Compact Policy Routing

Gabor Rétvari, Andras Gulyas, Zalan Heszberger, Marton Csernai, and Jézsef J. Bird
Department of Telecommunications and Media Informatics
Budapest University of Technology and Economics
1117 Budapest, Magyar tudésok kérutja 2. Hungary

{retvari,gulyas,heszberger,csernai,biro}@tmit.ome.hu

ABSTRACT

This paper takes a first step towards generalizing compact
routing to arbitrary routing policies that favor a broader set
of path attributes beyond path length. Using the formalism
of routing algebras we identify the algebraic requirements for
a routing policy to be realizable with sublinear size routing
tables and we show that a wealth of practical policies can
be classified by our results. By generalizing the notion of
stretch, we also discover the algebraic validity of compact
routing schemes considered so far and we show that there
are routing policies for which one cannot expect sublinear
scaling even if permitting arbitrary constant stretch.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design— Packet-switching networks Store
and forward networks; F.2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical Algorithms and Prob-
lems—Routing and layout; G.2.2 [Discrete Mathemat-
ics]: Graph Theory— Trees, Graph labeling

General Terms
Algorithms, Theory

Keywords

compact routing, policy routing, routing algebras

1. INTRODUCTION

Compact routing theory is the research field aimed at
identifying the fundamental scaling limits of shortest path
routing and constructing algorithms that meet these lim-
its [1-7]. Shortest path routing is a key ingredient in many
modern network architectures, as it generally ensures low
transmission delay while also minimizes the effort needed

G. Rétvari was supported by the Janos Bolyai Fellowship
of the Hungarian Academy of Sciences.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PODC’11, June 6-8, 2011, San Jose, California, USA.

Copyright 2011 ACM 978-1-4503-0719-2/11/06 ...$10.00.

to transmit one unit of information from the source to the
destination. To what extent shortest path routing can scale
to large networks, in terms of the memory requirements of
implementing the local forwarding functionality at network
nodes, has for a long time been researched. It turns out that
in general it is impossible to implement shortest path rout-
ing with routing tables whose size in all network topologies
grows slower than linear with the increase of the network
size [1,2]. To answer this challenge, compact routing re-
search seeks algorithms to decrease routing table sizes at
the price of letting packets to flow along suboptimal paths.
In this context, suboptimal means that the forwarding paths
are allowed to be longer than the shortest ones, but length
increase is bounded by a constant stretch factor. By now,
the research community has built a strong theoretical foun-
dation for compact shortest path routing, fully characteriz-
ing its pinnacles and pitfalls on a broad catalog of network
topologies including hypercubes, trees, scale-free networks,
and planar graphs [4,5,8-10], while having defined efficient
compact routing algorithms for the generic case as well [3,4].

In order to ensure an expedient flow of information through
the network, one often needs to provision routes taking into
consideration a broader set of attributes beyond mere path
length, such as path reliability and resilience constraints [11],
bandwidth and perceived congestion [12-14], business rela-
tions and service level agreements between ISPs [15,16], etc.
These path selection strategies are usually described under
the umbrella of policy routing. Practically speaking, a rout-
ing policy is a function that selects a preferred transmission
route from the set of all forwarding paths available between
two endpoints, according to predefined requirements. In-
deed, a significant portion of the Internet today runs over
policy routing [11,12,15,17,18]. Unfortunately, at the mo-
ment no theory is available to characterize the inherent scal-
ing properties of these policy routing architectures, leaving
a considerable gap in our understanding of their long term
sustainability.

In this paper, we take the first steps towards filling this
gap. We build on the recent work of Sobrinho and Grif-
fin [19-22], who lay the theoretical foundations for describ-
ing disparate routing policy structures in a single theoretical
framework using the notion of routing algebras, abstracting
away their syntactic and semantic diversity and letting us to
study them in a general, abstract sense. Using this frame-
work, we give an algebraic characterization of the scalabil-
ity of policy routing. As the main contribution of the pa-
per, we determine the algebraic requirements for a policy
to be implementable with sublinear routing tables and we

give a comprehensive characterization of many practically
important routing policies in networking. By generalizing
the notion of stretch, we also explore the algebraic condi-
tions under which the well-known shortest-path-based com-
pact routing schemes [3,4] generalize to policy routing and
we show that introducing stretch cannot always eventuate
sublinear scaling.

The rest of this paper is structured as follows. In Sec-
tion 2, we introduce the basic notations and models used
throughout the paper. Next, in Section 3 we characterize the
local memory requirements for implementing an important
subset of routing algebras, called regular algebras, and we
apply the results to real-world routing policies. In Section 4
we deal with an algebraic interpretation of stretch and we
generalize compact routing algorithms to regular algebras.
Then, in Section 5 we discuss some practical considerations
and finally Section 6 concludes the paper.

2. AN ALGEBRAIC MODEL FOR POLICY
ROUTING

Let the communications network be modeled by a finite,
connected, simple, undirected graph G(V, E), let |V]| = n
and let |[E| = m. Communication between nodes is carried
out by sending packets: neighboring nodes exchange packets
directly, while remote nodes communicate through interme-
diate hops. We assume that nodes v (edges e) are uniquely
identified by a natural number ID(v) (ID(e)). We often write
simply v (e) in place of ID(v) (ID(e)). Let deg(v) denote the
degree of v € V and let d = maxyev deg(v). An s—t walk is
a sequence of nodes p = (s = v1,v2,...,v, = t), where k is
the length of the walk and (vi,vit1) € E:Vi=1,...,k—1,
a cycle is a walk with s = t, and a path is a walk that visits
a node at most once.

