 10 100 1K 10K 100K 1 2 4 5 |pkT ouT 40 DPDK packet
number of updates per seconds number of CPU cores — transmit [0

Figure 18: Normed packet rate (rela- Figure 19: Packet rate as the number Figure 20: Performance model for the gate-
tive to the unloaded case) in the gate- of packet processing CPU cores grows; way use case: estimated number of CPU
way use case (1K active flows), as the L3 routing 100, 10K, resp. 500K active cycles spent per pipeline stage (Lx denotes

update intensity grows to 100K/sec.

potentially generate better code. Further, we observed that
ESWITCH packet processing is more robust in the face of
updates; ESWITCH churns out 95% of its nominal packet
rate when the last level IP routing table in the gateway use
case (Table 110) is updated 100 times per second and even at
100K update/sec intensity it maintains 80% of its unloaded
performance; contrarily, OV S throughput falls by more than
65% even for 100 updates/sec due to deteriorating flow cache
hit rates (Fig. 18). For batched updates (20 flow add and
delete operations periodically), we saw at most 3% change
in ESWITCH packet rate (most probably due to cold CPU
caches) while for OVS the throughput drop reached 23%.
This is because in ESWITCH datapath updates are, in con-
trast to OV'S, per-table and usually non-destructive.

CPU scalability. Finally, we show that previous single-
core results extend nicely to multiple CPUs. Since the Intel
XL710 NIC in the SUT supports only about 23 Mpps packet
rate with 64-byte packets [53,54], ESWITCH proves too fast
for this experiment: it saturates the NIC even with just two
cores. To still make packet forwarding CPU-bounded rather
than IO-bounded, we had to downgrade to a slower 2.40GHz
Intel Atom platform. The evaluations were performed on the
L3 use case, with a subset of 2K routes obtained from a real
router (see Fig. 19). Both OVS and ESWITCH show strong
linear CPU scaling (apart from a small reproducible glitch
with 5 cores), but ESWITCH consistently outperforms OV S
roughly 5-fold and the gap increases with more flows and
more CPU cores. Again, ESWITCH performance is robust
against the number of active flows.

4.4 Performance Estimation

A crucial advantage of dataplane specialization is that the
compiled datapaths are simple enough to lend themselves
to coarse-grained performance models. After all, a com-
piled datapath is just a handful of templates linked into a bi-
nary and so we can define elementary performance “atoms”
to characterize each template and track down the template
generation process to combine these atoms into composite
datapath models. Such models can then yield coarse per-
formance estimates, providing operators with quick perfor-

mance promises, supporting network function placement, etc.

We demonstrate the derivation of such a model on the

flows over 2K IP prefixes.

access time for CPU cache level x).

gateway pipeline. Our measurements indicated that it is the
user-network direction, involving a costly longest prefix match
on a largish routing table, that dominates performance for
this use case. Fig. 20 gives a rundown on the templates used
for compiling this pipeline direction.

A quick analysis of the assembly code suggests that the
most expensive operations in the compiled datapath are the
memory fetches. We also observe that ESWITCH performs
very few last-level CPU cache misses (roughly one for every
10th packet, Fig. 15). Based on these considerations, we can
divide per-packet cost into two components, a fix cost that is
invariant for each packet and a variable cost component that
changes with the distribution of accesses between the L1, L2
and L3 CPU caches and, correspondingly, with the working
set size (the amount of total data accessed by the datapath)
determined by the number of active flows. The fix cost can
come from assembly code analysis, CPU cycle-count mea-
surements, and basic common sense, while the variable cost
component is shaped by CPU memory access speed.

Static code analysis yields that a generic DPDK packet
IO takes about 40-50 CPU cycles (the NIC loads the packet
directly into the L3 cache, from where the first 64 bytes con-
taining the header is fetched by the CPU in a single L3 load),
packet parsing takes 28 cycles, and applying actions another
25. Table 0 will compile into the hash template but the size is
small enough to warrant a safe L1 CPU cache access, taking
8 + L1 CPU cycles where Lx denotes the number of cycles
needed to access the cache at level x. The per-CE tables
again use the hash template but, being variable size, may
access the L2 or the L3 cache, which takes 8 + Lz cycles.
Finally, the LPM stage, using DPDK’s built-in DIR-24-8
data structure, runs in 134 2% Lz cycles, assuming that each
LPM search needs two memory accesses. Eventually, we get
166 + 3 x Lx cycles per packet.

