
Compressing IP Forwarding

Tables: Towards Entropy

Bounds and Beyond

Revised on Feb 10, 2014

Gábor Rétvári, János Tapolcai, Attila Kőrösi,
András Majdán, Zalán Heszberger

Budapest Univ. of Technology and Economics
Dept. of Telecomm. and Media Informatics

{retvari,tapolcai,korosi,majdan,heszi}@tmit.bme.hu

SIGCOMM’13, August 12–16, 2013, Hong Kong, China

{retvari,tapolcai,korosi,majdan,heszi}@tmit.bme.hu


Motto

IP forwarding table compression is boring. . .

but compressed data structures are beautiful!



Encoding Strings

• Suppose we want to encode the string “labanana”

• Just 4 symbols, so we can use 2 bits per symbol

symbol code

a 00
b 01
l 10
n 11

l a b a n a n a

10 00 01 00 11 00 11 00

• Size is information-theoretic limit: 16 bits

• Fast access to symbol at any position, fast search, etc.

• But this format is not particularly memory efficient



Huffman Coding

• Compression by encoding popular symbols on fewer bits

• Huffman tree sorted by symbol frequencies

a(4)

0

n(2)

0

b(1)

0

l(1)

1

1

1



Huffman Coding

• Compression by encoding popular symbols on fewer bits

• Huffman tree sorted by symbol frequencies

• Use tree-prefix as symbol code

symbol code

a 0
b 110
l 111
n 10

l a b a n a n a

111 0 110 0 10 0 10 0

• Size is nH0 bits, where n is length and H0 is entropy

• Only 14 bits, minimal for a zero order source

• But no fast access to symbols, no search!



Wavelet Trees

• Indexing and Huffman coding simultaneously

• A bitmap at each node of the Huffman tree

• Tells whether symbol belongs to the left/right branch

labanana

10101010

aaaa
lbnn

1100

nn
lb

10

b l



Wavelet Trees: Access

• Store bitmaps in succinct bitstring indexes (e.g., RRR)

• encode an n bit long bitmap on roughly n bits

• support access/rank queries in O(1)

• E.g., accessing the 3rd position

labanana

10101010

aaaa
lbnn

1100

nn
lb

10

b l



Wavelet Trees: Access

• Store bitmaps in succinct bitstring indexes (e.g., RRR)

• encode an n bit long bitmap on roughly n bits

• support access/rank queries in O(1)

1. “Which branch the 3rd symbol belongs to?”

labanana

10101010

aaaa
lbnn

1100

nn
lb

10

b l

access(10101010, 3) = 1



Wavelet Trees: Access

• Store bitmaps in succinct bitstring indexes (e.g., RRR)

• encode an n bit long bitmap on roughly n bits

• support access/rank queries in O(1)

2. “How many symbols from this branch occurred this far?”

labanana

10101010

aaaa
lbnn

1100

nn
lb

10

b l

rank1(10101010, 3) = 2



Wavelet Trees: Access

• Store bitmaps in succinct bitstring indexes (e.g., RRR)

• encode an n bit long bitmap on roughly n bits

• support access/rank queries in O(1)

3. “Which branch this symbol belongs to?”

labanana

10101010

aaaa
lbnn

1100

nn
lb

10

b l

access(1100, 2) = 1



Wavelet Trees: Access

• Store bitmaps in succinct bitstring indexes (e.g., RRR)

• encode an n bit long bitmap on roughly n bits

• support access/rank queries in O(1)

4. “How many symbols from this branch occurred this far?”

labanana

10101010

aaaa
lbnn

1100

nn
lb

10

b l

rank1(1100, 2) = 2



Wavelet Trees: Access

• Store bitmaps in succinct bitstring indexes (e.g., RRR)

• encode an n bit long bitmap on roughly n bits

• support access/rank queries in O(1)

5. “Which of the remaining two symbols is the result?”

labanana

10101010

aaaa
lbnn

1100

nn
lb

10

b l

access(10, 2) = 0



Wavelet Trees: Access

• Store bitmaps in succinct bitstring indexes (e.g., RRR)

• encode an n bit long bitmap on roughly n bits

• support access/rank queries in O(1)

6. The 3rd symbol is b

labanana

10101010

aaaa
lbnn

1100

nn
lb

10

b l



Wavelet Trees: Size

• We only store the bitmaps at each level

labanana

10101010

lbnn

1100

lb

10

l a b a n a n a

111 0 110 0 10 0 10 0

• Every symbol appears with its Huffman code

• Size is nH0 bits (plus negligible overhead)

• But we still have efficient access



Compressed Data Structures

• Compression not necessarily sacrifices fast access!

