
An Evaluation of Approximate Network

Optimization Methods for Improving IP-level Fast

Protection with Loop-Free Alternates

Máté Nagy, Gábor Rétvári

High Speed Networks Laboratory

Department of Telecommunications and Media Informatics

Budapest University of Technology and Economics

Email: {mate.nagy, retvari}@tmit.bme.hu

Abstract—Demand for fast failure recovery in modern IP-
based networks has become compelling recently. Loop-Free
Alternates is a simple IP Fast ReRoute specification proposed by
the IETF that does not require profound changes to the network
infrastructure before deployment. However this simplicity has
a disadvantage, in that usually LFA does not provide complete
protection for all possible failure cases in a general topology.
The LFA graph extension problem asks for adding new links to
the network in an attempt to improve the failure case coverage.
Unfortunately, this problem is NP-complete. In this paper, we
give a detailed graph model for this problem, for the first time
formulating it both for the link and node protecting cases, and
we propose several fast approximation algorithms to solve it.
We compare the performance of the algorithms in extensive
numerical studies and we conclude that the optimum can be
approximated well in most cases relevant to practice.

Index Terms—IP Fast ReRoute, Loop-Free Alternates, link and
node protection, heuristics

I. INTRODUCTION

Throughout the last few years, the amount of streaming

media traffic transmitted over the Internet has increased sig-

nificantly. This kind of traffic is more sensitive to delay than

to packet loss, therefore the need to improve service reliability

and availability has become more and more stressing to

operators. Unfortunately, the state-of-the-art IP protocol suite

is not adequate to meet these needs. The maximum affordable

recovery time from a failure without severe degradation to

video service quality is about 10-50 ms, yet recovery with

today’s Interior Gateway Protocols (IGPs) takes about ten

times more than that [1].

Consequently, the IETF has initiated the IP Fast ReRoute

(IPFRR [2]) framework to reduce the routing convergence

time to the critical tens of milliseconds. IPFRR is based on

two fundamental design principles. First, recovery in IPFRR

is proactive, meaning that backup routes are calculated, and

installed into the forwarding plane, well before a failure

occurs. Second, IPFRR adopts a local rerouting scheme, that

is, only routers directly adjacent to the failed component

participate in the recovery process. This allows to eliminate

The second author was supported by the Janos Bolyai Fellowship of the
Hungarian Academy of Sciences.

one of the most time-consuming parts of the IGP recovery

process: flooding the changed routing information through-

out the network. Instead, when a network element becomes

unavailable, its neighbors immediately switch to the backup

routes and traffic flows without major disruptions while the

IGP converges in the background.

Perhaps the simplest realization of the IPFRR framework is

Loop-Free Alternates (LFA [3]). In LFA, when a router detects

the loss of connectivity to one of its next-hops, it redirects the

affected traffic to an alternate next-hop, called a Loop-Free

Alternate, that still has an intact route to the destination. LFA

can be implemented as an extension to IGPs, it is unobtrusive

and therefore easily deployable. This simplicity, however,

comes at a severe price: depending on the network topology

and link costs, there might occur failure scenarios in the

network for which no LFA exists and so no fast protection can

be provided. Consequently, many alternative IPFRR proposals

have come to existence lately, each providing 100% failure

coverage at the price of increased management burden and

deployment complexity [4], [5].

With its standardization and appearance in commercial off-

the-shelf routers [6], [7], LFA has received renewed interest

both from theoreticians and practitioners recently. Accord-

ingly, there have been various efforts to improve the level of

protection provided by LFA [8]–[10], one of the most recent of

which is LFA graph extension [11]. The LFA graph extension

problem asks for adding the smallest number of new links

to the network so that, on the one hand, LFA failure case

coverage becomes 100% and, on the other hand, shortest paths

remain intact. The latter requirement is important, as shortest

paths are usually engineered with great care to reflect crucial

operational concerns of the operator [12]–[14]. A closely

related problem is LFA graph improvement, where the task

is to maximize LFA coverage when adding only a limited

number of new links. As it turns out, these problems are all

NP-complete. Apart from the NP-completeness proofs, [11]

also presents an optimal Integer Linear Program (ILP) and a

greedy heuristics. Unfortunately, the model is only given for

single link failures in a simplistic network model in which

no equal cost paths are assumed, and no account is made

Figure 1: A simple network with link costs.

as to whether the greedy heuristics is suitable to efficiently

approximate the optimal solution.

In this paper, we tackle the above challenges. The main

contributions are as follows. First, building on [11], we provide

a sophisticated model for LFA network optimization problems.

We also give hints as to how to augment the model to treat

Equal-Cost MultiPath (ECMP) and broadcast LANs. Second,

we extend the model to handle node failures and the cases of

both link and node failures. Third, we collect several optimal

and heuristic algorithms from the literature to solve the LFA

graph extension problem and we analyze their theoretical

behavior. In particular, we find that the optimum can be

approximated within a logarithmic factor. Finally, we compare

the algorithms in extensive numerical evaluations and we

observe that LFA graph extension and LFA graph improvement

require fundamentally different approximation strategies.