Of course, such models can never aim to be comprehen-
sive, as CPU pipeline semantics, branch prediction misses,
cache collisions, etc., greatly influence real performance.
That being the case, we can still use the model to obtain
simple best-case and worst-case throughput estimates. The
optimistic presumption that all cache accesses succeed from
the L1 cache would give 178 cycles/packet and 11.2 Mpps
packet rate. A slightly less optimistic assumption is that,

at roughly 1K active flows, the working set size grows large
enough to shift memory accesses to the L2 CPU cache, which
gives 202 cycles/packet and 9.9 Mpps throughput. These op-
timistic assumptions suggest a rude upper bound on achiev-
able packet rate. Conversely, a pessimistic assumption will
constrain all memory accesses to the L3 cache, yielding 253
cycles/packet and 7.9 Mpps lower bound on the throughput.

When validated against real measurements, these bounds
turn out to provide surprisingly useful performance hints,
both in terms of packet rates (Fig. 13) and per-packet pro-
cessing cost (Fig. 16). Our experiments so far with similar
performance models have given promising results. For most
scenarios the models deliver close performance estimates for
at least a limited regime of the configuration space, even on
workloads as complex as the gateway use case. We have
seen cases, however, when the predicted performance was
off by an order of magnitude; further research is therefore
needed to make our models reliable and to eliminate, or to at
least prognosticate, such pathologic cases.

S. RELATED WORK

Recent work takes a programming-language approach to
leverage compilers and runtime systems to optimize Open-
Flow performance [8—10]. These compilers, however, are
to provide high-level human-centric abstractions to network
configuration, whereas ESWITCH shoots at a lower-level of
the OpenFlow food chain: compiling a pipeline specification
to the bare metal. In this regard, ESWITCH is closer to pro-
posals like NOSIX [34], P4 [55], and RMT [56], aimed at
finding a better match between controller programs and the
underlying dataplane. The closest to our approach is perhaps
network stack specialization [57], but instead of concentrat-
ing on endhosts herein we focus on intermediate systems.

Of particular interest here is P4 [49,55]. Both P4 and
ESWITCH are datapath compilers, emitting efficient fast-paths
from an abstract, declarative description of a switch’s packet
processing functionality. P4, however, is much more generic
than ESWITCH as it offers a complete language to customize
switch behavior, all the way from header formats and sup-
ported actions to the semantics of flow tables and the control
of flow among them; ESWITCH is, in contrast, limited to
OpenFlow, with hard-coded header formats, actions, match-
ing semantics, etc. On the other hand, ESWITCH can poten-
tially generate a more efficient fast-path than an equivalent
P4 program would do; in contrast to P4 that has only an
abstract dataplane description available at compile time but
not the flow entries themselves, ESWITCH also knows the
content of the pipeline; correspondingly, P4 is constrained
to produce the datapath statically while ESWITCH can ap-
ply sophisticated run-time optimizations in full knowledge
of the pipeline, like upgrading small tables to the direct code
template, template specialization with full constant inlining
and direct jump pointers, etc. Of course, run-time optimiza-
tion does not come for free, as ESWITCH needs to partially
recompile the datapath from time to time but, as we have
shown experimentally, this is very cheap thanks to the effi-
ciency of template-based code generation.

Flow table templates are common in hardware OpenFlow
switches, which usually include separate pipeline stages sup-
porting varying sorts of match semantics [34]; herein, we
simply adopted this design for softswitches. Template-based
program specialization, a technique to dynamically link pre-
compiled code fragments into machine code [58, 59], has
for a long time been the preferred choice for writing com-
pilers for embedded domain-specific languages, like SQL
[60] or LINQ [61], thanks to the fast compilation cycles.
Notably, it also allows to eliminate looping overhead and
fold constants into instructions. ESWITCH heavily builds
on these features. Recently runtime code generation has re-
ceived renewed interest, for just-in-time (JIT) compiling hot
code paths from intermediate representations into machine
code [62]. The analogous JIT compilation of “hot flows” by
ESWITCH seems a particularly intriguing research direction.

