
On Finding Maximally Redundant Trees in Strictly
Linear Time

Gábor Enyedi, Gábor Rétvári
Dept. of Telecommunications and Media Informatics
Budapest University of Technology and Economics

Email: {enyedi,retvari}@tmit.bme.hu

András Császár
TrafficLab, Ericsson Research

Email: Andras.Csaszar@ericsson.com

Abstract—Redundant trees are commonly used for protection
and restoration in communications networks. Zhang et al. pre-
sented a linear time algorithm to compute node-redundant trees
in 2-node-connected networks, which has become widely cited
in the literature. In this paper, we show that it is difficult to
implement this algorithm providing both correctness and linear
complexity at the same time. Therefore, we present a revised
algorithm with strict linear time complexity. Moreover, we gener-
alize the concept of node-redundant trees from 2-node-connected
networks to arbitrary topologies, a crucial development since real
networks can not always satisfy 2-connectedness, especially after
a failure.

Index Terms—redundant trees; resilience

I. INTRODUCTION

Nowadays, the proliferation of network-centric applications
impose new requirements on telecommunications networks,
perhaps most importantly amongst them the fast and reliable
response to failures. An interesting idea to provide fault
protection is the scheme of node-redundant trees (simply
redundant trees in the sequel): A pair of redundant trees is
a pair of directed spanning trees defined on an undirected
graph, with edges directed towards a given root node. This
node is reachable from any other node along both of the trees,
but the paths in the two trees are always node-disjoint (see
Fig. 1). Therefore, redundant trees readily lend themselves to
be applied for resilience purposes: in a pair of redundant trees
there always remains at least one path open to the root node,
even after a single node or a link failure shows up.

Using two trees for failure protection was first proposed in
[1], though, restricted to handle only edge failures. A way
to construct edge-redundant trees was published earlier in
[2]. The first algorithm for finding node-redundant trees in
polynomial time was published by Medard et al. in [3] based
on the notion of ear-decomposition of graphs. The complexity
was later decreased to linear by Zhang et al. in [4]. They also
show that a graph does not need to satisfy strong requirements
to admit a pair of redundant trees with respect to any node:
it turns out that 2-node-connectedness is both a sufficient and
necessary condition. Redundant trees, therefore, have become
popular in the literature to implement resilience schemes (see

The second author was supported by the Janos Bolyai Fellowship of the
Hungarian Academy of Sciences.

[3], [4], [5], [6] for optical protection and restoration in WDM
networks, or [7] for an application to IP Fast ReRoute [8]),
and the algorithm of Zhang et al. [4] has become the de facto
algorithm for their computation.

This paper is devoted to answer the compelling problems
we faced when we tried to deploy this algorithm in an
operational IP Fast ReRoute testbed [9], [10]. First, we found
that it is remarkably difficult to implement this algorithm
correctly, while also retaining linear complexity. In Section II,
we prove that a naive implementation necessarily turns out
incorrect and we show that this adverse behavior arises even
in graphs of no more than a few hundred nodes. Therefore,
in Section III we propose a revised algorithm that features
correct computation of redundant trees and strict linear time
complexity. In Section IV, we generalize redundant trees from
strictly 2-node-connected networks to arbitrary networks: we
show that our algorithm always produces a pair of trees with
maximum redundancy no matter the connectedness of the
underlying graph. As far as we are aware of, this is the first
time that such maximally redundant trees are addressed in the
literature. Finally, in Section V we conclude our work.

II. ISSUES WITH A NAIVE IMPLEMENTATION

The prevalent linear time algorithm to compute redundant
trees, given by Zhang et al. in [4], is based on a Depth
First Search (DFS) traversal of the graph and the notion of
lowpoints. The lowpoint number of a node is the minimum of
the lowpoint numbers of its children and the DFS numbers of
its other neighbors1. The algorithm walks down the DFS tree
until it encounters a “jump” in the lowpoint number, at which
point it has identified a new ear in the ear-decomposition.
Consequently, the sequence of nodes specified by the freshly
found ear is added to the first tree in one direction and to
the second tree in the reverse direction. The right direction is
decided based on a partial order, the so called voltage, built
by the algorithm as it proceeds according to the following
rule: voltages only increase along one tree and decrease along
the other one. For a more detailed description, see the node-
redundant tree algorithm in [4].

