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Abstract 

The paper proposes novel algorithms for Quality of Service (QoS) routing in IP 

networks. The new algorithms can handle incomplete information, when link 

measures (e.g. link delays, bandwidths ...etc.) are assumed to be random variables. 

Incomplete information can arise due to aggregated information in PNNI and OSPF 

routing protocols, which make link measures characterized by their corresponding 

p.d.f. It will be demonstrated that the task of QoS routing can be viewed as quadratic 

optimization. Therefore, neural based optimization algorithms implemented on an 

analog computer (CNN) can provide fast routing algorithms even in the case of 

incomplete information. As a result, real-time routing can be carried out to meet end-

to-end QoS (such as end-to-end delay) requirements. 
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1. Introduction 

One of the major endeavors in packet switched communication networking is to 

ensure QoS routing. This task boils down to select paths, which satisfy given end-to-

end delay or bandwidth requirements [1,2,4,13]. As a result, QoS routing is perceived 

as an optimization problem to search over different quality paths and choose one for 

which the end-to-end QoS demands are met. Unfortunately, this problem, in general, 

cannot be reduced to the well-known shortest path routing (tractable by the Bellman-
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Ford or Dijkstra algorithms in polynomial time [13]). Furthermore, if link QoS 

parameters (e.g. link delay or available bandwidth) are regarded as random variables 

then routing can become an NP hard problem [3]. In this case the aim is to select a 

path which guarantees the fulfillment end-to-end QoS criteria with maximum 

probability. We term this type of routing as a Maximum Likely Path Selection 

(MLPS) procedure. In this paper, MLPS will be reduced to a quadratic optimization, 

which can then be carried out by an analog computer called Cellular Neural Network 

(CNN). 

The assumption that link QoS parameters are random variables is made on the 

following premises: (i) information aggregation (i.e., in the case of distant network 

components delay information is aggregated into an average delay) as detailed in 

OSPF and PNNI protocols [1,8], or (ii) randomly fluctuating delays or available 

bandwidths (where the current values of these parameters depend on the momentary 

traffic scenario [2]). In both cases, routing must be performed with incomplete 

information, which means that the routing algorithm is designed to select a path, 

which can fulfill end-to-end QoS criteria with maximal probability. 

2. Routing with incomplete information 

To model the routing problem let us assume that the following quantities are given: 

• there is a graph G(V,E) representing the network topology; 

• each link (u,v)∈E has some QoS descriptors δ(u,v) (e.g. w(u,v) bandwidth or τ(u,v) 

delay) which are assumed to be independent random variables subject to a 

probability distribution function ( )xPxF vuvu <= ),(),( )( δ ; 

• there is an end-to-end QoS criterion (e.g. Avuvu ≥∈ ),(),(min δR  for some A in the 

case of bandwidth requirement or T
vu (u,v) <∑ ∈R),(

δ  in the case of end-to-end 

delay requirement), where R stands for a path connecting a predefined source 

node s  and a destination node f ; 

• the objective is to find an optimal path R~  which most likely fulfills the given QoS 

criterion, namely: 

( ) (1b)       max ~or           (1a)     minmax ~
),( ),(),(),(

TPAP
vu vuvuvu

<




 ≥ ∑ ∈∈ RRRR

:R:R δδ  
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One must note that in the first case δ  is said to be a "bottleneck" type of link 

measure, whereas in the second case δ  is said to be an additive type of link measure. 

The path R~ , introduced above, will be referred to as the Most Likely Path (MLP). It 

is well known that Shortest Path Routing (SPR) can be solved in polynomial 

complexity by the Dijkstra or Bellman-Ford algorithms. Therefore, mapping an MLP 

problem into an SPR is equivalent with proving that MLP can be solved in 

polynomial time. The following lemma establishes that a bottleneck measure MLP 

can easily be solved by using traditional SPR algorithms. 

Lemma 1: The solution of ( ) ( )( )AP vuvu ≥∈ ,,minmax 
~

δRR:R  is equivalent to solving a 

traditional shortest path problem with the metric assigned to the ( ) thvu  ,  link being 

( ) ( )( ) ( ){ }AFAPvu vuvu ),(, 1loglog, −−=≥δ−=µ . 