2.1 Routing algebras

Generally speaking, a routing policy can be considered
as a function p;; = Pol(Ps:) that selects from the set of
available s —t paths Ps; a single preferred path p}; according
to some predefined rules. This definition is broad enough to
contain basically every conceivable policy, including extreme
cases like choosing a random path as well as traditional ones
like shortest path routing.

To be more specific, we choose the abstract notion of rout-
ing algebras from Sobrinho and Griffin to describe routing
policies within this paper [19-24]. This allows us to in-
fer generic properties instead of having to define particular
routing policies one by one and building piecemeal compact
routing frameworks. In addition, it has been shown that ba-
sically all practically important routing policies possess an
algebraic representation [21]. Thus, we shall use the terms
routing policy and routing algebra interchangeably in this
paper.

A routing algebra abstracts away the most important con-
cepts of shortest path routing, namely weight composition
(the method of constructing the weight of a path from the
weights of its constituent edges) and weight comparison (ex-
pressing the preference between edges or paths). In this pa-
per, a routing algebra A is defined as a totally ordered semi-
group with a compatible infinity element: A = (W, ¢, ®, <),
where W is the set of (abstract) weights that can be assigned
to edges, ¢ (¢ ¢ W) is a special infinity weight meaning that

an edge/path is not traversable, @ is a composition operator
for weights, and =< is weight comparison.
More formally, the following properties are presumed:

e (W,®) is a commutative semigroup

— Closure: w1 ® w2 € W for all wi,w2 € W

— Associativity: (w1 B w2) B ws = w1 B (w2 & ws)
for all wy,ws,ws € W

— Commutativity: w1Pws = waPw; for all wi, ws €

w

e < is a total order on W

Reflexivity: w < w for any w € W

Anti-symmetry: if w1 < w2 and we < wi, then
we = ws for any wi, w2 € W

Transitivity: if w; < w2 and w2 < w3, then w; <
ws for any w1, ws, w3 € W

— Totality: for all wi, w2 € W either w1 < w2 or
w2 = Wi

e ¢ is compatible with (W, ®) according to <

— Absorptivity: w @ ¢ = ¢ for all w € W
— Maximality: w < ¢ for all w € W

Given a path p = (v1,v2,...,v5) we obtain the weight
w(p) of p by combining the weight of its constituent edges:
w(p) = @;:11 w(vs,viy1). Then a preferred path in the
algebra A between two nodes is simply one with the smallest
weight according to =<:

Pol(Pst) =p" : w(p™) 2 w(p),Vp € Pt .

Now, one easily checks that shortest path routing corre-
sponds to the algebra (R™, 0o, +, <), while widest-path rout-
ing, where preferred paths are those with the largest bottle-
neck capacity, is simply (R™,0, min,>). See further exam-
ples later in Section 3.1 and Section 5.

A special family of routing algebras, called regular routing
algebras, will play an essential role in this paper.

DEFINITION 1. A routing algebra A is said to be regular,
if it satisfies the following properties':

e Monotonicity (M): w1 = we ® w1 for all wi, w2 € W

o Isotonicity (I): w1 < w2 = w3 ® w1 X ws ®ws for all
w1, w2, w3 € W

Monotonicity (M) means that prepending an edge (or
path) of weight wi with another edge (or path) of ws can
only make it less preferred: w2 @& w1 >~ wi. By commutativ-
ity, the same applies to appending edges/paths: w1 ® wa =
wi1. Isotonicity (I), on the other hand, requires < to be com-
patible with the semigroup (W, @) in the following sense: if
an edge/path is preferred over some other one, then prepend-
ing or suffixing both with a common edge or path maintains
this relation.

Below are some further algebraic properties we shall often
use to characterize routing policies [22].

'In this paper, we use the definitions of Sobrinho [19] with
the understanding that other authors may adopt different
terminology. For instance, what will be called isotonic-
ity here is called monotonicity in conventional order the-
ory. The reason is that this terminology seems to be widely
adopted in the literature.

e Delimited (D): w1 @ w2 # ¢ for all Vw1, w2 € W

Strictly monotone (SM): w1 < w2 @wy for all wi, w2 €

w.

e Selective (S): w1 w2 € {w1,ws} for each wi, w2 € W.

Cancellative (N): w1 @ we = w1 ® ws = w2 = w3 for
each w1, wa,ws € W.

e Condensed (C): w1 Pwe = wi1Dws for each w1, w2, ws €
Ww.

From the above, perhaps only delimitedness deserves more
explanation. This property ensures that edges can be com-
bined in an arbitrary sequence without the danger of ob-
taining an untraversable path. Intra-domain routing poli-
cies, like shortest path routing or widest path routing, are
usually delimited, while inter-domain BGP routing policies
are not.

2.2 Composite algebras

An attractive feature of routing algebras is that surpris-
ingly complex and expressive policy constructions can be
built using only an elemental set of primitive algebras by
applying simple algebra composition and decomposition op-
erators appropriately [21]. Two of these operators have par-
ticular importance in this paper, namely the lexicographic
product operator [22] and subalgebras.

Given two routing algebras A = (W4, ¢4, Da, 24) and
B = (Ws, ¢8, BB, <B), the lexicographic product of A and B
is a routing algebra A x B = (W, ¢, ®, <) where

o W=WaxWg, ¢p=_(da,d5)

o (wi,v1)®(w2,v2) = (Wi1BAwz, v1®p2) for all wy, ws €
W4 and v1,v2 € Wg
vi vz if wy =4 we
o (wi,v1) X (w2, v2) = .
w1 <4 w2 otherwise
Note that ¢ is well-defined if A and B are delimited. In
other cases, defining ¢ needs more attention.