On the graph depicted in Fig. 1, the algorithm would
proceed as follows. Suppose we have already walked through

1Note that this is only one of the two definitions used in [4]. In this paper
we use this, since it can be applied on non-2-node-connected graphs as well.

2

Figure 1: A sample graph and a pair of redundant trees,
marked with slick and dashed arrows, for root node 1. The
DFS traversal order is 1, 3, 4, 2, 5, 6. The DFS number, the
lowpoint number and voltage values are given in parentheses
for each node.

nodes 1, 3, 4 and 2, and we have already added the path
2 → 4 → 3 → 1 to the first tree (which we choose
as the tree along which voltages would decrease) and path
3 → 4 → 2 → 1 to the second (increasing) tree. Next, we
proceed to node 5 along the DFS tree, where a leap in the
lowpoint number is encountered (because the subsequent node
in the DFS tree, node 6, has lowpoint number 2 instead of 1),
so we “tie the knot” back to node 3 (the lowpoint of 5). But
we need to decide in which direction to add the new ear to
the trees, so we compare the voltage of the endpoints, node 4
and 3, to discover that node 3 has smaller voltage, so we add
the path 5 → 3 to the first tree and 5 → 4 to the second one.
Additionally, we set the voltage of node 5 larger than that of
node 3 but smaller than node 4. In the final step, at node 6,
the situation just reverses as now the starting point has smaller
voltage, so the newly found paths are added accordingly.

At the surface, this algorithm seems obviously imple-
mentable in linear time. Though, a naive implementation
might easily prove incorrect. The problem stems from the
need for a proper data structure to maintain node voltages,
which supports both O(1) insertion (so that new nodes can
be introduced into the partial order) and O(1) comparison
(so that we can know in which direction to attach ears to
the trees). Such data structures are, however, notoriously hard
to implement in contemporary computer architectures. For
instance, linked lists or binary trees are immediately ruled out,
since—although insertion is O(1) provided that the position of
the new element is known—comparison is O(n) (or O(log n)
for binary trees). Additionally, ordinary arrays and explicit
ordering of the elements after each insertion would require
O(n) steps, though, this would deteriorate overall linearity. A
naive implementation would, therefore, assign platform-native
numbers as voltages. However, as computers encode numbers
in a finite number of bits (e.g., an IEEE double precision float
uses 64 bits, so it can not represent more than 264 different
values), the algorithm might easily run out of assignable
distinct voltage values, rendering the result incorrect.

Theorem 1: Suppose that voltages take their values from a
finite, totally ordered set S. Then, there is a graph of at most
3 log2(|S|) + 7 nodes and a possible DFS traversal, on which
an implementation of the algorithm gives incorrect answer.

Figure 2: Illustration for Theorem 1.

Proof: Suppose that the elements of S are identified by a
unique natural number, which we shall use to assign voltages,
and by vi < vj we shall mean that the voltage of node vi is less
than that of vj . Consider the graph depicted in Fig. 2 and let r
be the root node. The arrows show a possible DFS traversal of
the graph: r, b1, c1, a1, a2, c2, b2, . . . , bk, ck, ak. Note that the
last three items can vary if k is even, but the proof remains
essentially the same.

In the ith step, the algorithm finds the node sequence
ai, ci, bi between nodes bi−1 and ci−1. Without loss of gener-
ality, suppose that bi−1 < ci−1 (otherwise, the proof proceeds
similarly, only the relations are the other way around). So,
to the tree along which voltages increase we need to add the
path bi, ci, ai, so we set bi < ci < ai < ci−1. Similarly, along
the decreasing tree we write ai > ci > bi > bi−1, so we
have bi−1 < bi < ci < ai < ci−1. We choose the voltage of
ci pessimistically to bai+bi

2 c (otherwise, if ci − bi > ai − ci

held, we could reconstruct the graph by connecting ai+1 to
ai instead of ci, and bi+1 to ci instead of bi, which would
yield a suboptimal subdivision of S). In consequence, we
have that ai − bi < ai−1−bi−1

2 and, for a general k, we
have ak − bk < |S|

2k−1 . Finally, we observe that the algorithm
fails if we run out of distinct voltage values in S, that is, if
ak = bk, which occurs when |S|

2k−1 < 1. Therefore, for arbitrary
finite S, we can show a graph of k = log2(|S|) + 2 ears (or
3(log2(|S|) + 2) + 1 = 3 log2(|S|) + 7 nodes), for which the
algorithm fails to find correct redundant trees.