Proof: We seek the path ( ) ( )( )AP vuvu ≥∈ ,,minmax~
δRR:R , which is equivalent to :R~  

( )
( )
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∈
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R
R

vu
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( )
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∈
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vu

vuI
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,δ = 

( )( )
( )
∏

∈

≥
Rvu

vu AP
,

,δ , one can write ( )( )
( )
∑

∈

≥−
RR

:R
vu

vu AP
,

,logmin~
δ . Therefore assigning 

measure µ  as ( ) ( )( )AP vuvu ≥−= ,, log: δµ  MLP routing can indeed be solved by SPR. 

  

However, if the link descriptor is delay, then QoS routing yields an intractable 

problem, as stated by the following lemma.  

Lemma 2: (Guérin et al) The solution of ( )TP
vu vu <∑ ∈RR:R

),( ),(max ~
δ  (which will be 

referred to as Delay Problem (DP)) in general is NP hard. 

The proof is based on the fact that the problem of ( ) πδ ><∑ ∈
TP

vu vuR
:R

),( ),( ~  (where 

10 << π  is some given threshold) is also intractable. For further details regarding the 

proof, see [3].  

Therefore, our effort is focused on introducing special constraints under which the 

optimization problem (1b) lends itself to analytical tractability, still preserving the 

main attributes of the problem (i.e., yielding results which are still relevant to 

practical networking scenarios). 
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3. MLPS as a quadratic optimization problem 

In this section, we reduce MLPS to a quadratic optimization problem.  In order to 

obtain a formal model let us introduce the following quantities: 

 The link delay  (or other QoS parameters) associated with link ( )vu,  is 

assumed to be a discrete random variable taking its values from a finite set 

( ) { } T=∈ Mvu TT ,...,1,τ  with a discrete probability mass function ( ) ( ) Mvuvu pp ,,1,, ,....., .  

From this notation is clear that each link takes its delay value from the same set 

T , however, the probability mass function characterizing the random delay of link 

( )vu,  can vary from link to link. 

 These probability mass functions are summarized in the three-dimensional 

array ( )( ) 0log , ≥=−=→ njiijn TPRR τ . More precisely, ijnR  indicates the 

negative logarithm of the probability of taking a hop from node i  to node j  with 

delay nT . 

 The delay structure of the graph is summarized in the three-dimensional array: 

nijn TDD =→ , where the element ijnD  indicates that hopping from node i  to 

node j  introduces delay nT  in the path. 

 A path together with its delay is represented by a three-dimensional array 





=→
otherwise   0

delay  with  stageat   nodeat  arriving if    1 n
ijn

Tij
VV  

 A Start Point Indicator Array (SPIA) and an End Point Indicator Array (EPIA) 

defined as 



 ==

=
        otherwise    0    

 ,1 if    1 sji
Sijn     ( )



 =+=

=
          otherwise    0  

  ,1 if    1    fjki
E k

ijn  

SPIA expresses that the path must start at node s , whereas EPIA indicates that 

the path ends at node f  after k  steps. 

One must note that the three-dimensional arrays defined above have MN 2  number of 

elements. In the forthcoming discussion we only consider the task of solving the 

problem of k -hop routing (finding a path containing only k  links). This assumption 

is widely used to make the problem tractable.  
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3.1 Properties of a valid path  

From the definitions given above, one can summarize the properties of a valid path as 

follows: 

1. The two-dimensional projection ijnV  of a three-dimensional array V  for a 

fixed n  can have at most one element different from zero in each row (for any 

given n ). This element equals 1. 

2. The two-dimensional projection ijnV  of a three-dimensional array V  for a 

fixed n  can have at most one element different from zero in each column (for 

any given n ). This element equals to 1. 

3. The three-dimensional array V  must have only k +1 elements equal to 1 and 

the remaining elements should be zero. 

4. If the path should start from node s  then at least one element is 1 in the 

"depth-row" of V , namely snV1  for some n , Mn  ,...,1= . 

5. If the path should end at node f  after k  number hops (assuming k -hop 

routing), then at least one element is 1 in the "depth-row" of V , namely 

11 =+ fnkV  for some n , Mn  ,....,1= . 

3.2 QoS routing as a constrained quadratic optimization 
problem 

As could be seen in the last section, MLPS should take place over the space of three-

dimensional data arrays which fulfill Criteria 1,..,5, respectively. This space is 

denoted by V . Therefore, the objective is to select a path (or a corresponding V ), for 

which 
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 (2) 

where T  indicates the end-to-end delay requirement. One can easily see that the first 

term in the summation is related to the probability of a path as follows: 
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 (3) 

To minimize (3) means that the array V  is going to represent the most probable delay 

realization along the path R. 