PrOPOSITION 1. The lexicographic product operator trans-
forms the properties of the constituent algebras according to
the following rules [22]:

o M(A x B) < SM(A) V (M(A) A M(B))
o I(A x B) < I(A) AL(B) A (N(A) V C(B))
o SM(A x B) < SM(A) v (M(A) A SM(B))

The second algebra composition operator we consider in
this paper is subalgebras. Given a routing algebra A =
(W, ¢,®, =) and a weight set W’ C W, the restriction of A
to W' (W', ¢,®, <) is a subalgebra of A if and only if W’
is closed for @. Subalgeras inherit the properties of the root
algebra, but new ones may also emerge. For instance, the
subalgebra (R, 0o, +, <) of the weakly monotone algebra
(RT U {0}, o0, +, <) is also strictly monotone.

2.3 Routing model

In order to describe the complex process of policy routing
and forwarding, we generalize the model of routing functions
from [1,2]. In this model, a packet contains a payload plus
a header? with routing related information. Now, given a
routing policy A and a graph G, a policy routing function is
a mapping R : NXN +— N x N together with a labeling of the
nodes Ly : V — N and a labeling of the edges Lg : F — N
with the following property: for every node pair s,t, the
successive application of R

(hi+17li+1) = R(vi7hi)7 Vi = 17 .. .7]6 —1

yields a preferred path p5; = (s = v1,...,0:,...,05 = t) ac-
cording to A and corresponding edge labels l;11 = (vi, vi+1),
where h; is some appropriate initial header. We shall say
that R implements A on G for indicating that R produces
preferred paths according to A on G.

Similarly to [1,2], we assume that node labels (or ad-
dresses) can be encoded on clogn bits® for some ¢ con-
stant. We further assume that for each node v; € V the
edges emanating from v; are labeled locally: Lg(vi,v;) €
{1,...,deg(v;)}. Additionally, the edge label l;11 is under-
stood as coming from the local label space Lg(v;) of v;.
These limitations are to ensure that no extra routing infor-
mation can be encoded into the labels besides pure identi-
fication. No such limitation exists, however, on the header
size.

Now, routing according to the policy routing function R
occurs as follows. Upon receiving a packet with header h, a
node u simply evaluates its local routing function R.(h) =
R(u, h) to obtain a new header i’ and an outgoing port at
edge I. Then, u sets the packet’s header to A’ and forwards
it on [. In general, this routing model is suitable to represent
oblivious routing architectures, i.e., ones in which the route
of a packet depends only on the contents of the packet it-
self and some static forwarding information. Yet, it is broad
enough to capture basically any practically relevant forward-
ing scheme, like traditional destination-based and source-
destination-based forwarding, label swapping, etc. For fur-
ther details, consult [1,2].

Introducing routing functions makes it comfortable to char-
acterize the local memory needed at network nodes to im-
plement a routing policy.

DEFINITION 2. The local memory requirement M a of im-
plementing the routing policy A is defined as:
Ma = gugs i vep Ma(Rw)
where Ma(R,u) is the minimum number of bits needed to
encode the local routing function R, R is the set of all policy
routing functions implementing A on some graph G, and G,
is the set of all graphs of size n.

A routing policy is said to be incompressible, if M4 is
Q(n). Otherwise A is compressible. Easily, an incompress-
ible routing policy does not scale well, as the memory needed
to store the local routing process of some node increases with
the number of nodes in at least one graph. On the other
hand, compressible routing policies scale well.

2Without loss of generality, headers can be represented by
natural numbers.

3Logarithms are of base 2.

2.4 Algebraic compact routing

At this point, we have all the definitions in place to focus
on our main concern what we call algebraic compact rout-
ing: given a routing algebra describing a particular routing
policy, (i) identify the theoretical bounds on the memory
requirements needed to implement that algebra and (1) ex-
amine the local storage vs. path optimality trade-off, that
is, design compact routing schemes that implement the alge-
bra with sublinear local storage at the price of letting traffic
to flow along non-preferred paths, whose suboptimality is
upper bounded by some suitably defined stretch.

From the standpoint of routing, regular algebras manifest
the “well-behaved cases” [19,20,23]. Monotonicity and iso-
tonicity on the one hand guarantee that the preferred paths
themselves can be obtained in polynomial time using a gen-
eralization of Dijkstra’s algorithm. On the other hand, in
a regular algebra preferred paths emanating from a node
always make up a tree, allowing for a single routing entry
to be maintained with respect to each node and forwarding
packets based on the destination address only. This allows
us to store local routing information on at most O(n) bits
local memory. We formulate these ideas as follows.

For some graph G and algebra A, define a destination-
based routing function R for implementing A on G as follows.
Let the packet header consist of the identifier of the packet’s
destination and let node u forward a packet destined to some
v on the first edge I, along the preferred path p;.,: Ru.(v) =
(v,1y). Sobrinho makes the following observation [20]:

PROPOSITION 2. A can be implemented by a destination-
based routing function on any graph, if and only if A is
regular.

One easily sees that R basically corresponds to destination-
oriented routing tables, storing a single entry for each des-
tination node. This leads to the following observation.

OBSERVATION 1. If A is regular, then it can be imple-
mented using O(nlogd) bits local information.

A key question in compact routing research is whether
this trivial routing function is optimal in the sense that it
requires the minimum possible local memory to encode pre-
ferred paths, or there are better algorithms using less local
space. For shortest path routing in particular, Fraigniaud
and Gavoille present the following negative result [1,2].