The rest of the paper is organized as follows. Section II

gives an overview of LFA and the related network optimization

problems. Section III introduces the mathematical model and

describes optimal and approximation algorithms. Numerical

results are described in Section IV and finally, Section V

concludes the paper.

II. PRELIMINARIES

Throughout this paper, we model the network topology by

a simple, undirected weighted graph G(V,E) where V is the

set of nodes and E is the set of edges. Let n = |V | and

m = |E|, let E denote the complement edge set, let deg(v)
denote the node degree of v ∈ V and let neigh(v) be the set

of neighbors of v in G. Initially, for the sake of simplicity we

assume that the network contains no broadcast LANs and there

is no support for Equal-Cost MultiPath (ECMP). Accordingly,

we presume that ties between equal cost shortest paths are

broken arbitrarily. These assumptions will be relaxed later. We

further assume that in every IPFRR cycle either one link or

one router can fail, and when connectivity to some neighbor

is lost, a router is not able to determine whether it is the link

to the neighbor or the neighbor itself that has failed, so it uses

the pessimistic assumption and presumes a node failure. This

failure model is in line with current IP practice [15], [16].

Perhaps the easiest way to understand LFA is through an

example. Consider the network in Fig. 1. If a packet is sent

from node a to node d, the first hop along the shortest path is

node e. If the link between a and e fails, a have to look for

another neighbor to forward traffic to, which can then pass it

on to d. Note, however, that not all neighbors suit, because if

a neighbor’s shortest path to d went through a, then it would

immediately pass the packet back to a causing a forwarding

loop (recall that the neighbor is not aware of the failure). The

neighbors of a whose shortest path to d does not traverse a

are called link-protecting LFAs from a to d. Formally, link-

protecting LFAs fulfill the following loop-free condition [3]:

dist(n, d) < dist(n, s) + dist(s, d) , (1)

where s is the source of the packet, d is the destination, n

is an LFA candidate neighbor of s and dist(x, y) denotes the

shortest path distance between some x and y. In the above

example, dist(b, d) = 2, dist(a, d) = 2 and dist(a, b) = 2,

and therefore b is a link-protecting LFA from a to d. Note,

however, that in the sample network c does not have a link-

protecting LFA to b as both its candidate neighbors d and

e reach b through it. The same applies to (e, a). The level

of LFA link protection ηLP(G) in a network G is measured

as the proportion of the protected vs. all source-destination

pairs [11]:

ηLP(G) =
(s, d) pairs with link-protecting LFA

#all (s, d) pairs
. (2)

For our sample topology, ηLP(G) = 0.9.

Not just that b protects against the failure of link (a, e) but

it also protects against the failure of the next-hop e itself. This

is because the shortest (b, d) path does not cross e. Formally,

a node n is a node-protecting LFA from s to d if, besides (1),

it also satisfies the condition

dist(n, d) < dist(n, e) + dist(e, d) , (3)

where e is the default next-hop from s to d. Special care

must be taken, however, when e = d, that is, when d is the

immediate next-hop of s. Since no LFA can protect against the

failure of the destination node itself, in such cases s relaxes the

pessimistic failure assumption and presumes that it is only the

link (s, d) that failed and not d itself, and thus it can resort to

a link-protecting LFA. This treatment of the last-hop problem

is common in IPFRR [17].

In our example, dist(b, d) = 2, dist(b, e) = 2 and

dist(e, d) = 1 and so (3) holds. Some quick calculation yields

that there are four source-destination pairs that are without

node-protecting LFA in the above example: (c, b) and (e, a)
are unprotected as the last-hop exception applies and no link-

protecting LFA is available, and (d, a) and (d, b) does not

have node-protection as their LFAs only fulfill (1) but not (3).

LFA coverage ηNP(G) for the node-protection case is defined

in similar vein to (2), with the slight modification that for

(s, d) pairs for which d is the next-hop of s we only check

condition (1) but not (3), while for all other source-destination

pairs we check both. In our example, ηNP(G) = 0.8.

There are several ways to improve the LFA protection in

the network. A plausible choice would be to optimize the IGP

link costs [8]–[10], but this would alter shortest paths. Instead,

in this paper we adopt the approach from [11] and aim for

increasing the LFA coverage by cleverly adding new links to

the network without touching the shortest paths in any ways.

The LFA graph extension problem is defined as the task to

augment a weighted graph with the minimum number of new

edges with properly selected costs, so that the LFA coverage

becomes 100% and the shortest paths remain in place:

Definition 1: Given a simple, undirected, weighted graph

G(V,E) and an integer l, is there a set F ⊆ E with |F | ≤ l

and properly chosen costs, so that η(G(V,E ∪ F)) = 1 and

the shortest paths in G(V,E) coincide with the shortest paths

in G(V,E ∪ F)?
The above definition is straightforward to adapt to the link-

protecting as well as the node-protecting case by substituting

the appropriate definition of ηLP(G) or ηNP(G). In [11], the

following complexity characterization is given.

