
OSPF for Implementing Self-adaptive Routing

in Autonomic Networks: a Case Study

Gábor Rétvari1, Felicián Németh1, Ranganai Chaparadza2, Róbert Szabó1

1 Department of Telecommunications and Media Informatics
Budapest University of Technology and Economics, Budapest, Hungary

{retvari,nemethf,robert.szabo}@tmit.bme.hu
2 Fraunhofer Institute for Open Communication Systems, Berlin, Germany

ranganai.chaparadza@fokus.fraunhofer.de

Abstract. Autonomicity, realized through control-loop structures oper-
ating within network devices and the network as a whole, is an enabler
for advanced and enriched self-manageability of network devices and
networks. In this paper, we argue that the degree of self-management
and self-adaptation embedded by design into existing protocols needs
to be well understood before one can enhance or integrate such proto-
cols into self-managing network architectures that exhibit more advanced
autonomic behaviors. We justify this claim through an illustrative case
study: we show that the well-known and extensively used intra-domain
IP routing protocol, OSPF, is itself a quite capable self-managing entity,
complete with all the basic components of an autonomic networking ele-
ment like embedded control-loops, decision-making modules, distributed
knowledge repositories, etc. We describe these components in detail, con-
centrating on the numerous control-loops inherent to OSPF, and discuss
how some of the control-loops can be enriched with external decision
making logics to implement a truly self-adapting routing functionality.

Keywords: Autonomic/Self-managing Networks, self-adaptation, autonomic
routing functionality, OSPF

1 Introduction

OSPF (Open Shortest Path First, [1]) is perhaps the most successful routing
protocol for the IP suite. It is a link-state routing protocol, with two-level rout-
ing hierarchy, support for basically any type of medium IP supports, an inte-
grated neighbor discovery and keep alive protocol, reliable link state flooding,
fast shortest path routing algorithm, support for multipath routing, etc. Accord-
ingly, OSPF rapidly gained ground after its inception, and it has been enjoying
unparalleled popularity in the networking community to our days. Only special
environments, like extremely large ISP backbones or heterogeneous, multiproto-
col networks, are where alternatives are preferred [2].

A key enabler in the success of the OSPF routing protocol is the inherent ca-
pability for self-management built into it from the bottom up. Self-management,



in the case of OSPF, means that the routers participating in the distributed pro-
cess of IP routing perform various management tasks autonomously, indepen-
dently of any higher level control function or manual intervention. A quintessen-
tial self-management operation built into OSPF is self-adaptation to the network
topology at hand: OSPF routers autonomously discover network topology, dis-
seminate topology information and compute shortest paths to produce consistent
routing tables, and this self-adaptation mechanism is completely independent
of external control or human supervision of any kind. There are several other
self-management functionality hard-wired into OSPF, like autonomous detection
of neighbors (auto-discovery), autonomous advertisement of capabilities (self-
advertisement), adaptation to failures and outages (self-healing), etc. Thanks to
these sophisticated self-* features, only little manual configuration is required
for OSPF to perform the complex task of routing table maintenance. Once net-
work interfaces are properly brought up and supplied with unique IP addresses,
and OSPF is made aware of the interfaces it should use, the protocol is up and
running, with full support for basic network routing. Only for complex opera-
tions, like link weight adjustment, multiple administrative areas, or interfacing
with inter-domain routing protocols, does OSPF need special configuration and
manual intervention on the part of the network operator.

One could argue, however, that in fact the autonomous capabilities built into
OSPF are a bit over the point, as sometimes these self-management functions
may work against, instead of cooperating with, the network operator. This is
because for a network operator to achieve her network-level performance objec-
tives, she needs to be in full control of the network. However, once OSPF with
its intrinsic self-management functionality comes into the picture, the manage-
ment actions taken on the part of the network operator and the self-management
actions carried out by OSPF might easily end up interfering with each other.
For instance, the policy of OSPF to provision the forwarding paths exclusively
over shortest paths might differ from the policy seen by the operator as opti-
mal. Thus, network operators have for a long time been working around OSPF’s
shortest path routing by tweaking the link weights for obtaining the desired
routing pattern [3]. In other words, fulfilling network-level objectives is much
easier with direct control over the configuration of the data plane and there-
fore, the decision logic should not be hard-wired into protocols but rather it
should be re-factored into an external, pluggable control logic, which should be
fed by monitoring information from the network and whose output should then
be communicated back to the routers. This modularization of network fabric
and control intelligence is one of the most important promises of the concept of
Autonomic Networking.