PROPOSITION 3. The shortest path routing algebra A =
(R, 00, 4+, <) is incompressible.

For shortest path routing at least, routing tables are opti-
mal. For other routing policies, no such results exist. There-
fore, in the next section we give an algebraic characterization
of the memory requirements of policy routing.

3. LOCAL MEMORY REQUIREMENTS OF
POLICY ROUTING

In what follows, we discuss the algebraic requirements for
a routing policy to be implementable with sublinear local
storage and we also give negative results indicating incom-
pressibility of some practically important routing policies.

THEOREM 1. If A is selective and monotone, then it is
compressible.

w1 w2

(b) w1 Bwsz > we

Figure 1: Counter-examples for different violations of selec-
tivity.

In fact, we shall prove a bit more. We shall show that
if a routing policy is selective, then a “preferred” spanning
tree always exists, that is, for any s,t € V the only path
pst contained in the tree is a preferred path. We say that
algebra A maps to a tree, if for any connected graph and any
weighing of the edges one can always find such a “preferred”
spanning tree. Then, compressibility follows as routing over
a tree is possible with log n bits local memory.

LEMMA 1. A maps to a tree, if and only if A is selective
and monotone.

ProoFr. To prove sufficiency, we construct an optimal
spanning tree assuming that the algebra is selective and
monotone. Take the edges in order of non-decreasing weight
according to <, add an edge to the spanning tree T if no
cycle arises and terminate when T spans G. We show that
the only in-tree path p; between any two nodes s and ¢ is
a preferred path over A. To see this, take any other s — ¢
path pet in G. Obviously, there is at least one edge (u,v)
in ps¢ so that w(u,v) = w(i,j) for all (4,7) in p%. Then,
due to selectivity w(p%) € {w(i,5) : (4,5) in pL}, and by
monotonicity w(pl;) < w(u,v) < w(pst), therefore pL is a
preferred s — t path. This proves sufficiency.

Next, we prove that if .A maps to a tree then A is mono-
tone and selective. Easily, A is monotone, otherwise pre-
ferred paths might contain loops. Next, we show that if A
is non-selective, then in some graphs preferred paths do not
reside in a tree. Obviously, a monotone non-selective algebra
A either contains a weight w € W, so that w®w > w (auto-
selectivity), or A contains two weights w1, w2 € W, w1 < wo,
so that wi; @ w2 = wsz. For both of these cases, Fig. 1
gives counter-examples in which the preferred paths are al-
ways through the direct edges, and so preferred paths do not
make up a tree. Thus, for any non-selective algebra there
is a graph in which preferred paths are not in a tree, which
concludes the proof. [

A special case of this result for minimum- and maximum-
type of weight composition operators appeared in [25], and [24]
gives similar results for special routing algebras called dioids.

Theorem 1 suggests that routing policies characterized by
selective algebras can be implemented using tree routing
schemes, needing only logarithmic sized local storage [4,10].
In contrast to selective algebras however, many routing poli-
cies can only be implemented using at least Q(n) bits local
memory as the next result shows.

THEOREM 2. If A is strictly monotone, then it is incom-
pressible.

We shall prove a deeper, more general claim, of which the
above is a simple corollary.

LEMMA 2. If A contains a delimited, strictly monotone
subalgebra, then A is incompressible.

Table 1: Local memory requirements of various routing policies.

Algebra Definition Properties | Local memory
Shortest path S=R", 00,+,<) SM, I O(n)
Widest path W = (R",0, min, >) S, I, M O(logn)
Most reliable path R = ((0,1],0,%, >) SM, 1 O(n)
Usable path U=({1},0,%,>) S, I, M O(logn)
Widest-shortest path WS =8 xW SM, 1 O(n)
Shortest-widest path SW=WxS SM, ~1 Q(n)

Proor. We trace back incompressibility to the incom-
pressibility of shortest path routing (Proposition 3), by show-
ing that a delimited, strictly monotone algebra has subalge-
bras possessing the same structure as shortest path rout-
ing. We use the following basic facts from semigroup the-
ory [26]. Every element w € W of a semigroup (W,®)
generates a subsemigroup, the so called cyclic semigroup,
(W, ®) : Wy = {w,w?,w?,...} through the power opera-
tion:

ifn=1
otherwise

Vn € N: w"—{w 1
w D w

If the ordered semigroup (W, ®, <) is delimited and strictly
monotone, then any of its cyclic subsemigroups (W, ®) is
of infinite order, in which case it is isomorphic to the semi-
group (N,+) of natural numbers under addition through
the mapping f : N < Wy, f(n) = w". In addition, f is
also an order preserving isomorphism between the shortest
path routing algebra S = (N, 00,+,<) and (W, ¢, ®, X)
in this case, as i < j < w' < w’ due to strict mono-
tonicity. One easily checks this by observing that for any
i<jrw 2w @w=wr <w. Thus,if A= (W, ®,=<)
has a strictly monotone subalgebra, then for any graph G
and any labeling of the edges of G by natural numbers as
weights, we can construct a labeling using weights from W so
that a path is a shortest path in the algebra S = (N, 00, +, <)
if and only if it is a preferred path in A. This implies that
routing in A requires at least as much local memory as short-
est path routing (i.e., Q(n) by Proposition 3), which com-
pletes the proof. [

3.1 Examples

In Table 1, we list the intra-domain routing policies stud-
ied most extensively in the literature, together with their
algebraic definition, basic properties, and the local memory
requirements as indicated by our results. Note that all the
listed algebras are delimited and regular except the last one.
Here, S is the well-known shortest path routing algebra, for
which Proposition 3 provides an adequate incompressibility
characterization. Easily, Theorem 2 gives the same charac-
terization.