Performance modeling and prediction for network func-
tions was initiated in [63] and has been shown to provide
useful characterizations for various real-life use cases [64,
65]. Nevertheless, as far as we know this is the first time
that a, however simple, datapath performance model for a
complex OpenFlow pipeline appears in the literature. In the
future ESWITCH could be easily taught to derive such mod-
els automatically, by programmatically composing template
model “atoms” using the primitives introduced in Atomix
[66]. This would make it possible to not only produce ef-
ficient specialized datapaths but also to deliver reliable per-
formance promises for these datapaths in real time.

6. CONCLUSIONS

OpenFlow software switches are indeed true masterpieces
of genericity, supporting a broad spectrum of packet for-
warding semantics with considerable efficiency. Unfortu-
nately, genericity comes at a high cost: despite increasingly
powerful hardware operators still often need to manually
tweak their pipelines to work around softswitch performance
regressions. In this paper, we argued that this should be the
other way around: instead of customizing flow tables for the
underlying data plane it is rather the dataplane that should
be specialized with respect to the workload.

We introduced ESWITCH, a novel switch architecture cap-
italizing on the observation that OpenFlow pipelines are suf-
ficiently structured to admit efficient machine code repre-
sentations constructed out of simple packet processing tem-
plates. The resultant specialized datapaths then were shown
to give major performance gains over flow-caching-based al-
ternatives, with several times higher raw packet rates, much
smaller latency, and, perhaps most importantly, robust and
predictable throughput even on widely varying, or border-
line malicious, workloads. The proposed switch architec-
ture easily scales to hundreds of flow tables and hundreds of
thousands of traffic flows, while supporting updating the fast
path at similar, or higher, intensity.

Acknowledgements

The authors would like to thank the support for the HSNLab
at BME-TMIT and the MTA-BME Future Internet Research

Group. G.R. was visiting TrafficLab, Ericsson Research,
Hungary, while working on this paper. Corresponding au-
thor: Gabor Rétvari <retvari@tmit .bme.hu>.

7. REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner,
“OpenFlow: enabling innovation in campus networks,” ACM
SIGCOMM Computer Communication Review, vol. 38,
no. 2, pp. 69-74, 2008.

[2] The Open Networking Foundation, OpenFlow Switch
Specifications v.1.4.0, 2013.

[3] P. Costa, M. Migliavacca, P. Pietzuch, and A. L. Wolf,
“NaaS: network-as-a-service in the cloud,” in Hot-ICE,
vol. 12, pp. 1-1, 2012.

[4] J. Mudigonda, P. Yalagandula, J. Mogul, B. Stiekes, and
Y. Pouffary, “NetLord: a scalable multi-tenant network
architecture for virtualized datacenters,” in SIGCOMM,
pp- 62-73, 2011.

[5] A. Sadasivarao, S. Syed, P. Pan, C. Liou, A. Lake, C. Guok,
and I. Monga, “Open Transport Switch: A software defined
networking architecture for transport networks,” in HotSDN,
pp- 115-120, 2013.

[6] S. Vissicchio, O. Tilmans, L. Vanbever, and J. Rexford,
“Central control over distributed routing,” in SIGCOMM,
pp. 43-56, 2015.

[7] D. Han, A. Anand, F. Dogar, B. Li, H. Lim, M. Machado,
A. Mukundan, W. Wu, A. Akella, D. G. Andersen, J. W.
Byers, S. Seshan, and P. Steenkiste, “XIA: Efficient support
for evolvable internetworking,” in NSDI, 2012.