Proposition 1: The LFA graph extension problem for the

link-protecting case is NP-complete.

Easily, the optimization version, which asks for the minimal

l for which the above condition holds, is also intractable. The

same applies to the LFA graph improvement problem, where,

given some integer l > 0, the aim is to add at most l new links

that improve the LFA coverage the most. Similar is the case

for the node-protecting versions of the problems. Therefore,

there is no hope to obtain optimal solutions in large networks,

which calls for efficient heuristics. The rest of the paper is

devoted to present such heuristic algorithms, to reason about

their theoretical properties and to evaluate their performance

in real-life networks.

III. SOLVING THE LFA GRAPH EXTENSION PROBLEM

In this section, we show algorithms to obtain optimal and

approximate solutions to the LFA graph extension problem.

The objective is to find the smallest number of new links that

increase η(G) to 1 both for the link-protecting and the node-

protecting cases without altering the shortest paths. Note that

this latter requirement is easy to satisfy, as it is enough to

ensure that the links we add to the network are of sufficiently

high cost, say, larger than the length of the longest shortest

path. First, we give an elaborate graph model of the problem

and then we turn to the algorithmic strategies.

Before delving into the details, an important note is per-

tinent here. It is shown in [11] that in certain cases LFA

coverage cannot be improved to 100% just by adding new

links of large cost to the network. Such is the case when there

exist nodes into which all traffic enters via a single router. The

authors propose a polynomial time preprocessing algorithm,

which changes at most one shortest path and/or adds at most

one link per problematic node, and yields a slightly modified

graph on which the problem is guaranteed to be solvable. In

the rest of the paper, we assume that the network has been

properly preprocessed so that there always exists a solution to

the optimization problems we treat.

A. Model

The first step to solving the LFA graph extension problem is

to build a suitable model. First, we discuss the link-protecting

case, then we extend the model to LFA node-protection and

finally we cover some practical concerns.

Consider the sample topology in Fig. 1. Previously, we

found that the graph does not have full link-protecting LFA

coverage. For example, node e does not have an LFA to a.

Our aim is to install a new link of high cost into the network

so that e gains an LFA to a. One easily sees that link (b, e)
is suitable, as with this link in place e could use a as an

LFA. Similarly, adding link (a, c) would create an LFA for

the other unprotected source-destination pair, (c, b). Observe,

however, that not all the complement edges provide additional

protection. For example, adding a link between a and d would

not increase the link-protecting LFA coverage. In general, a

new link can provide LFA to several source-destination pairs,

and an unprotected source-destination pair could obtain an

LFA from several complement edges. Our task is to find the

smallest subset of the complement edge set E so that each

unprotected source-destination pair gets and LFA. The general

graph model for the LFA graph extension problem is based on

the idea that this task is easy to represent as a minimum cover

problem over a suitably defined bipartite graph.

Let (si, di) : i ∈ 1, . . . , k be the set of unprotected source-

destination pairs and let ej : j ∈ 1, . . . , l be the set of

complement edges. Let G′(A,B, F) be a bipartite graph with

node set A∪B and edge set F , where we add a node ai ∈ A

corresponding to each (si, di) : i ∈ 1, . . . , k and a node

bj ∈ B to each ej : j ∈ 1, . . . , l, and we connect some ai ∈ A

to some bj ∈ B in G′ if and only if edge ej , when added with

suitably large cost to G, would create a link-protecting LFA to

(si, di). One easily sees that G′(A,B, F) has O(n2) nodes and

O(n4) edges, and it can be built in O(n2(n2 logn+nm)) time

as we need to perform an all-pairs-shortest path calculation

for each of the O(n2) complement edges. Furthermore, the

operation of adding a link ej to G corresponds in G′ to

deleting the node bj and all its neighbors from A. Since we

take care of leaving the shortest paths in G intact, the resultant

bipartite graph remains a valid representation.

The LFA graph extension problem in some G is then

equivalently posed as a Minimum set cover problem over the

corresponding bipartite graph G′(A,B, F), a well-known NP-

complete problem (SP5, [18]):

Definition 2: Given some positive integer p, is there a set

of nodes Bc ⊆ B with |Bc| ≤ p, such that every node in A

has a neighbor in Bc?

The bipartite graph representation for the link-protecting

LFA extension problem over the sample network of Fig. 1 is

depicted in Fig. 2a. Note that the problem is directly equivalent

to the Minimum hypergraph transversal problem as well [19].