For anyone to be able to incorporate OSPF into an autonomic network frame-
work, one must need to be aware of the inherent self-management functionality
built into it. Without first discovering how OSPF performs autonomous adapta-
tion to external and internal stimuli by itself, anyone willing to deploy autonomic
networking functionality on top of OSPF might easily find himself needlessly re-
implementing autonomic functionality already present in OSPF, or blindly inter-



fering with OSPF’s intrinsic control-loops. The aim of this survey is, therefore,
to reinterpret OSPF in an autonomic networking context. In other words, we
are curious as to how well OSPF fits into the autonomic networking framework.

In what follows, we shall use the GANA framework (Generic Autonomic
Network Architecture [4]), proposed by the EFIPSANS project [5] recently, as
reference model for autonomic networking. GANA is an architectural Reference
Model for Autonimicity and Self-Management within node and network architec-
tures. In [4], different instantiations of the GANA approach for different types of
network devices and network environments (e.g., wireless, mobile or wired/fixed)
are presented, which demonstrate its use for the management of a wide range of
functions and services, including both, basic network services such as autonomic
Routing and autonomic Monitoring, as well as advanced services such as auto-
nomic Mobility and Quality of Service (QoS) Management. A central concept
of GANA is that of an autonomic Decision Element (DE) that implements the
logic that drives a control-loop over the management interfaces of its associ-
ated Managed Entities (MEs). Thus, in GANA, self-* functionalities are always
associated with certain control-loops, implemented by Decision Element(s). Ad-
ditionally, GANA organizes DEs into a DE-hierarchy: the higher we go up the
hierarchy of DEs, the broader the global knowledge that is required by a DE to
take decisions on managing/controlling its associated MEs, which may in turn
inductively trigger actions on lower level MEs down to the level of protocols.

The rest of the paper is structured as follows. First, we describe the self-*
functionality embedded in OSPF and we treat the most important intrinsic
control-loop of OSPF, the self-adaptation control-loop, in large detail (Section 2).
We also discover the state of the art in various extensions and improvements to
this intrinsic self-adaptation control-loop. The second part of the paper (Sec-
tion 3) is devoted to demonstrate how OSPF could be exploited for implement-
ing self-adaptive routing in the GANA framework, what Decision Elements and
control-loops would be necessary, and we delve into some implementation details.
Finally, we conclude the paper in Section 4.

2 Self-* functionality in OSPF

Routing is the process of ensuring global reachability between IP routers and
hosts. In the beginning, routing tables were provisioned manually. This prac-
tice led to daunting management complexity as networks grew, and it was quite
prone to human errors. The very purpose of introducing routing protocols was to
mitigate this management burden by automating the process of setting up rout-
ing tables. In some sense, autonomic networking can be seen as an extension of
this idea to the extreme: make the systems themselves tackle all the management
complexities, not just routing, that are otherwise difficult to handle manually.
For this, the network needs to be able to self-provision and self-manage to some
extent. Such self-* functionality involve, for instance, self-adaptation to changes
in the operational conditions, self-healing to repair or circumvent failures, self-
optimization for improving performance related aspects of networking, etc. Be-



low, we show that many of these self-* functionalities, either only partially or
in their entirety, can readily be identified in one of the most commonly known
and used routing protocols, the Open Shortest Path First (OSPF) routing proto-
col [1]. The enumeration is given in roughly the same order as the corresponding
self-* function appears in the course of the real operation of the protocol.

Auto-discovery: OSPF routers discover their immediate neighborhood by us-
ing the Hello protocol. Neighboring routers periodically exchange Hello packets,
so that each router is aware of all the routers connected to any one of the links
or LANs attached to its interfaces. This auto-discovery mechanism is pretty ex-
tensive, covering every aspect of routing except for one very important issue.
In particular, it lacks support for box-level discovery. This means that routers
do not autonomously self-detect their interfaces, and manual configuration is
needed to make an OSPF router aware of the interfaces it should involve in
OSPF message passing (see more on this issue later).

Self-description: OSPF routers self-describe their capabilities in the Hello
packets they generate. Hello packets contain information regarding the highest
version of OSPF the router’s implementation supports, plus a bitfield to describe
OSPF extensions the router understands. This makes it possible to eliminate the
chance of mis-configuration arising from letting routers using divergent OSPF
versions to speak to each other, or to deploy protocol extensions seamlessly.