W denotes the widest path routing policy [12]. Here, the
weight of an edge is its capacity, the end-to-end capacity of
a path equals the bandwidth of its bottleneck edge (the one
with the smallest capacity) and the higher the capacity along
a path the more preferred. Easily, this corresponds to the
selective algebra (R™,0, min, >), and so W is compressible
by Theorem 1. In particular, under the tree routing scheme
due to Fraigniaud and Gavoille [10] widest path routing can
be implemented using 5logn bit addresses and 3logn bits
local memory, or log®n bits using the scheme of Thorup
and Zwick [4]. Similar is the case for the usable path rout-

ing strategy (U), applied extensively in Ethernet switching?.
However, the rest of the routing policies listed in the table
are incompressible.

Most reliable path routing (R) denotes the policy when
edges are assigned a reliability metric denoting the possibil-
ity that a packet will be transmitted successfully over the
edge and the path with the highest probability of success
is favored. Easily, R contains a strictly monotone sub-
algebra. Widest-shortest path (WS) routing prefers from
the set of shortest paths the one with the highest free ca-
pacity [13], and shortest-widest path (SW, [12, 14]), just
contrarily, prefers the shortest one out of the set of widest
paths. These algebras can be expressed as lexicographic
products of the S and W algebras and, by Proposition 1,
strictly monotone [22]. Hence, for R and WS, which are
isotone, Theorem 2 supplies the local memory requirement
of Q(n). This characterization is tight apart from a log-
arithmic factor, as simple table-based destination-oriented
routing requires O(n) bits by Observation 1. On the other
hand, SW is not isotone. Theorem 2 holds for non-isotone
algebras as well, which supplies a Q(n) bits local memory
requirement for SW too. At the moment, it is an open ques-
tion whether this characterization is tight, as the only trivial
routing function for SW stores a separate routing table en-
try for each source-destination pair, which needs O(n2 log d)
bits per router.

4. COMPACT POLICY ROUTING

As has been shown in the previous section, many practi-
cally relevant routing policies are impossible to implement
with sublinear size routing tables. In the case of shortest
path routing, a standard way to improve scalability is to de-
fine compact routing schemes. In these schemes, paths are
allowed to be longer than the shortest one, but path increase
is upper bounded by a multiplicative stretch factor k, mean-
ing that the paths yielded by the compact routing scheme
are at most k times as long as the shortest one. In the follow-
ings, we characterize the routing policies that admit similar
compact implementations, at least for a sufficient abstract
notion of stretch. Consider the following definition:

DEFINITION 3. A routing scheme is of stretch k over al-
gebra A, if for any path ps: selected by the scheme: w(pst) =
(w(pk))®, where pZy is some preferred s —t path in A.

Note that (w(p3;))* = w(pi,) ® w(ps,) - - & w(ps,), which

k times
implies that the above definition indeed generalizes the no-

tion of multiplicative stretch originally defined for shortest
path routing.

AThe fact that Ethernet runs over what is called the Span-
ning Tree Protocol shows the expressiveness of Lemma 1.

4.1 Algebraic requirements of compact policy
routing

First, we ask which routing algebras lend themselves to be
implemented by a compact routing scheme of finite stretch.

THEOREM 3. If a routing algebra A is regular, then there
is a stretch-3 compact routing scheme for A.

We show that the stretch-3 shortest path routing scheme
due to Cowen [3] readily generalizes to regular algebras. Be-
low, we briefly reproduce that scheme. For further details,
see [3] and [4].

For each v € V, choose some node set L C V' and with
each v € V associate a landmark [, as the node closest
(according to A) to u in the set L. Additionally, for each u €
V define a ball B(u) : {v € V : w(py,,) = w(p;,;,)}, where
ps.¢ refers to the preferred s—t path for any s and ¢. Finally,
let the cluster of u be C(u) = {v € V : v € B(v)}. When
A is regular, one can use the lexicographic lightest path
algorithms in [19, 20] to obtain unique connected clusters
for each wu.

The routing scheme is a hop-by-hop technique. The label
of node v consists of the triplet (v, [y, portlmv), where v is the
identifier of the node, [, is the identifier of its corresponding
landmark, and port, , is the local port at [, to the first
hop on the preferred path from I, to v. The packet header
is the label of the target node. The routing table at node
u ¢ L consists of (v,port, ,) tuples with respect to each
v € C(u) U L, where port,, , is again the local port label of
the first edge along the preferred u — v path.

Packet forwarding inside a cluster occurs along preferred
paths using the entries in the local routing tables. To route a
packet to a node v outside the cluster, node u first forwards
the packet to v’s landmark, from where it arrives to v using
again a direct route. In particular, when a packet with target
v arrives to a node u # v, u checks whether v is contained
in its local routing table. If not, then [,, the landmark of
v is extracted from the header. If u = [, then appropriate
port label is also extracted from the header, otherwise it is
looked up in the local routing table. Forwarding terminates
when u = v.

From Proposition 2, we know that if A is regular, then
standard destination-based hop-by-hop routing is correct.
To show that the above scheme is also correct, the following
crucial fact is enough (observed for shortest path routing by
Cowen in [3]).

LEMMA 3. Suppose that A is monotone. Now, if u stores
an entry in its local routing table towards some t, then the
next hop v along the preferred pl, path also stores an entry
to t.

PROOF. Easily, by monotonicity py; = pi: = pi,: S0 v
also stores an entry for ¢t. [

Next, we show that the scheme is stretch-3 on A. As
forwarding inside clusters occurs along preferred paths, we
only need to prove stretch-3 for indirect forwarding via land-
marks.