The smaller the set S of voltages, the sooner this pathologic
behavior emerges. For 32 bit integers, we only need 103
nodes for the algorithm to fail, and for 64 bit integers we
need 199 nodes. Floating point arithmetic does not come to
rescue here either: double precision floats of 64 bits run short
again at 199 nodes at the most. A solution would be to use
arbitrary precision arithmetics, however, such arithmetics does
not provide O(1) insertion and/or comparison, rendering the
implementation worse than linear.

III. A REVISED ALGORITHM

In this section, we present a novel algorithm for finding a
pair of redundant trees in linear time. Our algorithm is divided
into 3 distinct phases: in the first phase, we perform a DFS
traversal of the graph, then we compute an intermediate graph
representation based on which in the final phase we obtain
the redundant trees. Since we take special care to ensure that
each phase terminates in linear time, the resultant algorithm
will still be linear. Moreover, we do not use voltages, so

3

the traps discussed in the previous section are avoided. In
this section, we assume 2-node-connectivity; the extension to
arbitrary graphs is dealt with only in the next section.

A. DFS traversal

In the first phase of our algorithm, we compute a DFS
traversal of the graph, which will be used in the subsequent
phases to govern the search for the redundant trees. In the rest
of the paper, the root node will be marked by r and the DFS
number of some node n will be denoted by Dn (naturally,
Dr = 0).

First, we present a simple technical lemma for characteriz-
ing DFS numbers.

Lemma 1: Let G be an undirected, 2-node-connected graph,
let n be a node in G and let T be the DFS successor tree of
n (n is in T). There is a node in T with a neighbor x outside
T , such that at least one of the following claims holds true
• x is an ancestor of n but not its immediate parent and/or
• x = r.

Proof: First, suppose Dn ≥ 2. The nodes of the successor
tree T are a subset of the nodes of G, N(T) ⊂ N(G). As
G is 2-node-connected, there are at least two edges between
N(T) and N(G) \N(T), whose endpoints in N(G) \N(T)
are different (since the nodes with DFS number 0 and 1 are
not members of N(T), so |N(G) \N(T)| ≥ 2). One of these
edges is formed by n and its immediate parent p. Consider the
other edge(s) {m,x}, with m ∈ N(T) and x ∈ N(G)\N(T).
Now, either m = n or m is a successor of n. Additionally,
because DFS traversals have the property that a neighbor of
some node is either an ancestor or a successor, x must be an
ancestor of m. Hence, x is an ancestor of n too. Furthermore,
because G is 2-node-connected, there is an edge amongst these
{m,x} edges with x 6= p, which coincides with the first claim
of the Lemma.

Next, suppose Dn = 0 or Dn = 1. Since G is 2-node-
connected, one can always find a cycle traversing any two
nodes (Dirac’s Theorem). Consider the cycle through the root r
(DFS number 0) and the node with DFS number 1. They have
a common DFS successor, in particular, the other neighbor of
r in this cycle, which coincides with the second claim of the
Lemma.

Next, we present an algorithm to compute the DFS numbers
and the lowpoint numbers (see Algorithm 1). This algorithm
is essentially the same as the one presented in [4], with the
only difference being that we also add an edge marking where
the value of lowpoint number came from.

Note that Algorithm 1 is implementable with a slight
modification of the standard DFS traversal algorithm [4], and
thus its complexity is linear in the number of edges.

B. Finding an ADAG

As mentioned previously, our algorithm is divided into
three phases. Below, we discuss the second, intermediate
phase, when a special directed spanning graph is computed,
which we call an ADAG (Almost Directed-Acyclic-Graph)
for reasons that will be made clear soon. This intermediate

Algorithm 1 Revised DFS for graph G and root node r

1: Execute a DFS traversal of the graph
2: Set DFS number Dn at each node n, so that Dn denotes

the number of nodes visited before n
3: Compute the lowpoint number for each node n as

min(L,D), where L is the smallest lowpoint number of
n’s children and D is smallest DFS number among n’s
neighbors

4: For each node n, associate a directed edge (n, x), where
x is the node from which n received its lowpoint number.
If there are more possibilities, choose an arbitrary child
as x

step is important for two reasons: First, it facilitates a cleaner,
modular implementation. Second, an intermediate step makes
it possible to completely eliminate voltages, hence avoiding
the difficulties we pointed out in Section II.

