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Practical OSPF Traffic Engineering
Gábor Rétvári, Member, IEEE, and Tibor Cinkler, Member, IEEE

Abstract—Open Shortest Path First (OSPF) traffic engineering
(TE) is intended to bring long-awaited traffic management capabil-
ities into IP networks, which still rely on today’s prevailing routing
protocols: OSPF or IS-IS. In OSPF, traffic is forwarded along, and
split equally between, equal cost shortest paths. In this letter, we
formulate the basic requirements placed on a practical TE archi-
tecture built on top of OSPF and present a theoretical framework
meeting these requirements of practicality. The main contribution
of our work comes from the recognition that coupled with an in-
stance of the maximum throughput problem there exists a related
inverse shortest-path problem yielding optimal OSPF link weights.

Index Terms—Open Shortest Path First (OSPF), traffic engi-
neering, linear optimization.

I. INTRODUCTION

MOST of today’s traffic engineering (TE) [1] proposals
require the deployment of expensive routing and traffic

forwarding hardware and software. On the other hand, ISPs
have huge installation base of routers running best-effort routing
protocols, like Open Shortest Path First (OSPF) [2]). OSPF
provides shortest-path-first routing, simple load balancing by
Equal-Cost-MultiPath (ECMP: traffic is split roughly evenly
amongst equal cost paths) and means to manipulate routing
through setting the administrative link weights.

Hence, it is an easy-to-deploy and overly cost-effective so-
lution to implement traffic engineering on top of OSPF, while
retaining existing routing equipment. In such an architecture,
a suitable Traffic Engineer: 1) participates in OSPF signaling
to learn routing information; 2) assigns paths for each session;
3) computes link weights as to assure that link weights reflect
the assignment of paths (i.e., all paths, which are assigned for a
particular session are shortest paths for the session); and 4) dis-
tributes the chosen link weights back to OSPF routers.

II. MOTIVATIONS

The research work presented in this letter is primarily mo-
tivated by practical requirements, such as low management
burden and low cost of deployment. Given that ECMP itself
restricts the optimality of OSPF routing, we rather consider bal-
anced traffic distribution and maximum achievable throughput
as the overall objective of traffic engineering.

We assume that the efforts of TE are concentrated on a set
of designated sessions, of which respective ingress and egress
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points are known in advance. However, we do not presume
any knowledge on the actual demands (which would be hard
to measure, predict, etc.,) other than a simple order of priority
(“session A transmits more traffic than session B and both
generate more than session C”). At the moment the scope of
routing information retrievable from OSPF link state informa-
tion is limited to the actual topology of the network (recent
standards activity is focused on this shortcoming, [3]). There-
fore, OSPF TE must work with or without explicit knowledge
on the capacity of network links. Additionally, a practical TE
algorithm must—under all circumstances—provide reasonable
link weights. Any unintended interference of the shortest paths
of different sessions (ties) must be avoided. OSPF-compliant
weights are integer valued and fall into the range .
The link weight computation algorithm must run rapidly to
assure quick adaptation to topology changes or management
controls. Naturally, it also must yield efficient routes.

III. RELATED WORKS

References [4] and [5] show that OSPF traffic engineering
is, in general, NP hard, and propose a local search heuristic
algorithm achieving close to optimal performance. However, the
algorithm builds on the knowledge of the demand matrix and is
claimed to be rather slow [6]. Reference [7] shows that numerous
network flow problems can be transformed into shortest path
problems. Reference [8] exploits this relationship to introduce
a viable relaxation of the original NP hard problem, and shows
that any path sets that can be of relevance to traffic engineering
can be represented as shortest paths by some positive valued
weight set. Reference [9] extends this result and proposes a
method that is called to overcome the limitations of ECMP yet
posing even more burden on network management. Neither [8]
nor [9] recognizes that the shortest-path representation is not
unambiguous, therefore some mechanisms to avoid ties must
be in place. Tie breaking (though, in a different interpretation)
is introduced in [10].

Neither of the proposals exhibited so far meets all those re-
quirements of practicality elaborated in the previous section.
Therefore, in the rest of this paper we present a novel theoretical
framework suitable for serving as the foundation of an inexpen-
sive, easy-to-deploy OSPF TE architecture.