Next, we extend this model to the node-protecting case and

we also improve the complexity of constructing it to O(n3).
The node set of G′ is built similarly. We add a node to A

corresponding to each (s, d) if either (i) d is the next-hop of

s and the loop-free condition (1) does not hold or (ii) d is

not the next-hop of s and (3) does not hold for the next-hop

n of s towards d. Additionally, we add a node to B for each

complement edge in E. Finally, we need to connect the right

nodes in G′. Below, we show an optimized condition, based

on the observation that, on the one hand, the dist function is

(a) Link-protection (b) Node-protection

Figure 2: Sample bipartite graph representations.

invariant to adding high cost edges to G and, on the other hand,

an (u, v) edge, if added to G with high cost, can provide an

LFA only for source-destination pairs whose source coincides

with u or v. In particular, for some ai ∈ A and some bj ∈ B

we add an (ai, bj) edge to F if for the corresponding source-

destination pair (si, di), complement edge (uj , vj) and next-

hop n of si towards di, one of the below conditions holds:

• n = d, u = s and dist(v, d) < dist(v, s) + dist(s, d), or

• n = d, v = s and dist(u, d) < dist(u, s) + dist(s, d), or

• n 6= d, u = s, dist(v, d) < dist(v, s) + dist(s, d) and

dist(v, d) < dist(v, n) + dist(n, d), or

• n 6= d, v = s, dist(u, d) < dist(u, s) + dist(s, d) and

dist(u, d) < dist(u, n) + dist(n, d).

This can be done in O(n3) time, checking the above conditions

for each of the O(n) neighbors for each O(n2) node in B.

Apart from its simplicity, one of the most appealing proper-

ties of the bipartite graph model is that it is easy extend. For

instance, we have deliberately ignored Equal Cost MultiPath

so far. In ECMP, a router might have several next-hops towards

a prefix along equal cost shortest paths and the task is to find

an LFA for each of them. The problem is that a particular

alternate might be a node-protecting LFA for one next-hop

but only link-protecting for another. Fortunately, ECMP can

be seamlessly incorporated into the above model: we add a

node to A in G′ for each source-destination-next-hop tuple

and connect this node to a node in B if the corresponding

complement edge would create LFA for this tuple. Thanks to

this generality of the model, support for broadcast LANs, an

elemental feature of IGPs, is also easy to add.

B. Algorithms

The authors in [11] propose an Integer Linear Program of

O(n2 −m) binary variables to obtain an optimal solution for

the LFA graph extension problem. Unfortunately, this ILP is

too difficult to solve in large networks, therefore, in this section

we present several efficient heuristics. However, instead of

working directly on the original network we rather solve the

corresponding minimum set cover problems on the respective

bipartite graph representations, as there are various well-tested

heuristics available in the literature for this important class of

combinatorial optimization problems. In particular, we discuss

the Lovasz-Johnson-Chvatal algorithm from [20], the SBT

algorithm from [21], the RSBT, MSBT algorithms from [19]

and a straightforward backtracking algorithm.

1) The Lovász-Johnson-Chvatal (LJC) method: In [11], a

greedy heuristic to obtain an approximate solution is proposed,

which in every iteration adds the link that improves the LFA

coverage the most. This algorithm, when interpreted in the

bipartite graph model, corresponds to the Lovász-Johnson-

Chvatal algorithm (LJC, [20]). In every iteration, LJC adds

the highest degree node v ∈ B to the cover Bc, v and its

neighbors in A are deleted from G′ and the algorithm proceeds

to the next iteration.

Algorithm 1 LJC algorithm given a bipartite model G′.

1: Bc ← ∅
2: while A 6= ∅
3: v ← argmaxb∈B deg(b)
4: Bc ← Bc ∪ {v}
5: A← A \ neigh(v)
6: B ← B \ {v}
7: end while

Lovász shows that the size of the cover provided by this

algorithm is within a logarithmic factor of the optimum: topt ≤
tLJC ≤ topt ∗(1+log2|B|) where topt is the cardinality of the

optimal cover and tLJC denotes the cardinality of the cover Bc

from LJC [20]. Besides, the greedy algorithm is remarkably

fast. Unfortunately, it is not guaranteed that the cover returned

by the LJC algorithm is minimal in the sense of inclusion,

which basically means that some proper subset of the solution

would also be an adequate cover. This might render the LJC

algorithm hugely impractical in certain cases.

2) The SBT algorithm: SBT was proposed in [19] to find

an approximate cover that is, in contrast to LJC, minimal in

the sense of inclusion. SBT seeks for the node v ∈ B with

the smallest degree and removes it from B. Additionally, if

neigh(v) contains a node a that is covered by v only, then

v is added to Bc as otherwise we could not cover A. In this

case, we consider all v’s neighbors as covered, remove them

from A and proceed to the next iteration.

Algorithm 2 SBT algorithm given a bipartite model G′.

1: Bc ← ∅
2: while A 6= ∅
3: v ← argminb∈B deg(b)
4: if ∃n ∈ neigh(v) with deg(n) = 1 then

5: Bc ← Bc ∪ {v}
6: A← A \ neigh(v)
7: end if

8: B ← B \ {v}
9: end while

3) The RSBT algorithm: The Reverse SBT algorithm [19],

as the name says, does the reverse of what SBT does in that in

every iteration it chooses the node with the highest degree in-

stead of the smallest degree. Consequently, the pseudo-code is

the same as given in Algorithm 2 with the slight modification

that instead of line 3 we write v ← argmaxb∈B deg(b).