The main idea is to ensure that we always proceed from
lower voltage nodes towards higher voltage nodes, so we
always know in which direction to attach new paths (recall
that voltages were used in the first place to help us decide on
the order of nodes as they are added to the trees). To maintain
this invariant, we need to ensure that we only leave a node
when we have found not only all those ears emanating from
it (as the original algorithm of Zhang et al. does), but also
those ones that terminate in it, by sometimes traversing the
DFS tree upwards instead of moving always downwards. This
idea is implemented in Algorithm 2. Note that Algorithm 2
does not compute the redundant trees right away, it instead
builds an intermediate graph representation D.

Definition 1: Let an ear be a sequence of nodes we push
to the stack at the same time (line 11 or line 21).

Before we turn to discuss the specifics of Algorithm 2, we
first provide a short example of the algorithm’s procession.
Considering the same network and the same DFS traversal
as before, the graph D calculated by Algorithm 2 is given
in Fig. 3. We start from node 1 and the first ear we find is
3 → 4 → 2, so edges (1, 3), (3, 4), (4, 2) and (2, 1) are added
to D. Now, stack S contains “342”, so the next node we pop
from the top is node 3. Node 3 has no child, so we do not
enter the branch at line 6. However, we observe that there is
a neighboring node still not marked ready, node 5, so we
take the branch at line 16 and we move upwards along the
DFS tree until we arrive to a ready node, node 4. Therefore,
the next ear is made up by node 5 alone, and consequently
edges (3, 5) and (5, 4) are added to D. Now, the stack contains
“542”. We pop 5, whose only child is node 6, so next we find
the ear consisting of the sole node 6, and (5, 6) and (6, 4) are
added to D. At this point all nodes are marked ready, so the
the algorithm terminates (after popping the remaining entries
“642” from the stack).

Next, we show that Algorithm 2 always terminates and
reaches all nodes. For this, we only need to show that the two
main branches of the algorithm (line 6 and line 16) terminate.

Lemma 2: The branches at line 6 and 16 always terminate.

4

Algorithm 2 Finding an ADAG for graph G and root node r

1: Compute a DFS tree using Algorithm 1. Initialize the
ADAG D with the nodes of G and an empty edge set.
Create an empty stack S. Set the ready bit at each node
to false.

2: push r to S and set ready bit at r
3: while S is not empty
4: current ← pop S
5: for each children n of current
6: if n is not ready then
7: while n is not ready
8: let e be the node from where n got its

lowpoint number
9: n = e

10: end while
11: Let the found nodes be n → x1 →

... → xk, where xk is ready. Set
the ready bit at n, x1, ..., xk−1 and
push them to S in reverse order, so
eventually the top of the stack will be
n, x1, ..., xk−1

12: Add edges in the path current →
n → x1 → ... → xk to D

13: end if
14: end for
15: for each neighbor n of current which is not a child
16: if n is not ready then
17: while n is not ready
18: let e be the parent of n in the DFS tree
19: n = e
20: end while
21: Let the found nodes be n → x1 →

... → xk, where xk is ready. Set
the ready bit at n, x1, ..., xk−1 and
push them to S in reverse order, so
eventually the top of the stack will be
n, x1, ..., xk−1.

22: Add edges in the path current →
n → x1 → ... → xk to D

23: end if
24: end for
25: end while

Proof: First, we show by mathematical induction that all
DFS ancestors of an arbitrary ready node are always marked
ready. Initially, this is true, since only r is ready. Then, after
finding an ear either at line 6 or at line 16, the claim remains
true, since all the ancestors of a node in the ear became ready
too.