IV. PRACTICAL OSPF TRAFFIC ENGINEERING

Consider the following integer linear program (ILP), the
so-called Dual Minimum Cost Maximum Throughput Problem
(D MAX TH). Given a connected directed graph ,
a set of edge capacities , a set of edge
costs and a set of source-destina-
tion pairs (commodities or sessions)
ordered lexicographically by their respective priorities
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. The task is to compute
flows over arcs for any session , such that the
weighted sum of throughput over the set of sessions is
maximized

(1)

if
if
otherwise

(2)

(3)

(4)

The objective function (1) maximizes the throughput over the
sessions weighted by their respective priority (see later) while
minimizing the overall cost of the solution. Constraint (2) guar-
antees flow conservation, (3) assures that the sum of arc-flows
does not violate link capacities and, finally, (4) ensures that
arc-flows are nonnegative.

Now, consider the dual of the above problem, the so
called Primal Minimum Cost Maximum Throughput Problem
(P MAX TH). Let define the node potential
for each session, let be the modified weight of a link

. Hence, the arc-flow formulation of P MAX TH is

(5)

(6)

(7)

(8)

P MAX TH is designated as the primal to follow the conven-
tions of minimization and maximization.

Property 1: There always exists an optimal feasible solution
for P MAX TH and D MAX TH, respectively. Furthermore, if

and are integer valued and finite, then there exists some
finite integer valued weight set (not necessarily optimal).

Let define the path set given by an optimal solu-
tion of D MAX TH. A path is defined as the concate-
nation of links such that .

Lemma 1: Any path in the path set defined by an op-
timal solution of D MAX TH is loop-free.

Proof: Recall that D MAX TH minimizes the overall cost
(over a nonzero cost-set ) of the optimal solution. Also re-
call that for any loopy path, there always exists a loop-free path
which is cheaper and has the same capacity.

Property 2: The constraint system of P MAX TH and
D MAX TH possesses block diagonal (angular) structure.

Hence, the decomposition techniques developed for the mul-
ticommodity flow problem (column-generation, Dantzig-Wolfe
decomposition, etc., see [11]) can also be applied to the LP
relaxation of P MAX TH and D MAX TH facilitating rapid
solution of even enormously large problem instances.

The following lemma establishes the relation between an in-
stance of the maximum throughput problem and a strongly cou-
pled instance of the inverse shortest-path problem.

Lemma 2: Consider the weight set defined by an optimal
solution of P MAX TH and the path set defined by any op-
timal solution of D MAX TH. Then, any path is a
shortest path over the weight set .

The emphasis is on any: an optimal weight set represents
any path sets as shortest paths, given that is optimal to the
dual problem. Since the problems possess block-diagonal struc-
ture, one can use the same technique as [7], [11], [8] to prove
the Lemma. Note that the weight set yields only a rough ap-
proximation of optimal OSPF TE since the equal-splitting re-
quirement is relaxed. Also note that even if link capacities are
not precisely known it is possible to compute a reasonable path
set by solving the unit-capacity relaxation of D MAX TH.

To provide further insight, transform the problems into
path-flow formulation [7]. As of the path-flow formulation of
D MAX TH, let be the flow on path . Then, the
throughput of session is defined as and the
cost of any path is defined as . Hence, the
path-flow formulation of D MAX TH is

(9)

(10)

(11)

and the path-flow formulation of P MAX TH

(12)

(13)

(14)

Setting accordingly ensures that: 1) maximization of
throughput predominates over the minimization of cost in
the objective function (1) and 2) a session with high priority
takes preference over lower priority sessions. This facilitates
for provisioning routing for traffic demands that are only
relatively known. In order to simplify the notion, suppose
that there are no two sessions that have the same priority.
Let be the maximum link capacity and

denote the number of arcs in . Hence, according to
(1) the following conditions must hold for :

This gives rise to the following adjustment of :

(15)

Next, we show that in general the length of the shortest path(s)
of a session equals to . Thus, we shall refer to as the pre-
ferred distance of session .

Lemma 3: Consider the throughput defined by
any optimal solution of D MAX TH. Furthermore, consider the
weight set defined by any optimal solution of P MAX TH.
If for any session the throughput is nonzero, then the length
of the shortest path(s) for is the preferred distance .