4) The MSBT algorithm: The Modified SBT algorithm [19]

applies a small optimization step to SBT. Similarly to the SBT

algorithm, in each iteration we choose the node v ∈ B with

the smallest degree and, if there are nodes in A covered only

by v, we add v to Bc . If, on the other hand, B \ {v} remains

a cover, then we search for all the nodes a ∈ A that are

covered by exactly two nodes in B: v plus some other node,

say, w 6= v, we add these ws to Bc and we remove them from

B and all their neighbors from A.

Algorithm 3 MSBT algorithm given a bipartite model G′.

1: Bc ← ∅
2: while A 6= ∅
3: v ← argminb∈B deg(b)
4: if ∃n ∈ neigh(v) with deg(n) = 1 then

5: Bc ← Bc ∪ {v}
6: A← A \ neigh(v)
7: else

8: for each a ∈ neigh(v) with deg(a) = 2
9: w← u ∈ neigh(a) \ {v}

10: Bc ← Bc ∪ {w}
11: A← A \ neigh(w)
12: end for

13: end if

14: B ← B \ {v}
15: end while

Note that the SBT, RSBT and MSBT algorithms generate

covers that are minimal in the sense of inclusion.

5) An optimal backtracking algorithm: The backtracking

algorithm implements a brute force strategy to solve the

problem optimally. This scheme generates all possible covers

and finds the one with the smallest cardinality. In order to

avoid visiting a certain cover twice, the algorithm maintains

a lexicographic order of the covers and examines them in

ascending order. Unfortunately, the complexity is still expo-

nential as there are O(2|B|) potential covers. Due to space

constraints, we omit the pseudo-code for this algorithm.

IV. NUMERICAL STUDIES

The main task we undertook in our numerical studies was

to determine which of the above heuristics works best for LFA

graph extension. In particular, we were curious as to how

many new links are needed to achieve full LFA protection

with the different algorithms both for the link-protecting and

the node-protecting cases. Therefore, we implemented the

bipartite graph model and the optimization algorithms in C++

with the help of LEMON graph library [22] and we compared

their performance in numerous real-life ISP topologies. The

evaluations were run on a Linux PC with an Intel Xeon

2.53GHz CPU and 3G RAM. We used the collapsed AS1221,

AS1755, AS3257, AS3967 and AS6461 topologies from the

Rocketfuel dataset [23]. These graphs come with inferred link

costs. We also used the Abilene, Italy, NSF, Germany, AT&T

and the extended German backbone (Germany 50) from [24].

Unfortunately, except for the last network no valid link costs

were available, so we set each cost to 1. We also used

some network topologies from the Topology-Zoo project’s

dataset [25]. For this dataset, we set costs randomly wherever

link costs were not available. The topologies were chosen so

as to ensure that the ILP still runs and so we can compare

the performance of the heuristics to each other as well as to

the optimum. Before actually running the algorithms, parallel

edges were removed, links and costs were symmetrized and

the preprocessing algorithm from [11] was executed in order

to ensure that the optimization problems were always solvable.

The number of new links added and the running time by

the different algorithms for link-protecting LFAs are given in

Table I, while the same results for the node-protecting case

are presented in Table II.

The most important observations are as follows. First, the

initial LFA coverage is usually about 70-90% in the link-

protecting case and only 55-75% in the node-protecting case.

This is expected, as node-protection is generally a stricter

requirement than link-protection. Second, on most small and

middle-sized networks adding only about a dozen or less new

links is often enough to achieve 100% link-protection. This

marks the huge potential to LFA-based network optimization.

For node-protection, however, significantly more new links

are needed, to the point that in larger topologies we need

to virtually double or triple the number of links. Third, all

heuristics perform surprisingly well, only overshooting the

optimum by at most 5-15% in most cases and even finding

the optimum for some networks. The MSBT algorithm is the

clear winner both for link- and node-protection, with SBT

also working reasonably, while LJC and chiefly RSBT are the

worst performers. Finally, the execution time of the heuristics

is solid. LJC is obviously the fastest, while the backtracking

algorithm did not even run till optimum in most of the cases

and had to be shut down after 5 hours of execution.

It seems that for larger networks, and especially in the

node-protecting case, we need dozens of new links to achieve

100% LFA protection. This is clearly out of scope for most

operators. Instead of aspiring to 100% protection, the LFA

graph improvement problem therefore aims towards the more

realistic goal of boosting the LFA coverage by adding only

a small number of new links. Thusly, we also examined

how the LFA coverage increases with each added new link

in the subsequent iterations of the algorithms. The results

for some select topologies are depicted in Fig. 3. The most

important observation is that while MSBT is the most efficient

in attaining 100% coverage with the smallest number new

links, it is the LJC algorithm, by nature, that improves the LFA

coverage the most in the initial steps. The RSBT algorithm

also performs well in this regard. With LJC, about 10-15%

improvement in the LFA coverage can be realized by adding

only at most 5 new links and another 10% with the next 5

links, putting the coverage in the 90-95% range, which may

be enough in many practical scenarios.