LEMMA 4. If A is regular, then for any u,v € V with
v ¢ C(u) :wpl,,) ®wpi,.) < (W)

PROOF. (i) by assumption, w(p], ,) =< w(p;.); (ii) us-
ing the triangle inequality, w(p;, ;,) <X w(py,.) ® w(py,,) =

w(py,.)Dw(py, .,) (the latter equlality comes by commutativ-
ity); (ii1) by isotonicity, from (i) and (i) we have w(p}, ;,) =

w(py,v) ®w(py,). Combining (i) and (44i) by isotonicity we
obtain w(py1,) ®w(p;,) 2 w(py,) @w(pu,w) Bw(py,). O

Finally, we show that the local information is indeed sub-
linear. Obviously, addresses can be encoded on 3logn bits.
The size of the local routing table at node u is O(|C(u)| +
|L]). Using the landmark selection technique given by Cowen
one obtains a local memory requirement of O(n*?) [3], which
is improved by Thorup and Zwick to O(n'/?) in [4].

An extremely interesting case is when the policy is the
widest-path routing algebra W. In this case, for any n € N
and any w € W : w"™ = w. Hence, stretch-3 paths are
exactly the preferred paths in this case. The same applies
to any selective and monotone algebra. Thus, Theorem 3 in
fact gives an alternative proof to the claim that monotone
and selective algebras are compressible.

We argued in Section 2.4 that regular algebras are the
“well behaved” cases from the aspect of distributed routing,
as they can be implemented by destination-based routing
tables. Our results so far indicate that regular algebras are
“well-behaved” from the standpoint compact routing as well:
not just that we could give a general result characterizing
the memory requirements for implementing regular algebras,
but we also found that even when a regular algebra turns
out incompressible a stretch-3 compact routing scheme is
guaranteed to exist. In the next section, we show that if
regularity fails, then finite stretch compact routing becomes
significantly more difficult.

4.2 Compact routing when isotonicity fails

We have shown that regularity of a routing algebra is suf-
ficient to define a stretch-3 compact routing scheme. It is an
intriguing question whether it is necessary as well. At the
moment, we do not have an answer to this question. What
we can show, however, is that when isotonicity fails in a
very intricate way, then no stretch-k routing exists for any
k constant.

THEOREM 4. Let k > 1 and let A = (W, 6,8, =) be a
monotone algebra with the property that for any p > 2,
Hwr,wa, ..., wp} CW so that Vi, j € {1,...,p},i # j:

w; ®w; = wik (mdwi@wj>w]2»k . (1)

Then, there is no stretch-k routing scheme with sublinear
memory requirement at all nodes.

PROOF. Borrowing the idea from [1], we present a family
of graphs on which any stretch-k implementation of A re-
quires ©(n) bits at some nodes. Start with a set of nodes
¢ € C,|C|=p>2 Toeach ¢; € C, add § > 2 neighbors
zij, 4 € {1,...,p},7 € {1,...,9} and label the edges by w;.
Finally, add ¢” nodes ¢t € T and connect these to the z;;
nodes according to the following rule: for each ¢t € T take
the alphabet consisting of the symbols (1,...,4d), construct
a word of length p from this alphabet and add an edge from
zi;j to t if the ith symbol in the word is exactly j. Label any
(zi5,t) edge by w;. Fig. 2 gives an example.

By monotonicity and (1), the preferred path p;, , from
any ¢; € C to any t € T' is the min-hop path, so w(p;, ;) =
w; ® w; = w?. Fraigniaud and Gavoille in [1] show that
encoding these paths in the above family of graphs requires
Q(n log d) bits of storage space at the nodes in C. Intuitively

Figure 2: A sample graph for p = 2, § = 2 if the words for
the target nodes are [1,1], [1,2], [2,1] and [2, 2].

speaking, the idea is that there is an astronomical number
of different graphs in this graph family, and to encode the
min-hop paths the routing algorithm needs to be able to dif-
ferentiate amongst them, which requires huge storage space.

Unfortunately, any stretch-k compact routing scheme for
k finite needs to encode the exact same min-hop paths. By
construction, any non-preferred path pc,,: goes through at
least two edges of weight w; for some 5 € {1,...,p},j # 1,
and hence is at least of stretch k: w(pe,,:) = ws ® w; w; @
w; 2 (wi ©wy) ® (wi Duy) (t) w; B wj (;) (w})* = w(pz, o),
where (i) is by associativity and commutativity, (iz) is by
monotonicity, and (%) is by (1). O

A key to the above result is the weight set with the special
structure (1), an extreme form of strict monotonicity. For
k > 2, (1) violates isotonicity, therefore the theorem does
not apply to regular algebras. But to many non-regular al-
gebras it does. For the shortest-widest path policy in partic-
ular, one easily generates the weights w; with the required
properties. Let w; = (bs,ci), where b; denotes the capac-
ity and ¢; a positive cost, and for each i = 1,...,p choose
bi = ¢ and let ¢; = (2k)i71. One easily checks that this
construction satisfies (1), since if ¢ < j then b; < b; im-
plies (bi, ci) + (bj, ;) = (bi,ci +¢;) > (b, c;)?*, while from
ci < 2ke; < ¢j we get (bi,ci +¢j) > (bi,ci)zk This then
implies that the shortest-widest path policy does not admit
a compact implementation by Theorem 4.