Proof: From (13) we know that no path can be shorter
than the preferred distance. Furthermore,
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, and, by complementary slackness we have that
.

Lemma 4: Any link weight in an optimal solution of
P MAX TH is upper-bounded by .

Proof: Consider an optimal solution of P MAX TH,
such that . In such case, there always exists
a feasible solution , which still satisfies (13),
though, improves the objective function (12). Therefore, is
not optimal, which is a contradiction.

It must be emphasized that the abstraction between the
path set defined by D MAX TH and the weight set given by
P MAX TH is not unambiguous. From Lemma 2 we know that
any path in the optimal path set is represented as a shortest
path by . However, the converse is not necessarily true. A
path (i.e., ) may very well be shortest path
over , i.e., . Hence, there
is a chance that an unintended shortest path of a low priority
session interferes with a path of a higher priority session. Such
ties may lead to congestion. Tie breaking assures that certain
critical links are circumvented when routing low priority traffic:

Lemma 5 [Tie Breaking]: For any link contained in the
optimal path set of session .

Proof: From (14) and Lemma 3 we know that for any link
of an optimal path :

.
Thus, setting assures that any optimal path of

session circumvents . Links belonging the minimum
cut(s) of high priority sessions are good candidates for tie
breaking. Nevertheless, the exact method to select links subject
to tie breaking is beyond the scope of this paper.

Finally, we present some simulation results to compare the
performance of various OSPF TE techniques. In the case of tra-
ditional connectionless IP routing (where OSPF is extensively
used) we found it very difficult to define a single measure of
routing performance, which suitably captures the behavior of
routing in itself. Rather, we used OSPF in conjunction with a
connection-oriented infrastructure (e.g., MPLS) to dynamically
route a pre-declared amount of offered traffic in the network
and observed the resultant average call blocking ratio (ACBR).
The ACBR is easy to measure and it has descriptive real-world
interpretation. The results are averaged over a set of 40 random
graphs each consisting of 15 nodes, 45 equal-capacity bidi-
rectional links, and 4 sessions. Independent Poisson-processes
were used to generate random-sized calls for the four sessions,
one of which offers three times more traffic than the others.
Table I summarizes the results for minimum hopcount routing
[4], various forms of OSPF TE, which use the precise demand
matrix: optimal routing (OPT1 [8]), optimal routing with piece-
wise linear cost function (OPT2 [4]), minimum link utilization
routing (MINUTIL [8]), plus our proposed methods: MAX TH
(solving P MAX TH using identical preferred distance for each
session), MAX TH2 (setting preferred distances according to
(15) to prioritize the high volume session) and MAX TH3 (also
with tie breaking over the minimum cut set). The table shows
the ACBR of the high volume session (ACBR1), ACBR of
all sessions (ACBR2), throughput relative to minhop routing
(TH), the number of ECMP routes for the high volume session,
the mean path length (MPL) and the average time taken by the
optimization.

TABLE I
SIMULATION RESULTS FOR VARIOUS OSPF TE TECHNIQUES

Our most important conclusion is that, given the inherent
uncertainty of ECMP load balancing, it is not worth pre-
cisely provisioning OSPF routing w.r.t. a given demand ma-
trix. Instead, our priority-driven relative dimensioning scheme
performs reasonably better. Furthermore, properly setting the
preferred distances and using tie breaking may be highly bene-
ficial. However, OSPF TE comes with its own drawbacks—the
price one has to pay for higher throughput is the increased
average delay caused by the significant growth in the average
path length.

V. CONCLUSION

We have shown that OSPF link weights produced by the
Primal Minimum Cost Maximum Throughput Problem supply
a plausible basis to build a practical OSPF TE architecture
onto. Such optimal link weights are guaranteed to exist, integer
valued, upper-bounded, and produce a route set that maximizes
the throughput of the network. For reasonable sized networks
the corresponding ILP can be solved rapidly. Additionally,
we introduced the notion of preferred distance to prioritize
high-volume sessions and we proposed a scheme for tie
breaking to avoid ambiguity in the shortest path representation.
We believe that the framework presented in this letter is the first
one that exhibits all the indispensable properties to make OSPF
TE a good choice for “poor man’s traffic engineering.”
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