• Store information in entropy-bounded space and provide

fast in-place access to it

• take advantage of regularity, if any, to compress

• data drifts closer to the CPU in the cache hierarchy

• operations are even faster than on the original

uncompressed form

• No space-time trade-off!

• This paper: advocate compressed data structures to

the networking community

• IP forwarding table compression as a use case



IP Forwarding Information Base

• The fundamental data structure used by IP routers to

make forwarding decisions

• Stores more than 440K IP-prefix-to-nexthop mappings

as of January, 2013

• consulted on a packet-by-packet basis at line speed

• queries are complex: longest prefix match

• updated couple of hundred times per second

• takes several MBytes of fast line card memory and

counting

• May or may not become an Internet scalability barrier



Prefix Trees

• Tries are the most convenient way to store IP FIBs

prefix label

-/0 2

0/1 3

00/2 3

001/3 2

01/2 2

011/3 1

FIB

2 1

3

1
2

1

3

0 1

2

0

Prefix tree

3 2 2 1

2

Prefix-free trie



FIB Space Bounds

• A FIB can be uniquely represented by a binary prefix-

free trie T

• Let T have n leaves labeled from an alphabet of size δ
with Shannon-entropy H0

• The information-theoretic lower bound to encode T is

2n + n log2 δ bits

• The zero-order entropy of T is

2n + nH0 bits

• The tree structure imposes an additive term 2n to the

string size nH0



Static Compressed FIBs: XBW-l

• Apply the state-of-the-art in compressed data structures

• convert FIB to prefix-free form

• serialize the prefix tree into a set of strings

• compress using wavelet trees and RRR

• We call the resultant data structure XBW-l

+ realizes the zero-order entropy bound

+ in fact, also attains higher-order entropy

+ lookup goes in O(log n) time

– but update is linear

– lookup is too slow for practical applications

• Problem turns out that XBW-l is pointerless



Dynamic FIBs: Trie-folding

• Practical FIB compression, a good old pointer machine

• Fold the trie into a prefix DAG (DAFSA, DAWG, BDD)

1 2

1 2 1 2 3

3

a

1 2

3

0

1

λ = 0

2 1

2

1

λ = 2

0
1

3
0

1

• For good compression, we need the tree to be in a

prefix-free form

• But prefix-free forms are expensive to update

• Balance by a parameter λ, called the leaf-push barrier



Prefix DAG Size

• View the problem as string compression: encode a

string S into a prefix DAG D(S)

l a b a n a n a

S

l b n a
1

1

0

1

D(S)

• Theorem 1: D(S) needs 5n log2 δ bits at most

• Theorem 2: D(S) can be squeezed into ∼ 7nH0 bits in

expectation

• Theorem 3: update goes in O((1 + 1/H0) log n) steps



Evaluation

FIB N δ H0 I E XBW-l pDAG µ

taz 410K 4 1.00 94KB 56KB 63KB 178KB 3.17

access(d) 444K 28 1.06 206KB 90KB 100KB 369KB 4.1

• Entropy bound (E) is way smaller than information-

theoretic limit (I): IP FIBs contain high regularity!

• XBW-l attains entropy bounds very closely, with prefix

DAGs (pDAG) off by only a factor µ of 2–4

• FIBs can be encoded on roughly 1–2 bits per prefix(!)

• that’s roughly 100–400 KBytes of memory

• Several million lookups per sec both in HW and SW

• faster than the uncompressed form

• pDAG tolerates more than 100, 000 updates per sec



Conclusions

• Compressed data structures are essential in information

retrieval, computational biology, geometry, etc.

• allow to sidestep notorious space-time trade-offs

• as such, compressing comes essentially for free

• FIB compression is a poster child of why the networking

field is in a sore need of good compression methods

• permits to reason about size, lookup, and update

performance (analyzability)

• allows to state theoretical storage size bounds

(predictability)

• faster operations than on the uncompressed form

(efficiency)