At the end of the branch at line 6, we always arrive to r or
to an ancestor of the starting node, thanks to Lemma 1. From
r and its immediate successor we arrive to r, and from any
other node we eventually reach an ancestor (which is ready
at this point as we have shown above), so the branch at line 6
indeed terminates. On the other hand, in the branch at line 16
we always move upwards in the DFS tree, heading towards r.

Figure 3: A sample graph and the computed ADAG, for root
node 1. The DFS traversal order is 1, 3, 4, 2, 5, 6. The DFS
number and the lowpoint number are given in parentheses for
each node.

Since r is ready, a ready node is always reached finally, so
the branch at line 16 also terminates.

Next, we show that the output of the algorithm, graph D,
“almost” qualifies as a Directed Acyclic Graph (DAG). More
precisely, we show that with the removal of r, D becomes a
DAG, if the original graph was 2-node-connected. Due to this
property, we call D an Almost DAG (ADAG).

Lemma 3: Let D′ be the digraph produced by Algorithm 2
with the root node r removed. Then, D′ is a DAG.

Proof: We observe that in both cases when we add edges
to D′, the endpoints of the edges in the ear appear exactly in
the same order both in the edge and in the stack. Consider an
ear the algorithm finds either at line 11 or line 21. This ear
starts at current and terminates at another node, say, x. The
following claims hold for current and x:
• current 6= x (at branch 6, this is true due to Lemma 1,

and at branch 16 because all the children have been made
ready by branch 6)

• current has already left the stack and
• x is still on the stack.

Now, let A = a1, a2, ..., an be the sequence of nodes as they
leave the stack S. According to the argumentation above, when
we add edge (ai, aj) to D′ one of the following two cases hold
• ai has already left the stack when we push aj or
• ai appears above aj in the stack.

Thus, ai will leave the stack before aj , which means i < j.
Therefore, we have that for each (ai, aj) in D′, i < j holds,
so A is a topological ordering and hence D′ is a DAG.

Finally, we observe that Algorithm 2 visits each edge at
most once, therefore its running time is linear in the number
of edges.

C. Constructing the redundant trees

In the final phase, we construct a pair of redundant trees
from the ADAG produced by Algorithm 2.

Theorem 2: Perform a Breadth First Search (BFS) traversal
from node r on the ADAG D, yielding a directed tree R.
Perform a second BFS traversal from r, but now taking the
edges of D in reverse direction, yielding another tree B. Now,
R and B are a pair of redundant trees, rooted at r.

Proof: Create a new graph D′ from D, by splitting node
r into two nodes, r+ and r−, in such a way that edges only

5

enter r+ and only leave r−. We define a partial order on the
nodes of graph D′: let a ≺ b if there is a directed path from
node a to node b in D′. Note that (≺) is well-defined, because
D′ is a DAG due to Lemma 3. Since there is a maximum and a
minimum element (r+ and r−), the nodes of D′ with the order
(≺) make up a bounded partially ordered set (poset). Observe
that moving from n towards r in R equals traversing the nodes
in increasing direction. Conversely, moving towards r along
the other tree, B, means moving in decreasing direction. This
ensures that what we obtain by taking the paths n → r in
R and B, respectively, are two node-disjoint paths, which
concludes the proof of the Theorem.

Note that this final phase again can be performed in a linear
number of steps (both BFS traversals are linear in the number
of edges in D). Since each of the three phases turned out to
be linear, the overall complexity of our algorithm is linear too.

Getting back to our example, it is easy to construct the
redundant trees from the ADAG depicted in Fig. 3 using
Theorem 2. These redundant trees coincide with the ones given
in Fig. 1; the tree marked by solid lines in Fig. 1 coincides
with R, while the tree marked by dashed lines is exactly B.

D. Performance evaluation

In the foregoing discussions, we have shown that even
though the original algorithm by Zhang et al. works reasonably
well on practical networks, it might provide erroneous result
on certain pathological graphs, like the one depicted in Fig. 2.
However, our algorithm gives correct results even in such
pathological cases, and, what is more, it does that in strict
linear time. In this section, we complete these theoretical
results with practical insights: we compare the running times
of the original and the revised algorithm.

To obtain valid benchmark results, we needed a correct
implementation of both algorithms. Therefore, we imple-
mented the original algorithm over arbitrary precision rational
arithmetics to prevent the adverse exhaustion of the voltage
space we pointed out as its main problem in Theorem 1,
and we compared its raw execution time, as measured by the
valgrind(1) tool, with that of our revised algorithm.