[8] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,

J. Rexford, A. Story, and D. Walker, “Frenetic: a network
programming language,” in ICFP, pp. 279-291, 2011.

[9] R. Soulé, S. Basu, P. J. Marandi, F. Pedone, R. Kleinberg,
E. G. Sirer, and N. Foster, “Merlin: a language for
provisioning network resources,” in CoNEXT, pp. 213-226,
2014.

[10] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak,
“Maple: Simplifying SDN programming using algorithmic
policies,” in SIGCOMM, pp. 87-98, 2013.

[11] L. Suresh, J. Schulz-Zander, R. Merz, A. Feldmann, and
T. Vazao, “Towards programmable enterprise WLANS with
Qdin,” in HotSDN, pp. 115-120, 2012.

[12] C. Chen, C. Liu, P. Liu, B. T. Loo, and L. Ding, “A scalable
multi-datacenter layer-2 network architecture,” in SOSR,
pp- 1-12, 2015.

[13] T. K. et al., “Network virtualization in multi-tenant
datacenters,” in NSDI, pp. 203-216, 2014.

[14] N. Amaya, S. Yan, M. Channegowda, B. Rofoee, Y. Shu,
M. Rashidi, Y. Ou, G. Zervas, R. Nejabati, D. Simeonidou,
et al., “First demonstration of software defined networking
(SDN) over space division multiplexing (SDM) optical
networks,” in ECOC, 2013.

[15] A. Gupta, M. Shahbaz, L. Vanbever, H. Kim, R. Clark,

N. Feamster, J. Rexford, and S. Shenker, “SDX: a software
defined Internet Exchange,” in SIGCOMM, pp. 551-562,
2014.

[16] Netronome, “SDN Gateway: Reference design.”
https://netronome.com/sdn- gateway.

[17] Intel, “Network function virtualization: Virtualized BRAS
with Linux and Intel architecture.” https://networkbuilders.
intel.com/docs/Network_Builders_RA_vVBRAS_Final.pdf.

[18] Intel, “Network function virtualization: Quality of Service in
Broadband Remote Access Servers with Linux and Intel

architecture.” https://networkbuilders.intel.com/docs/
Network_Builders_ RA_NFV_QoS_Aug2014.pdf.

[19] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou,
J. Rajahalme, J. Gross, A. Wang, J. Stringer, P. Shelar,
K. Amidon, and M. Casado, “The design and implementation
of Open vSwitch,” in NSDI, pp. 117-130, 2015.

[20] P. Gupta and N. McKeown, “Algorithms for packet
classification,” Netwrk. Mag. of Global Internetwkg., vol. 15,
no. 2, pp. 24-32, 2001.

[21] P. Gupta and N. McKeown, “Packet classification on
multiple fields,” in SIGCOMM, pp. 147-160, 1999.

[22] A.Feldman and S. Muthukrishnan, “Tradeoffs for packet
classification,” in INFOCOM, vol. 3, pp. 1193-1202, 2000.

[23] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification
using tuple space search,” in SIGCOMM, pp. 135-146, 1999.

[24] K. Kogan, S. Nikolenko, O. Rottenstreich, W. Culhane, and
P. Eugster, “SAX-PAC: scalable and expressive packet
classification,” in SIGCOMM, pp. 15-26, 2014.

[25] S. Shirali-Shahreza and Y. Ganjali, “ReWiFlow: restricted
wildcard OpenFlow rules,” SIGCOMM Comput. Commun.
Rev., vol. 45, no. 5, pp. 29-35, 2015.

[26] M. Casado, T. Koponen, D. Moon, and S. Shenker,
“Rethinking packet forwarding hardware,” in HotNets, 2008.

[27] C. Kim, M. Caesar, A. Gerber, and J. Rexford, “Revisiting
route caching: The world should be flat,” in PAM, pp. 3-12,
20009.

[28] Y. Liu, S. O. Amin, and L. Wang, “Efficient FIB caching
using minimal non-overlapping prefixes,” SIGCOMM
Comput. Commun. Rev., vol. 43, no. 1, pp. 14-21, 2013.

[29] N. Shelly, E. J. Jackson, T. Koponen, N. McKeown, and
J. Rajahalme, “Flow caching for high entropy packet fields,”
SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, 2014.