The second term TVDV
i j l n m lmijlnijn −∑ ∑ ∑ ∑ ∑ +1  expresses the QoS constraint 

enforced over the whole path, namely the following condition must hold: 

ATVDV
vu Vnni j l n m lmijlnijn

uvn
≤= ∑∑ ∑ ∑ ∑ ∑ ∈ =+ R),( 1:1  if the realization of the random 

sequence of the link delays in the path are 
1:),( =

=
uvnVnnvu Tτ  R∈∀ )(u,v . Therefore, 

minimizing the first and the second term at the same time will yield a path, which 

fulfills the constraint in the best manner.  

Hopfield type of neural algorithms can solve quadratic optimization problems in a 

polynomial time over the space of binary data structures. Thus, to utilize Hopfield or 

CNN-based methods, one has to build in additional constraints in the goal function, 

which enforce the solution obtained over the full binary space to be a valid path. This 

can be done by defining the optimization function as follows [5]: 
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(4) 

The third and the fourth term in the summation enforce that the path starts from node 

s  and ends at node f . The fifth and sixth term impose the constraint of orthogonal 

rows and columns in the array V . Finally, the seventh term is responsible to ensure a 

k -hop routing allowing only 1+k  ones in the data array V . 

The three-dimensional data array V  can be converted into a binary vector by applying 

the following transformation: )5.0(2)1)1(( −=+−+− ijnnMjNi Vy . With this transformation 

QoS routing is reduced to a quadratic optimization over { } MN 2

1 ,1− . 
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3.3 Neural based routing algorithms 

Since the problem has been transformed into a binary quadratic optimization, it can be 

solved by a corresponding Hopfield type of neural network. The state transition rule is 

given by the following equation:  









−=+ ∑

=
l
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j
jljl bkyWky

2

1

)(sgn)1( , (5) 

where the weights Wlj and components bl can be calculated by a simple algorithm 

given as follows. We know that every given quadratic expression φ(y) can be written 

in the following general form: 02
1)( φφ +−= ybWyyy TT . 

One can substitute unit vectors in φ(y) as follows 
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Combining these equations we obtains 
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In this way, matrix W and vector b can easily be identified. 

It is also noteworthy that the optimization performance of the Hopfield net can greatly 

be improved by adding a noise to (5), yielding  









+−=+ ∑

=

)()(sgn)1(
2

1
kbkyWky l

MN

l
jljl ν , (7) 

where ν(k) is a random variable subject to logistic distribution ( ) 1)(1)( −−+= xkexp α
ν . 

It can be proven that the stationary distribution of the Markov chain generated by (7) 

yields the global maximum with maximal probability [7]. More precisely, 

ybWyyyy yy
TT

opt MNNMNN 2maxarg)(maxarg
}1,1{}1,1{

−== ⋅⋅⋅⋅ −∈−∈
π , 

where π(y) denotes the stationary distribution. 
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3.4 Solution by CNN 

Since the problem has been transformed into a binary quadratic optimization it can be 

solved by a corresponding CNN. As has been pointed out in [6], the optimization can 

be carried out by the following differential equation: 
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The values of the constants A, α and bijn are also given in [6]. 

If we implemented the method on Hopfield type neural network, its recursion would 

stabilize in ( )2
connnodes )( nnO  step, where nodesn  denotes the number of neurons (now 

being N2M) and connn  represents the number of neurons which are connected 

maximally to one neuron (in our case it is NM multiplied by a constant). From this 

( )47 MNO  complexity is obtained considering that we have to run the method for 

k=1,2,…,N−1. The result seems to be disappointing. However, taking into account 

that we can implement the method on an analog structure which is able to run in µs 

range, the high complexity is not an issue.    

It is also noteworthy that the optimization performance of the CNN can be greatly 

improved by adding a noise (Wiener process) to (8) (for further details see [6]). 

Unfortunately, the present CNN-technology does not allow to directly apply (8) in the 

case of larger than 6-7-node networks because of the relatively complex connection 

structure in which remote cells are also in connection. Even now investigations are 

conducted in order to apply the method on a 2D-CNN which has real template 

structure (only the neighboring cells are connected [9,10]). Currently 64x64-cell CNN 

is available which can allow us to implement routing in the case of usual network 

size. One must note that the proposed method is suitable for the case of small 

networks, because of the hierarchical routing [6].     
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4. Performance analysis 