For generic graphs, we did not notice significant difference
in the performance of the algorithms. However, benchmarks
on a series of increasingly sized pathological graphs indicate a
substantial performance penalty for the original algorithm (see
Fig 4). We observe that while our revised algorithm exhibits
strictly linear execution time, the original algorithm gradually
diverges from this trend. This is attributed to the fact that, as
the graph increases, the assigned voltage values decrease to
a level where the performance of arbitrary precision rational
arithmetics really begins to dominate execution time. Recall,
however, that without arbitrary precision arithmetics the orig-
inal algorithm might provide incorrect result.

IV. MAXIMALLY REDUNDANT TREES ON ARBITRARY
GRAPHS

So far, we have dealt with 2-node-connected graphs ex-
clusively. However, in practice the 2-connectedness of an

 0.1

 1

 10

 100

 1000

 100 1000 10000

E
xe

cu
tio

n
tim

e
[h

yp
ho

th
et

ic
al

 u
ni

t]

k

original
revised

Figure 4: Comparison of the execution times of the original
and the revised algorithm, on graphs of the type of Fig. 2 for
increasing number of components (k). Note the log-log scale.

(a) no common node (b) one common node

Figure 5: Relations of 2-node-connected components.

operational network can not always be guaranteed, which
violates a fundamental assumption that underlies redundant
tree algorithms available in the literature. In this section, we lift
this artificial limitation and we turn our attention to generalize
redundant trees to arbitrary graphs.

Naturally, if a graph is not 2-node-connected, it is impos-
sible to find a pair of redundant trees on it. Nevertheless, it
is still possible to find a pair of directed trees with maximum
redundancy: If there exists a pair of node-disjoint paths be-
tween any two nodes, our trees will include them. Otherwise,
the paths in the trees will include the minimum number of
common nodes and edges. We shall call trees possessing this
property as maximally redundant trees in the sequel.

A non-2-node-connected graph consists of two or more 2-
node-connected disjunct components (we allow for compo-
nents consisting of a single node). Any two components can be
connected in two ways: they either have no, or only one node
in common (two components having more than one common
node qualify as a single 2-node-connected component).

Our algorithm treats both cases correctly. First, we observe
that inside the 2-node-connected components, perfectly valid
redundant trees will be computed, with the root node set to
the node through which we entered the component. Thus, we
only need to see what happens between the components.

Consider the case of no common nodes between neigh-
boring components (see Fig. 5a). Now, Algorithm 1 sets the
lowpoint number of node b to the DFS number of node a, so
when Algorithm 2 reaches b, it finds an ear containing only
node b (in line 6) and adds both edge (a, b) and (b, a) to D.
Note that edge (b, a) will eventually appear both in tree R and
B, but this can not be avoided due to {a, b} being a bridge
edge. From this point on, our algorithm proceeds in component
B as if node b was the root node.

6

Figure 6: A sample graph and the computed ADAG, for root
node 1. The DFS traversal order is 1, 3, 4, 5, 6, 2. The DFS
number and the lowpoint number are given in parentheses for
each node.

For the second case, when the neighboring components
have one node in common (see Fig. 5b), the situation is quite
similar, with the only difference that it is now node c which
becomes the single point of failure (instead of edge {a, b}
as occurred in the previous case). This ensures that what we
eventually obtain by executing our algorithm on non-2-node-
connected graphs is a pair of maximally redundant trees.

Perhaps a simple example is in order. Consider the network
depicted on Fig. 6. One may observe that this network is not
2-node-connected any more; there are two 2-node-connected
components: one consisting of nodes 1, 2 and 3, and another
one of nodes 4, 5 and 6, with only one edge between them.

First, the DFS traversal is made and it reaches all the nodes
setting both the DFS and the lowpoint numbers. One may
observe that now node 4 gets its lowpoint number from node
3, since the DFS number of node 3 is the lowest, even if it is
the parent of node 4.