Table I: Link-protecting LFA graph extension results: topology name, number of nodes (n) and edges (m); number of link

costs and edges added in the preprocessing phase (“Pre. c/e”), initial LFA coverage (η0), number of new edges in the optimal

solution (ILP), and the number of added edges (“ext”) and execution time in seconds for each algorithm.

LJC SBT RSBT MSBT Backtr.

Topology n m Pre. c/e η0 ILP ext time ext time ext time ext time ext time

AS1221 7 9 1/1 0.833 2 2 0.001 2 0.001 2 0.001 2 0.001 2 0.0007

Abilene 12 15 1/1 0.666 7 8 0.001 9 0.006 14 0.004 8 0.004 7 14592

AS6461 17 37 1/1 0.933 3 3 0.001 3 0.012 4 0.002 3 0.012 3 1.9

Germany 17 25 0/0 0.694 9 12 0.002 12 0.039 13 0.015 11 0.036 N/A N/A

AS1755 18 33 0/0 0.873 7 7 0.001 9 0.027 12 0.009 7 0.024 N/A N/A

InternetMCI 19 45 2/2 0.956 5 6 0.001 5 0.015 5 0.001 5 0.015 N/A N/A

AS3967 21 36 0/0 0.786 8 11 0.003 10 0.092 16 0.036 9 0.091 N/A N/A

AT&T 22 38 0/0 0.822 10 12 0.004 12 0.104 12 0.028 11 0.101 N/A N/A

BtEurope 24 37 13/14 0.982 5 5 0.001 5 0.018 5 0.001 5 0.018 N/A N/A

NSF 26 43 0/0 0.860 11 12 0.004 13 0.182 28 0.093 13 0.168 N/A N/A

AS3257 27 64 5/5 0.930 10 11 0.002 10 0.133 12 0.020 10 0.125 N/A N/A

BBNPlanet 27 28 16/16 0.806 17 19 0.008 17 0.278 17 0.030 18 0.257 N/A N/A

Gambia 28 28 15/15 0.637 16 18 0.020 19 0.707 23 0.227 18 0.651 N/A N/A

AS1239 30 69 0/0 0.874 6 6 0.003 7 0.429 11 0.086 6 0.475 N/A N/A

Digex 31 35 0/0 0.316 22 27 0.806 27 2.020 46 1.803 27 1.745 N/A N/A

Italy 33 56 0/0 0.784 17 22 0.025 28 1.037 39 0.434 19 0.896 N/A N/A

BICS 33 48 8/8 0.784 20 24 0.037 24 1.038 29 0.264 22 0.820 N/A N/A

BtNorthAm 36 76 4/5 0.847 20 22 0.004 20 1.706 27 0.420 20 1.622 N/A N/A

GRNet 36 41 16/16 0.734 23 27 0.052 24 2.260 24 0.392 23 1.995 N/A N/A

Geant 37 57 8/8 0.853 21 23 0.002 21 1.289 25 0.222 21 1.175 N/A N/A

Arnes 41 65 9/9 0.819 24 29 0.071 24 3.008 30 0.450 24 2.845 N/A N/A

ChinaTelecom 42 66 28/28 0.969 13 13 0.004 13 0.419 13 0.018 13 0.412 N/A N/A

Carnet 44 43 34/34 0.818 16 19 0.044 16 4.332 16 0.254 16 4.210 N/A N/A

BellCanada 48 64 9/11 0.629 32 38 0.219 35 11.869 48 4.136 34 10.673 N/A N/A

Germany 50 50 88 0/0 0.900 18 21 0.044 29 4.804 44 1.536 25 4.323 N/A N/A

Cudi 51 52 35/34 0.771 24 29 0.135 24 11.677 24 0.778 27 11.070 N/A N/A

BellSouth 51 66 32/32 0.836 26 29 0.092 26 7.825 27 0.467 27 7.550 N/A N/A

Bestel 84 93 11/12 0.343 68 91 5.575 82 378.41 128 276.22 75 312.50 N/A N/A

Deltacom 113 183 11/10 0.614 80 100 9.226 94 1222.5 131 490.3 91 989.68 N/A N/A

Average: 35.3 53.1 0.781 18.6 22.2 0.565 21.4 57.11 28.5 26.83 20.3 46.67 N/A N/A

Mean deviation[%]: 115.3 114.11 147.86 107.77

Table II: Node–protecting LFA graph extension results: topology name, number of nodes (n) and edges (m); number of link

costs and edges added in the preprocessing phase (“Pre. c/e”), initial LFA coverage (η0), number of new edges in the optimal

solution (ILP), and the number of added edges (“ext”) and execution time in seconds for each algorithm.