[30] EANTC, “Validating Cisco’s NFV infrastructure Pt. 1.”
http://www.lightreading.com/nfv/nfv-tests-and-trials/
validating-ciscos-nfv-infrastructure-pt- 1/d/d-id/718684.

[31] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W.
Moore, “OFLOPS: an open framework for OpenFlow switch
evaluation,” in PAM, pp. 85-95, 2012.

[32] D. Y. Huang, K. Yocum, and A. C. Snoeren, “High-fidelity
switch models for software-defined network emulation,” in
HotSDN, pp. 43-48, 2013.

[33] A. Bianco, R. Birke, L. Giraudo, and M. Palacin, “OpenFlow
switching: Data plane performance,” in IEEE ICC, pp. 1-5,
2010.

[34] M. Yu, A. Wundsam, and M. Raju, “NOSIX: a lightweight
portability layer for the SDN OS,” SIGCOMM Comput.
Commun. Rev., vol. 44, no. 2, pp. 28-35, 2014.

[35] J. Leng, Y. Zhou, J. Zhang, and C. Hu, “An inference attack
model for flow table capacity and usage: Exploiting the
vulnerability of flow table overflow in software-defined
network.” http://arxiv.org/abs/1504.03095.

[36] D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G. Andersen,
“Scalable, high performance Ethernet forwarding with
CuckooSwitch,” in CoNEXT, pp. 97-108, 2013.

[37] G. Rétvari, J. Tapolcai, A. K&rosi, A. Majdan, and
Z. Heszberger, “Compressing IP forwarding tables: Towards
entropy bounds and beyond,” in SIGCOMM, pp. 111-122,
2013.

[38] H. Asai and Y. Ohara, “Poptrie: a compressed trie with
population count for fast and scalable software IP routing
table lookup,” in SIGCOMM, pp. 57-70, 2015.

[39] E. Gamma, R. Helm, R. Johnon, and J. Vlissides, Design
Patterns, elements of reusable object-oriented software.
Addison Wesley, 1994.

[40] Intel, “Data Plane Development Kit.” http://dpdk.org.

[41] A. Csdszar and G. Pongrécz, “SDN virtual switching
innovation (demo),” 2015. Mobile World Congress, https:
/Itwitter.com/ericssonhungary/status/573087639080972288.

[42] “Openflow reference swtich.”
git://gitosis.stanford.edu/openflow.git.

[43] “CPgD OpenFlow repository.”
https://github.com/CPqgD/ofsoftswitch13.

[44] “The xDPd project.” http://xdpd.org.

[45] “LINC software repository.”
https://github.com/FlowForwarding/LINC-Switch.

[46] P. Newman, G. Minshall, and T. L. Lyon, “IP switching —
ATM under IP,” IEEE/ACM Trans. Netw., vol. 6, no. 2,
pp. 117-129, 1998.

[47] “6WINDGate virtual switch.” http://www.6wind.com/
6windgate-performance/virtual-switching.

[48] A. Canteaut, C. Lauradoux, and S. A., “Understanding cache
attacks,” 2006.

[49] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster,

N. McKeown, and J. Rexford, “PISCES: a programmable,
protocol-independent software switch,” in SIGCOMM, 2016.

[50] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet
classification using multidimensional cutting,” in
SIGCOMM, pp. 213-224, 2003.

[51] M. Kuzniar, P. Peresini, and D. Kosti¢, “What you need to
know about SDN flow tables,” in Passive and Active
Measurement, pp. 347-359, 2015.

[52] L. Csikor, M. Szalay, B. Sonkoly, and L. Toka, “NFPA:
Network function performance analyzer,” in [EEE
NFV-SDN, Demo Track, pp. 17-19, 2015.

[53] “Intel Ethernet Controller XLL710 10/40 GbE — Product
Brief,” 2014.

[54] P. Emmerich, S. Gallenmiiller, D. Raumer, F. Wohlfart, and
G. Carle, “MoonGen: a scriptable high-speed packet
generator,” in IMC, pp. 275-287, 2015.