S. PRACTICAL IMPLICATIONS

We have seen that regular algebras are the easy cases for
compact policy routing. However, many real-world routing
policies do not lead to regular algebras (or commutative, or
associative algebras, for that matter). The most prominent
of these is the routing policies used by the Border Gateway
Protocol (BGP), the inter-domain routing mechanism that
glues the Internet together [27,28]. Below, we very briefly
discuss to what extent the above algebraic treatment can be
applied to BGP policy routing algebras.

BGP policy routing can be described at various levels of
depth. At the first, elemental level, BGP policy routing
corresponds to the walley-free routing policy: each edge is
labeled as customer (c), peer (r) or provider (p), and the
only rule is that no path can contain a ¢ —p, c—1r, r — p,
or a r — r subpath [29]. This policy can be described by the
algebra B1 = ({p,r,c}, ¢, B, %), where @ given in Table 2
and all permitted paths (i.e., ones whose weight is not ¢)
have the same preference [20,21]. To correctly represent the
valley-free routing policy, the underlying graph is supposed
to be a digraph in which the opposite arc of a p (r) arc
is always labeled as ¢ (r, respectively). Furthermore, @ is

Table 2: Weight composition in valley-free routing.

right-associative. In line with what we see in the Internet,
it is usually assumed that every node has a valley-free route
to every other node and the network contains no provider-
loops (directed p-cycles). Even though this setting violates
basically every assumption in terms of which we stated our
previous results, the basic ideas are still applicable as illus-
trated below.

THEOREM 5. Bi is compressible.

PROOF (SKETCH). By temporarily neglecting peer arcs,
split the graph to strongly connected valley-free components
(SVFC) with the property that in each component any pair
of nodes u,v can be bidirectionally connected by a valley-
free path using customer-provider arcs only. In each SVFC,
valley-free routing reduces to the selective and monotone
subalgebra By = ({p}, ¢, ®, <) with p&p = p. As the graph
contains no provider loops, every SVFC has a single node,
call this the root node, that possesses no outgoing provider
link. Then, a straightforward extension of Lemma 1 yields
that routing inside a SVFC according to B} equals routing on
an arborescence, which is possible with O(log n) local mem-
ory. Furthermore, roots are connected in a full-mesh due
to global reachability, routing on which can be done using
O(log n) local memory by a special port labeling [30]. The
combination of these two routing schemes yields an O(logn)
routing scheme for valley free routing. [

At the second level, BGP classifies paths according to the
local preference rules. A minimalistic rule contained in basi-
cally every local preference setting is that customer paths are
favored over peer and provider paths. This can be described
by the algebra Bz = ({p,r,c}, ¢, B,), where @ again is as
in Table 2 and ¢ < r < p.

THEOREM 6. B is incompressible. Additionally, there is
no stretch-k compact routing scheme for Bz for any finite
k> 2.

PROOF (SKETCH). We show a weight set satisfying (1),
from which Theorem 4 gives the required result. Simply,
let w; = c¢. As customer arcs are exactly provider arcs in
the reverse direction, we have that the weight of any non-
preferred path is at least c®p =¢ > ¢* for any k> 1. O

BGP policy routing is, naturally, substantially richer than
B1 or Ba. At the third level, for instance, usually path length
is taken into account, leading to the algebra Bs = By x S.
Using the foregoing argumentation, one easily checks that
Bs is also incompressible.

6. CONCLUSIONS AND OPEN QUESTIONS

Thanks to the tenacious research efforts in the field of
compact routing, we now have a remarkable insight into
the theoretical scalability of shortest path routing. Moti-
vated by the fact that many routing applications adopt a
significantly more complex way to classify paths than pure
shortest path routing (for instance, BGP places path length

only at the third place when fixing path preference), in this
paper we proposed an algebraic approach towards general-
izing the theory of compact routing to policy routing. Our
contribution is twofold: first, we presented some “landmark”
theorems, which can be used as guidelines to roughly classify
routing policies based on their algebraic properties, and sec-
ond we identified some algebraic requirements for effectively
trading between path preference and memory. As an impor-
tant message, we identified regularity as the cornerstone of
compact policy routing, allowing for a generic compressibil-
ity theory to be formulated as well as defining a finite stretch
compact routing scheme. The fact that regular algebras are
exactly the ones that can be efficiently implemented in a dis-
tributed way [19-22] makes these algebras highly attractive
for designing future routing policies [31].

Besides answering the most elemental questions, this pa-
per perhaps leaves more issues open than it answers. We
have seen that selectivity is sufficient for a routing algebra
to be compressible, and strict monotonicity is sufficient for
incompressibility. However, it is not clear which are the cor-
responding necessary conditions. Easily, strict monotonicity
is not necessary for incompressibility as evidenced by the
non-monotone B2 algebra. Finding a minimal algebra that
eventuates incompressibility is therefore an interesting open
issue. On the other hand, by requiring selectivity for com-
pressibility we seem to be on the safe side, since selectivity
not only guarantees compressibility but also a very appealing
memory requirement of O(logn). Whether there are com-
pressible algebras with Q(logn) local memory requirement
is also an intriguing problem. As pointed out in the paper, it
is also an open question whether the Q(n) characterization
for non-isotone algebras is tight, as the only trivial routing
function needs O(n?log d) bits per router.

We have shown some real-world routing policies whose
memory requirement cannot be relaxed, even by allowing
arbitrary finite stretch. Unfortunately, the widely applied
BGP policy qualifies for this property. Therefore, perhaps
the most compelling question raised in this paper is “what
can we do if stretch doesn’t help?”

Acknowledgements

This work was performed in the High Speed Networks Lab-
oratory at BME-TMIT. This work is connected to the sci-
entific program of the "Development of quality-oriented and
cooperative R+D+1I strategy and functional model at BME”
project. This project is supported by the New Hungary De-
velopment Plan (Project ID: TAMOP-4.2.1/B-09/1/KMR-
2010-0002).