LJC SBT RSBT MSBT Backtr.

Topology n m Pre. c/e η0 ILP ext time ext time ext time ext time ext time

AS1221 7 9 1/1 0.500 3 3 0.000 3 0.000 5 0.000 3 0.000 3 0.004

Abilene 12 15 1/1 0.591 9 12 0.001 11 0.006 17 0.004 11 0.004 N/A N/A

AS6461 17 37 1/1 0.746 12 14 0.001 12 0.023 15 0.009 12 0.021 N/A N/A

Germany 17 25 0/0 0.562 18 22 0.005 22 0.043 27 0.031 19 0.032 N/A N/A

AS1755 18 33 0/0 0.765 16 19 0.003 18 0.033 27 0.016 18 0.023 N/A N/A

InternetMCI 19 45 2/2 0.775 23 26 0.004 26 0.037 30 0.018 23 0.027 N/A N/A

AS3967 21 36 0/0 0.643 17 19 0.013 20 0.129 32 0.087 20 0.111 N/A N/A

AT&T 22 38 0/0 0.580 38 43 0.017 43 0.129 54 0.084 40 0.102 N/A N/A

BtEurope 24 37 13/14 0.757 31 32 0.007 31 0.094 49 0.025 31 0.081 N/A N/A

NSF 26 43 0/0 0.634 18 24 0.021 34 0.418 38 0.261 23 0.333 N/A N/A

AS3257 27 64 5/5 0.768 34 36 0.015 34 0.237 50 0.115 34 0.248 N/A N/A

BBNPlanet 27 28 16/16 0.751 35 37 0.012 35 0.207 42 0.055 35 0.165 N/A N/A

Gambia 28 28 15/15 0.541 49 53 0.042 58 0.498 64 0.215 50 0.389 N/A N/A

AS1239 30 69 0/0 0.757 19 24 0.025 25 0.604 34 0.226 20 0.509 N/A N/A

Digex 31 35 0/0 0.312 29 36 0.980 39 1.722 50 1.632 34 1.556 N/A N/A

Italy 33 56 0/0 0.570 35 43 0.082 48 1.490 60 0.949 38 1.229 N/A N/A

BICS 33 48 8/8 0.692 37 42 0.047 44 0.986 57 0.403 40 0.742 N/A N/A

BtNorthAm. 36 76 4/5 0.779 46 50 0.057 47 1.193 63 0.378 46 0.993 N/A N/A

GRNet 36 41 16/16 0.607 64 70 0.116 72 1.741 83 0.596 67 1.219 N/A N/A

Geant 37 57 8/8 0.592 58 70 0.252 70 2.971 84 1.431 59 2.518 N/A N/A

Arnes 41 65 9/9 0.550 90 104 0.264 103 3.397 127 1.465 92 2.451 N/A N/A

ChinaTelecom 42 66 28/28 0.866 62 66 0.033 62 0.695 82 0.253 62 0.623 N/A N/A

Carnet 44 43 34/34 0.746 100 102 0.157 101 2.680 107 0.746 100 2.072 N/A N/A

BellCanada 48 64 9/11 0.488 70 83 0.601 80 11.50 97 6.832 76 8.997 N/A N/A

Germany 50 50 88 0/0 0.828 34 44 0.138 57 6.353 81 3.410 50 5.754 N/A N/A

Cudi 51 52 35/34 0.732 75 80 0.263 77 8.115 86 1.279 77 6.993 N/A N/A

BellSouth 51 66 32/32 0.730 93 97 0.252 94 6.527 123 1.256 93 5.158 N/A N/A

Bestel 84 93 11/12 0.312 106 137 7.780 134 351.9 173 274.9 124 262.3 N/A N/A

Deltacom 113 183 11/10 0.527 171 212 20.735 214 1220.2 255 599.43 197 890.21 N/A N/A

Average: 35.3 53.1 0.644 48 55.2 1.1 55.6 56.0 69.4 30.9 51.5 41.2 N/A N/A

Mean deviation[%]: 115.41 117.86 152.81 107.97

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 2 4 6 8 10 12 14 16

LJC

SBT

RSBT

MSBT

(a) AS3967

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30 35

LJC

SBT

RSBT

MSBT

(b) Italy

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30

LJC

SBT

RSBT

MSBT

(c) AS1239

Figure 3: LFA coverage in each iteration of different heuristics in the link-protecting case for AS3967 and Italy, and node-

protecting case for the AS1239 topology.