[55] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,

J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,

G. Varghese, and D. Walker, “P4: programming
protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87-95, 2014.

[56] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown,
M. Izzard, F. Mujica, and M. Horowitz, “Forwarding
metamorphosis: Fast programmable match-action processing
in hardware for SDN,” in SIGCOMM, pp. 99-110, 2013.

[57] 1. Marinos, R. N. Watson, and M. Handley, “Network stack
specialization for performance,” in SIGCOMM, pp. 175-186,
2014.

[58] F. Noel, L. Hornof, C. Consel, and J. Lawall, “Automatic,
template-based run-time specialization: implementation and
experimental study,” in /CCL, pp. 132-142, 1998.

[59] F. Smith, D. Grossman, G. Morrisett, L. Hornof, and T. Jim,
“Compiling for template-based run-time code generation,”
Journal of Functional Programming, vol. 13, no. 3,
pp. 677-708, 2003.

[60] M. B. et al., “Impala: A modern, open-source SQL engine
for Hadoop,” in CIDR, 2015.

[61] J. Cheney, S. Lindley, and P. Wadler, “A practical theory of
language-integrated query,” in /CFP, pp. 403—416, 2013.

[62] M. P. Plezbert and R. K. Cytron, “Does "just in time" =
"better late than never"?,” in POPL, pp. 120-131, 1997.

[63] D. Joseph and I. Stoica, “Modeling middleboxes,” Network,
IEEE, vol. 22, no. 5, pp. 20-25, 2008.

[64] A. Sapio, M. Baldi, and G. Pongréicz, “Cross-platform

estimation of network function performance,” in EWSDN,
pp. 73-78, 2015.

[65] S. Gallenmiiller, P. Emmerich, F. Wohlfart, D. Raumer, and
G. Carle, “Comparison of frameworks for high-performance
packet 10,” in ANCS, pp. 29-38, 2015.

[66] M. Bansal, A. Schulman, and S. Katti, “Atomix: a
framework for deploying signal processing applications on
wireless infrastructure,” in NSDI, pp. 173-188, 2015.

Appendix

We are given a flow table 7' = {(F;; : j € [1,n]) —
a; = 1 € [1,m]}, where each key Fj ; is either constant or a
wildcard. We call a flow table regular if it matches on only a
single field that contains no masks/wildcards except the last
catch-all rule. Consider the below problem formulation:

REGDECOMP(T, k): given flow table T and integer k, is
there a semantically equivalent pipeline T so that |T| < k
and each flow table T € T is regular?

THEOREM 1. REGDECOMP(T, k) is coNP-hard.

SKETCH OF THE PROOF: We show that REGDECOMP(T,
k) is difficult already for £ = 1 by reducing 3SAT to REGDE-
comp(T, 1).

We are given a 3SAT instance on n variables X, ..., X,
in conjunctive normal form

F(X1, Xz, Xa) = N\ ()X V()X V ()X,
i=1
such that no variable appears in all clauses as an all positive
(un-negated) or all negative (negated) literal.

First, we construct a flow table ' = {F; ;} of n fields
(one for each variable) and m rows (one for each clause) as
follows: F; ; = 0if X is positive in the ¢-th clause, F; ; = 1
if it is negative, and F; ; = * if X; does not appear at all.
We add an extra field Y and set it to 1 for all rows. For each
row i € [1,m] we set the action a; = false and we also add
a low-priority catch-all rule with action true.

Then for any choice of variables X and Y = 1, T effec-
tively evaluates f(X); the i-th row matches, yielding action
false, if and only if the i-th clause is not satisfied. For the
3SAT example (Xl VX3V X4) AN (—\X1 V X9V X3) we
get the table:

X1 X X3 Xy Y|
0 * 1 0 1 | false
1 0 0 * 1 | false
* * * * * | true

Then, asking whether the 3SAT instance is not satisfiable
is equivalent with deciding whether 7" can be decomposed
into the pipeline with the single regular table:

Y
1 | false
0 true

This is because the 3SAT is not satisfiable if and only if T’
returns false for Y = 1 independently of the input X. O