7. REFERENCES

[1] P. Fraigniaud and C. Gavoille. Memory requirement
for universal routing schemes. In Proceedings of the
fourteenth annual ACM symposium on Principles of
distributed computing, PODC ’95, pages 223-230,
1995.

[2] C. Gavoille and S. Pérennes. Memory requirement for
routing in distributed networks. In Proceedings of the
fifteenth annual ACM symposium on Principles of
distributed computing, PODC ’96, pages 125-133,
1996.

[3] L. Cowen. Compact routing with minimum stretch. In
ACM-SIAM SODA’99, pages 255-260, 1999.

[4] M. Thorup and U. Zwick. Compact routing schemes.
In ACM SPAA’01, pages 1-10, 2001.

[5] C. Gavoille. Routing in distributed networks:
Overview and open problems. ACM SIGACT News,
32(1):52, 2001.

[6] D. Krioukov, ke claffy, K. Fall, and A. Brady. On
compact routing for the Internet. ACM Comp. Comm.
Review, 37(3):41-52, 2007.

[7] C. Gavoille. An overview on compact routing. In
Workshop on Peer-to-Peer, Routing in Complex
Graphs, and Network Coding, 2007.

[8] G.N. Frederickson and R. Janardan. Designing
networks with compact routing tables. Algorithmica,
3(1):171-190, 1988.

[9] D. Krioukov, K. Fall, and X. Yang. Compact routing
on Internet-like graphs. In INFOCOM 2004, the
Twenty-third Annual Joint Conference of the IEEE
Computer and Communications Societies, volume 1,
2004.

[10] P. Fraigniaud and C. Gavoille. Routing in trees. In
ICALP ’01, pages 757-772, 2001.

[11] O. Younis and S. Fahmy. Constraint-based routing in
the Internet: Basic principles and recent research.
IEEE Communications Surveys and Tutorials, 5(1),
2004.

[12] Zheng Wang and Jon Crowcroft. Quality-of-service
routing for supporting multimedia applications. IEFEE
Journal of Selected Areas in Communications,
14(7):1228-1234, 1996.

[13] G. Apostolopoulos, R. Guerin, S. Kamat, and S. K.
Tripathi. Quality of service based routing: A
performance perspective. In SIGCOMM, pages 1728,
1998.

[14] Qingming Ma and P. Steenkiste. On path selection for
traffic with bandwidth guarantees. In Proceedings of
the 1997 International Conference on Network
Protocols (ICNP ’97), page 191, 1997.

[15] M. Caesar and J. Rexford. BGP routing policies in ISP
networks. Technical Report UCB/CSD-05-1377, EECS
Department, University of California, Berkeley, 2005.

[16] G. Apostolopoulos, R. Guerin, S. Kamat, A. Orda,
and S. K. Tripathi. Intra-domain QoS routing in IP
networks: A feasibility and cost/benefit analysis.
IEEE Network, 13:42-54, 1999.

[17] D. Awduche. MPLS and traffic engineering in IP
networks. IEEE Communications Magazine,
37(12):42-47, Dec 1999.

[18] W. Lee, M. Hluchyi, and P. Humblet. Routing subject
to quality of service constraints in integrated
communication networks. IEEFE Network Magazine,
9(4):46-55, July-August 1999.

[19] J. Sobrinho. Algebra and algorithms for QoS path
computation and hop-by-hop routing in the Internet.
IEEE/ACM Trans. Netw., 10:541-550, August 2002.

[20] J. Sobrinho. Network routing with path vector
protocols: theory and applications. In SIGCOMM 03,
pages 49-60, 2003.

[21] T. Griffin and J. Sobrinho. Metarouting. In
SIGCOMM 05, pages 1-12, 2005.

[22] A. Gurney and T. Griffin. Lexicographic products in

metarouting. In Network Protocols, IEEE
International Conference on, pages 113—-122, 2007.
C.-K. Chau, R. Gibbens, and T. G. Griffin. Towards a
unified theory of policy-based routing. In INFOCOM
2006, the 25th IEEE International Conference on
Computer Communications. Proceedings, pages 1-12,
2006.

M. Gondran and M. Minoux. Graphs, Dioids and
Semirings: New Models and Algorithms. Springer
Publishing Company, Incorporated, 1 edition, 2008.
B. Awerbuch and Y. Shavitt. Topology aggregation for
directed graphs. IEEE/ACM Trans. Netw., 9:82-90,
February 2001.

A. H. Clifford and G. B. Preston. The Algebraic
Theory of Semigroups, Volume I. Number 7 in
Mathematical Surveys. American Mathematical
Society, 1961.

27]

28]

29]

(30]

G. Huston. Interconnection, peering, and settlements.
In Proceedings of the INET, 1999.

F. Wang and L. Gao. On inferring and characterizing
Internet routing policies. In Proceedings of the 3rd
ACM SIGCOMM conference on Internet
measurement, pages 15-26, 2003.

L. Gao. On inferring autonomous system relationships
in the Internet. IEEE/ACM Trans. on Networking,
9:733-745, 2000.

Pierre Fraigniaud and Cyril Gavoille. Local memory
requirement of universal routing schemes. Technical
Report 96-01, Ecole Normale Supérieure de Lyon,
69364 Lyon Cedex 07, 1996.

A. Seehra, J. Naous, M. Walfish, D. Mazieres,

A. Nicolosi, and S. Shenker. A policy framework for
the future Internet. HotNets-VIII, 2009.

