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Motto

IP forwarding table compression is boring. . .

but compressed data structures are beautiful!



Encoding Strings

• Suppose we want to encode the string “labanana”

• Just 4 symbols, so we can use 2 bits per symbol

symbol code

a 00
b 01
l 10
n 11

l a b a n a n a

10 00 01 00 11 00 11 00

• Size is information-theoretic limit: 16 bits

• Fast access to symbol at any position, fast search, etc.

• But this format is not particularly memory efficient



Huffman Coding

• Compression by encoding popular symbols on fewer bits

• Huffman tree sorted by symbol frequencies
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Huffman Coding

• Compression by encoding popular symbols on fewer bits

• Huffman tree sorted by symbol frequencies

• Use tree-prefix as symbol code

symbol code

a 0
b 110
l 111
n 10

l a b a n a n a

111 0 110 0 10 0 10 0

• Size is nH0 bits, where n is length and H0 is entropy

• Only 14 bits, minimal for a zero order source

• But no fast access to symbols, no search!



Wavelet Trees

• Indexing and Huffman coding simultaneously

• A bitmap at each node of the Huffman tree

• Tells whether symbol belongs to the left/right branch
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Wavelet Trees: Access

• Store bitmaps in succinct bitstring indexes (e.g., RRR)

• encode an n bit long bitmap on roughly n bits

• support access/rank queries in O(1)

• E.g., accessing the 3rd position
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Wavelet Trees: Access

• Store bitmaps in succinct bitstring indexes (e.g., RRR)

• encode an n bit long bitmap on roughly n bits

• support access/rank queries in O(1)

1. “Which branch the 3rd symbol belongs to?”
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access(10101010, 3) = 1



Wavelet Trees: Access

• Store bitmaps in succinct bitstring indexes (e.g., RRR)

• encode an n bit long bitmap on roughly n bits

• support access/rank queries in O(1)

2. “How many symbols from this branch occurred this far?”

labanana
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lbnn

1100

nn
lb

10

b l

rank1(10101010, 3) = 2



Wavelet Trees: Access

• Store bitmaps in succinct bitstring indexes (e.g., RRR)

• encode an n bit long bitmap on roughly n bits

• support access/rank queries in O(1)

3. “Which branch this symbol belongs to?”
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Wavelet Trees: Access

• Store bitmaps in succinct bitstring indexes (e.g., RRR)

• encode an n bit long bitmap on roughly n bits

• support access/rank queries in O(1)

4. “How many symbols from this branch occurred this far?”
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rank1(1100, 2) = 2



Wavelet Trees: Access

• Store bitmaps in succinct bitstring indexes (e.g., RRR)

• encode an n bit long bitmap on roughly n bits

• support access/rank queries in O(1)

5. “Which of the remaining two symbols is the result?”
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Wavelet Trees: Access

• Store bitmaps in succinct bitstring indexes (e.g., RRR)

• encode an n bit long bitmap on roughly n bits

• support access/rank queries in O(1)

6. The 3rd symbol is b
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Wavelet Trees: Size

• We only store the bitmaps at each level

labanana
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lbnn
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l a b a n a n a

111 0 110 0 10 0 10 0

• Every symbol appears with its Huffman code

• Size is nH0 bits (plus negligible overhead)

• But we still have efficient access



Compressed Data Structures

• Compression not necessarily sacrifices fast access!

• Store information in entropy-bounded space and provide

fast in-place access to it

• take advantage of regularity, if any, to compress

• data drifts closer to the CPU in the cache hierarchy

• operations are even faster than on the original

uncompressed form

• No space-time trade-off!

• This paper: advocate compressed data structures to

the networking community

• IP forwarding table compression as a use case



IP Forwarding Information Base

• The fundamental data structure used by IP routers to

make forwarding decisions

• Stores more than 440K IP-prefix-to-nexthop mappings

as of January, 2013

• consulted on a packet-by-packet basis at line speed

• queries are complex: longest prefix match

• updated couple of hundred times per second

• takes several MBytes of fast line card memory and

counting

• May or may not become an Internet scalability barrier



Prefix Trees

• Tries are the most convenient way to store IP FIBs

prefix label

-/0 2

0/1 3

00/2 3
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FIB Space Bounds

• A FIB can be uniquely represented by a binary prefix-

free trie T

• Let T have n leaves labeled from an alphabet of size δ
with Shannon-entropy H0

• The information-theoretic lower bound to encode T is

2n + n log2 δ bits

• The zero-order entropy of T is

2n + nH0 bits

• The tree structure imposes an additive term 2n to the

string size nH0



Static Compressed FIBs: XBW-l

• Apply the state-of-the-art in compressed data structures

• convert FIB to prefix-free form

• serialize the prefix tree into a set of strings

• compress using wavelet trees and RRR

• We call the resultant data structure XBW-l

+ realizes the zero-order entropy bound

+ in fact, also attains higher-order entropy

+ lookup goes in O(log n) time

– but update is linear

– lookup is too slow for practical applications

• Problem turns out that XBW-l is pointerless



Dynamic FIBs: Trie-folding

• Practical FIB compression, a good old pointer machine

• Fold the trie into a prefix DAG (DAFSA, DAWG, BDD)
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• For good compression, we need the tree to be in a

prefix-free form

• But prefix-free forms are expensive to update

• Balance by a parameter λ, called the leaf-push barrier



Prefix DAG Size

• View the problem as string compression: encode a

string S into a prefix DAG D(S)

l a b a n a n a

S

l b n a
1

1

0

1

D(S)

• Theorem 1: D(S) needs 5n log2 δ bits at most

• Theorem 2: D(S) can be squeezed into ∼ 7nH0 bits in

expectation

• Theorem 3: update goes in O((1 + 1/H0) log n) steps



Evaluation

FIB N δ H0 I E XBW-l pDAG µ

taz 410K 4 1.00 94KB 56KB 63KB 178KB 3.17

access(d) 444K 28 1.06 206KB 90KB 100KB 369KB 4.1

• Entropy bound (E) is way smaller than information-

theoretic limit (I): IP FIBs contain high regularity!

• XBW-l attains entropy bounds very closely, with prefix

DAGs (pDAG) off by only a factor µ of 2–4

• FIBs can be encoded on roughly 1–2 bits per prefix(!)

• that’s roughly 100–400 KBytes of memory

• Several million lookups per sec both in HW and SW

• faster than the uncompressed form

• pDAG tolerates more than 100, 000 updates per sec



Conclusions

• Compressed data structures are essential in information

retrieval, computational biology, geometry, etc.

• allow to sidestep notorious space-time trade-offs

• as such, compressing comes essentially for free

• FIB compression is a poster child of why the networking

field is in a sore need of good compression methods

• permits to reason about size, lookup, and update

performance (analyzability)

• allows to state theoretical storage size bounds

(predictability)

• faster operations than on the uncompressed form

(efficiency)


