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Routing tables in the Internet grow rapidly

• There are many operational reasons behind this

• Are there any deep theoretical reasons as well?

• What can we do about it?
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Compact routing and the Internet

• The theory dealing with fundamental routing scalability is
called compact routing

• All our scalability results are for shortest paths

• But Internet routing does not use shortest-paths

• Instead, it is business interests, political pursuits and other
operational concerns that shape Internet paths
◦ business relations and SLA-s (BGP)
◦ reliability and resilience (constraint-based routing)
◦ available bandwidth (QoS routing, traffic engineering)

• Commonly called policy routing
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This talk

• How do different policy routing architectures scale?
◦ define a generic model for policy routing
◦ characterize the memory requirements for implementing

the models
◦ discover the memory size–stretch trade-off
◦ obtain tight bounds for policies important in practice
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Routing algebras

• Abstract away weight composition (⊕) and weight
comparison (�)

• A routing algebra A = (W,φ,⊕,�) is a totally ordered
commutative semigroup (Sobrinho, Griffin)

• Given a path p = (v1, v2, . . . , vk), the weight w(p) of p is

w(p) =
⊕k−1

i=1
w(vi, vi+1)

• A preferred s− t path p∗ over A is the one with the
smallest weight: p∗ : w(p∗) � w(p), ∀p ∈ Pst

• Examples

◦ shortest-path routing: S = (R+,∞,+,≤)

◦ widest-path routing: W = (R+, 0,min,≥)

◦ most-reliable-path routing: R = ((0, 1], 0, ∗,≥)

◦ various sorts of BGP policies
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Composing algebras

• Given two routing algebras A and B

A = (WA, φA,⊕A,�A) and B = (WB, φB,⊕B,�B) ,

their lexicographic product A× B = (W,φ,⊕,�):

W = WA ×WB

(w1, v1)⊕ (w2, v2) = (w1 ⊕A w2, v1 ⊕B v2)

(w1, v1) � (w2, v2) =

{
v1 �B v2 if w1 =A w2

w1 �A w2 otherwise

• Examples
◦ widest-shortest path: WS = S ×W

◦ shortest-widest path: SW = W ×S
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Some useful algebraic properties

• A routing algebra A is regular, if it is both

◦ monotone (M): w1 � w2 ⊕ w1 for all w1, w2 ∈ W , and

a
b

c
� a

b

c
d

◦ isotone (I): w1 � w2 ⇒ w3 ⊕ w1 � w3 ⊕ w2 for all
w1, w2, w3 ∈ W

a bp1

p2

w(p1) � w(p2)

⇒

w(p1)⊕ w(p) � w(p2)⊕ w(p)

a b c
p1

p2

p

• Strict versions exist with ≺ instead of �
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Routing process model

• The local memory requirement for implementing A is

MA = max
G∈Gn

min
R∈R

max
u∈V

MA(R, u) ,

where MA(R, u) is the number of bits needed to encode the
local routing function Ru at some node u

• A is incompressible if there is at least one graph in which
at least one node needs linear information for routing
according to A, i.e., MA is Ω(n)

• Compressible otherwise
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Propositions

• Proposition: a routing policy A can be implemented by a
destination-based routing function on any graph, if and only
if it is regular (Sobrinho)

• Gives a trivial upper bound for regular algebras: if A is
regular then MA is O(n log d)

• Question is, whether this trivial bound is tight

• Proposition: S = (R+,∞,+,≤) is incompressible
(Fraigniaud, Gavoille, Pérennès)

• First, we ask whether similar characterization exists for
other algebras
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Local memory requirements

• Policies with „maximum-type” weight composition scale well

• Def.: A is selective, if w1 ⊕ w2 ∈ {w1, w2} for each
w1, w2 ∈ W

• Theorem: if A is selective and monotone, then it is
compressible

• Under the above conditions, a spanning tree exists in which
the only path between any s and t is a preferred s− t path

• On the other hand, „shortest-path-like” policies do not scale

• Theorem: if A is strictly monotone, then it is incompressible

• In fact, it is enough if A contains a subalgebra isomorphic to
shortest path routing
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Local memory requirements

Algebra Definition Prop. MA

Shortest path S = (R+,∞,+,≤) SM, I Θ(n)

Widest path W = (R+, 0,min,≥) S, I, M Θ(log n)

Most reliable path R = ((0, 1], 0, ∗,≥) SM, I Θ(n)

Usable path U = ({1}, 0, ∗,≥) S, I, M Θ(log n)

Widest-shortest path WS = S ×W SM, I Θ(n)

Shortest-widest path SW = W ×S SM, ¬I Ω(n)

BGP valley-free B1 S Θ(log n)

BGP local pref. B2 ¬M , ¬I Θ(n)

BGP AS path length B3 ¬M , ¬I Θ(n)

• Tight bounds for all regular algebras

• For SW , all we know is that MSW is Ω(n) and O(n2)

• BGP policy routing is incompressible, even for a very
minimalistic model
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Algebraic compact routing

• Many important policies turn out incompressible

• With shortest path routing, a standard trick to decrease
worst-case memory size is to allow routes to be somewhat
longer

• Path length increase is upper bounded by some constant
stretch

• Can we play out the same trick for policy routing?

• Def.: a routing scheme is of stretch k over algebra A, if for
any path pst selected by the scheme:

w(pst) � w(p∗

st)⊕ w(p∗

st)⊕ . . .⊕ w(p∗

st)
︸ ︷︷ ︸

k times

,

where p∗
st is some preferred s− t path in A
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Algebraic compact routing

• Regular algebras admit a compact implementation

• Theorem: if A is regular, then there is a stretch-3 compact
routing scheme for A

• Basically, we can generalize landmark-based compact
routing schemes to regular algebras

• Local memory is O(n2/3) (due to Cowen) or O(n1/2)
(Thorup and Zwick)
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Algebraic compact routing

• What can we say when regularity fails?

• Turns out, when isotonicity fails in a particular way no
compact implementation with constant stretch exists

• Theorem: if a monotone algebra A contains a set of p ≥ 2
weights {w1, w2, . . . , wp}:

∀i, j ∈ {1, . . . , p}, i 6= j : wi⊕wj ≻ w2k
i and wi⊕wj ≻ w2k

j

for some k ≥ 1, then there is no stretch-k routing scheme
with sublinear memory requirement

• Corollary: no constant stretch compact routing scheme
exists for shortest-widest path routing
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Conclusions

• Scaling limits for shortest path routing well researched

• But shortest path routing does not matter in the Internet

• The fundamental scalability of policy routing has so far not
been studied

• We took the first steps in this direction
◦ gave an algebraic compressibility characterization
◦ identified the algebraic requirements for effectively

trading between path preference and memory
◦ classified most practically relevant policies

• The main message is that with regularity, we are on the safe
side, but when regularity fails, we might not even hope for a
constant stretch compact routing algorithm

• Are there any theoretical reasons behind the recent
explosion of routing table sizes? Answer seems affirmative
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