V. CONCLUSIONS

Currently, Loop-Free Alternates is the most practical

method to provide fast protection in IP networks. By using

LFA, ISPs can gain high level of protection with minimal

effort, and with the help of the LFA-based network op-

timization algorithms provided in this paper the level of

protection can be improved even further. We have shown a

generic bipartite graph model and we applied several heuristics

from the literature to this representation. The most important

conclusion is that, even-though NP-complete, the LFA graph

extension problem is efficiently approximable. To support this

claim, we showed a logarithmic upper bound on the worst

case performance of the LJC heuristic, and we also presented

extensive numerical studies. We argued that, depending on

the optimization objective, different approximation strategies

should be pursued: when the aim is 100% LFA protection

then the MSBT algorithm is a solid choice, whereas the LJC

algorithm is the best option when the aim is to improve LFA

coverage with only a limited number of new links. Future

work involves integrating these algorithms into a common

approximation framework which would be suitable to tackle

both problems equally efficiently.

REFERENCES

[1] P. Francois, C. Filsfils, J. Evans, and O. Bonaventure, “Achieving sub-
second IGP convergence in large IP networks,” SIGCOMM Comput.

Commun. Rev., vol. 35, no. 3, pp. 35–44, 2005.

[2] M. Shand and S. Bryant, “IP Fast Reroute framework.” RFC 5714, Jan
2010.

[3] A. Atlas and A. Zinin, “Basic specification for IP fast reroute: Loop-Free
Alternates.” RFC 5286, 2008.

[4] P. Francois and O. Bonaventure, “An evaluation of IP-based fast reroute
techniques,” in ACM CoNEXT, pp. 244–245, 2005.

[5] M. Gjoka, V. Ram, and X. Yang, “Evaluation of IP fast reroute
proposals,” in IEEE Comsware, 2007.

[6] Cisco Systems, “Cisco IOS XR Routing Configuration Guide, Release
3.7,” 2008.

[7] Juniper Networks, “JUNOS 9.6 Routing protocols configuration guide,”
2009.

[8] H. T. Viet, P. Francois, Y. Deville, and O. Bonaventure, “Implementation
of a traffic engineering technique that preserves IP Fast Reroute in
COMET,” in Rencontres Francophones sur les Aspects Algorithmiques
des Telecommunications, Algotel (2009), 2009.

[9] M. Menth, M. Hartmann, and D. Hock, “Routing optimization with IP
Fast Reroute.” Internet Draft, July 2010.

[10] G. Rétvári, L. Csikor, J. Tapolcai, G. Enyedi, and A. Császár, “Optimiz-
ing IGP link costs for improving IP-level resilience,” 2011. submitted
to DRCN 2011.

[11] G. Rétvári, J. Tapolcai, G. Enyedi, and A. Császár, “IP Fast ReRoute:
Loop Free Alternates revisited,” in INFOCOM 2011, pp. 2948–2956,
2011.

[12] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional
IP routing protocols,” IEEE Comm. Mag., vol. 40, pp. 118–124, Oct
2002.

[13] G. Swallow, S. Bryant, and L. Andersson, “Avoiding equal cost multipath
treatment in MPLS networks.” RFC 4928, June 2007.

[14] M. Thorup and M. Roughan, “Avoiding ties in shortest path first routing,”
2001. AT&T, Shannon Laboratory, Florham Park, NJ, Technical Report,
http://www.research.att.com/∼mthorup/PAPERS/ties ospf.ps.

[15] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C. Chuah, Y. Ganjali,
and C. Diot, “Characterization of failures in an operational IP backbone
network,” IEEE/ACM Trans. Netw., vol. 16, no. 4, pp. 749–762, 2008.

[16] D. Katz and D. Ward, “Bidirectional forwarding detection (bfd).” RFC
5880, March 2010.

[17] S. Bryant, M. Shand, and S. Previdi, “IP fast reroute using Not-via
addresses.” Internet Draft, March 2010.

[18] M. Garey, , and D. Johnson, Computers and Intractability; A Guide to

the Theory of NP-Completeness. W. H. Freeman & Co., 1990.
[19] B. Mazbic-Kulma and K. Sep, “Some approximation algorithms for

minimum vertex cover in a hypergraph,” in Computer Recognition

Systems 2 (M. Kurzynski, E. Puchala, M. Wozniak, and A. Zolnierek,
eds.), vol. 45 of Advances in Soft Computing, pp. 250–257, Springer
Berlin / Heidelberg, 2007.

[20] L. Lovász, “On the ratio of optimal integral and fractional covers,”
Discrete Mathematics, vol. 13, no. 4, pp. 383–390, 1975.

[21] P. Kulaga, P. Sapiecha, and K. Sej, “Approximation Algorithm for the
Argument Reduction Problem,” in Computer recognition systems: pro-

ceedings of the 4th International Conference on Computer Recognition

Systems, CORES’05, p. 243, Springer Verlag, 2005.
[22] “LEMON – Library for Efficient Modeling and Optimization in Net-

works.” http://lemon.cs.elte.hu/, 2009.
[23] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, “Inferring link

weights using end-to-end measurements,” in ACM IMC, pp. 231–236,
2002.

[24] SNDlib, “Survivable fixed telecommunication network design library.”
http://sndlib.zib.de.

[25] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The Internet Topology Zoo.” http://www.topology-zoo.org.