Second, Algorithm 2 is executed to find an ADAG. We start
from node 1, and since the node from where node 3 got its
lowpoint number is node 2, the first ear we found is 3 → 2, so
edges (1, 3), (3, 2) and (2, 1) are added to D. Now, stack S
contains “32”, so node 3 is the next one we pop. Node 3 has
one neighbor not ready yet, node 4, which got its lowpoint
number from node 3, so the next ear found is node 4 alone.
Edge (3, 4) and (4, 3) are added to D and stack S contains
“42”. From node 4 ear 5 → 6 can be found and edge (4, 5),
(5, 6) and (6, 4) are added to D. At this point all the nodes are
ready, so after popping the nodes in the stack the algorithm
terminates.

In the third, final phase, the maximally redundant trees are
computed through executing two BFS traversals on the ADAG
D. The trees found are depicted on Fig. 7. One may observe
that both of them contain edge (4, 3), the bridge between the
two 2-node-connected components. One may also observe that
any two paths heading to node 1 in the two trees are node
disjoint aside from node 3 and node 4, the two endpoints of
the bridge.

V. CONCLUSION

In this paper, we dealt with the problem of finding max-
imally redundant trees in linear time. These trees compactly
encode routings that are as fault-tolerant as possible, given

Figure 7: The maximally redundant trees found using the
ADAG depicted on Fig 6. The edges of tree R and B are
depicted with solid and dashed arrows.

the inherent redundancy of the underlying network. Such rout-
ings are applied for implementing protection and restoration
schemes in diverse areas of telecommunications.

A linear time algorithm for 2-node-connected graphs was
proposed by Zhang at al. in [4], which is now widely cited
in the literature. We proved that an implementation of this
algorithm fails at either correctness or linearity, and this
behavior arises even in graphs with only some few hundred
nodes. We presented a revised algorithm, which is on the one
hand provably linear and, on the other hand, generalizes the
notion of redundant trees from 2-node-connected networks to
arbitrary networks.

The revised algorithm was successfully applied in an IP Fast
ReRoute prototype deployed at BME-TMIT. For a report on
our operational experiences with this algorithm, the reader is
referred to [9] and [10].

REFERENCES

[1] A. Itai and M. Rodeh, “The multi-tree approach to reliability in
distributed networks,” Inf. Comput., pp. 43–59, 1988.

[2] J. Edmonds, “Edge-disjoint branchings,” Combinatorial Algorithms, pp.
91–96, 1973.

[3] M. Médard, R. G. Barry, and R. A. G. S. G. Finn, “Redundant trees
for preplanned recovery in arbitary vertex-redundant or edge-redundant
graphs.” pp. 641–652, Oct 1999.

[4] W. Zhang, G. Xue, J. Tang, and K. Thulasiraman, “Linear time con-
struction of redundant trees for recovery schemes enhancing QoP and
QoS,” INFOCOM 2005, pp. 2702–2710, March 2005.

[5] M. Médard, R. A. Barry, S. G. Finn, W. He, and S. S. Lumetta,
“Generalized loop-back recovery in optical mesh networks,” pp. 153–
164, Feb 2002.

[6] G. Xue, L. Chen, and K. Thulasiraman, “Delay reduction in redun-
dant trees for preplanned protection against single link/node failure
in 2-connected graphs,” Global Telecommunications Conference, 2002.
GLOBECOM ’02. IEEE, pp. 2691–2695, November 2002.

[7] T. Cicic, A. F. Hansen, and O. K. Apeland, “Redundant trees for fast
IP recovery,” in Broadnets, 2007, pp. 152–159.

[8] M. Shand and S. Bryant, “IP Fast Reroute framework,”
Internet Draft, available online: http://tools.ietf.org/html/
draft-ietf-rtgwg-ipfrr-framework-08, Feb. 2008.

[9] G. Enyedi, P. Szilágyi, G. Rétvári, and A. Császár, “IP Fast ReRoute:
Lightweight Not-Via without additional addresses,” accepted to IN-
FOCOM’09 Mini-Conference, available online: http://opti.tmit.bme.hu/
~enyedi/papers/, April 2009.

[10] P. Szilágyi and Z. Tóth, “Design, implementation and evaluation of
an IP Fast ReRoute prototype,” BME, Technical Report, to appear at
Scientific Student Conference’08, available online: http://opti.tmit.bme.
hu/~enyedi/papers/.