In this section the performances of the newly developed QoS routing algorithms are 

analyzed by extensive simulation. In order to compare the algorithms we introduced a 

performance measure for the paths starting from node s  and ending at node f  

denoted by ( )TfsG ,,,η . This is defined as the ratio of the probability that the path 

found by a given algorithm satisfies the end-to-end delay requirement T  to that of the 

path found by an exhaustive search, given as follows: 

( )
( )TP

TP
TfsG

vu vu

vu vu

<

<
=

∑
∑

∈

∈

search exhaustiveby  found

algorithmgiven  aby  found

),( ),(

),( ),(
:),,,(

R

R

τ

τ
η . (9) 

However, one can calculate the average ( )TfsG ,,,η  for a whole graph (i.e., for each 

possible starting node s and for each possible ending node Vf ∈ , yielding the 

following performance function ( )( )TEVG ,,η : 

( ) ∑ ∑∈ ≠∈−
=

Vs sfVf
Tfs

VV
TG

,2 ),,(1:, ηη  . (10) 

Furthermore, one can calculate the average performance with respect to the end-to-

end QoS criterion (T ) given as follows 

∫=
max

0max

),(1)(
T

dTTG
T

G ηη .   (11) 

and the average performance over a set of randomly generated graphs (G ) 

∑
∈

=
GG G

TGT ),(1)( ηη .   (12) 

In the case of a given graph this measure only depends on the value of the actual end- 

to-end QoS requirement. The closer this function approximates the value 1, the better 

the performance of the corresponding routing algorithm is. 

The test graph on which the algorithms have been tested was fully connected 

containing 7 nodes and its topology is similar to a typical Local Exchange Network. 

Equidistant link scaling was used along the delay axis. The link delays were chosen as 

Bernoulli random variables the expected value of which fell into the middle of the 

interval in which the link delay is assumed to be contained. 
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Figure 1. The performance of HNN methods changing the end points in the test graph 

Figure 1 shows the performance of deterministic and noisy HNN routing algorithm on 

the test graph. On the horizontal axis the different source node - destination node pairs 

are indicated, whereas the values on the vertical axis correspond to the efficiency 

defined by (9). The corresponding bar chart indicates the related average performance 

defined by (10).  

 
Figure 2. The performance of HNN methods changing the QoS requirement 

Figure 2 exhibits how the efficiency depends on the QoS parameter (the overall delay 

T). On the horizontal axis the value of the QoS parameter indicated, whereas the 

values on the vertical axis correspond to the efficiency defined by (10). The 

corresponding bar chart indicates the related average performance defined by (11). 

 
Figure 3. The performance of HNN methods generating graphs randomly 

Figure 3 shows the performance of the deterministic and noisy Hopfield QoS routing 

algorithm. The figure also shows the performance of two other types of methods: 

“General Normal Algorithm” (using Gaussian approximation to reduce the original 

problem to SPR) and “Simple Chernoff Algorithm” (using large deviation approach to 
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reduce the original problem to SPR). For further details regarding the algorithms, see 

[4]. The SPR is solved by Bellman-Ford algorithm in these two cases. The 

performance measure is taken over the ensemble of 50 randomly generated 7-node 

graphs. Each of them was generated with probability 0.8 to have connection between 

each node pair. While generating networks the non-separability was ensured. Table 1 

shows the distributions of link values and QoS requirements [11], which were used to 

obtain the results shown in Figure 3.  
Parameter Value 

T  Uniform distribution in ]160 ,30[ msms . 

),( vuδ  Uniform distribution in ]05 ,0[ msms . 

Table 1. Simulation parameters 

On the horizontal axis the networks are indicated, whereas the values on the vertical 

axis correspond to the efficiency defined by (10). The bar chart indicates the related 

average performance defined by (12). It is again verified by the figure, that the routing 

performance of the noisy HNN is rather high, it never goes below 0.9, even over a 

large ensemble of network topologies. 

5. Conclusion 

A novel CNN-based routing algorithm was introduced in the paper, which is able to 

meet end-to-end QoS requirements even in the case of incomplete information. Since 

routing was transformed into a binary quadratic optimization, CNN based solution 

became available, which yielded fast and a high performance routing. The quadratic 

cost function (4) easily can be modified to enable searching for paths with multiple 

cost functions. Unfortunately, the main advantages of recently developed algorithms 

[11,12,14]: working in distributed manner, searching for multiple paths are not be 

included in this CNN based solution. Moreover, the obtainable gain considering its 

running time (originated from analog operations) is restricted by the network size. 

Assuming large network topologies other types of approximations using digital 

computing techniques can have shorter running time.  
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