Self-advertisement: routers generate so called Link State Advertisements
(LSAs) to advertise their forwarding services into the network. These LSAs con-
vey information on the individual routers making up the topology, with their
identity, attached interfaces, IP addresses, etc.; the links and LANs connecting
the routers with their type (broadcast, Non-Broadcast-Multiple-Access, point-
to-point); administrative link cost, etc. OSPF variants, like Traffic Engineer-
ing extensions to OSPF (OSPF-TE, [6]) and OSPF extensions in support of
Generalized Multi-Protocol Label Switching (OSPF-TE-GMPLS, [7]) add their
respective type of link state information to LSAs, involving the link’s transmis-
sion capacity, free capacity, protection type, the forwarding services offered by
the router, the multiplexing/demultiplexing capability of interfaces, etc. It is
by passing these LSAs around between routers using a reliable, acknowledged
flooding protocol that OSPF synchronizes routing information across the do-
main. This mechanism basically maintains a distributed, versioned, massively
parallel Link State Database (LSDB), shared and synchronized amongst OSPF
routers, which ensures that (in steady state) each router holds exactly the same
copy of the network topology and thusly consistent forwarding paths are selected.

Self-configuration and self-organization: self-configuration involves setting up
and maintaining some configuration parameter by the protocol itself, that oth-
erwise would be handled by the network operator. Self-organization is a method
by which entities autonomously organize themselves into groups or hierarchies.
A good example of self-configuration and self-organization in OSPF is the elec-
tion of Designated Routers. In order to reduce the amount of protocol traffic on
LANs that connect multiple routers, each OSPF router synchronizes with only
a single neighbor, the Designated Router (DR), instead of having to exchange



signaling information with all the other neighbors. The DR is responsible for
generating an LSA on behalf of the LAN. The actual DR (and the Backup DR,
which is just what its name says) is elected autonomously, by means of the Hello
protocol, without the need to be configured manually by the network operator.

Self-healing: an operational network is constantly subjected to disturbances
from the environment, most important amongst these is the intermittent and
unavoidable failures of network devices and transmission media. To come over
failures, OSPF implements a simple but efficient self-healing mechanism: once a
router detects that a certain node or link went down (through not getting Hello
packets for a certain amount of time from a specific direction), it advertises the
changed topology information into the domain, leading to a global recalculation
of routing tables with the failed node or link removed from the topology. Al-
though this self-healing mechanism might be somewhat slow due to the need
to deliver the LSA to the furthest part of the network to achieve correct global
response, it is highly effective in maintaining reachability as long as the network
remains connected, irrespective of the number and type of failures occurring.

Self-adaptation: the most important self-management functionality imple-
mented by OPSF is undoubtedly self-adaptation to the topology at hand. This
means that routes are not provisioned statically, but instead OSPF is able to
dynamically maintain correct, consistent and loop-free forwarding tables over an
arbitrary topology. Self-adaptation is, therefore, the most important property of
OSPF and the very purpose the protocol was designed in the first place. In the
next section, we shall discuss the self-adaptation control-loop in more detail.

One could as well keep on listing the various self-* functionality built into
OSPF further (e.g., self-protection, etc.), but we believe that the above examples
were sufficient enough to demonstrate the richness of OSPF in terms of auto-
nomicity. In fact, OSPF implements, either in its entirety or only partially, pretty
much every possible self-* functionality, with the notable exception of box-level
auto-discovery and self-optimization. The lack of self-optimization means, for in-
stance, that OSPF is not able to readjust forwarding paths (or at least, the link
costs) in order to mitigate or eliminate congestions or load-balance traffic, that
is, to optimize the performance of the network. In order to equip OSPF with
self-optimization functionality, we shall need to incorporate it into an external
control-loop, as shall be discussed later on.

2.1 Self-adaptation in OSPF

Self-adaptation to the underlying topology, to topology changes and to other
stimuli effecting network routing, is the main purpose of a routing protocol. Be-
low, we interpret the main self-adaptation control-loop implemented by OSPF in
the context and terminology of the GANA framework for autonomic networks [4].

The basic operation of the self-adaptation control-loop of OSPF is as follows.
When OSPF takes off or when the underlying topology changes (that is, when
a link or node goes down or comes up again), the auto-discovery mechanism
of OSPF (i.e., the Hello protocol), through observing the neighborhood of the



Fig. 1. Self-adaptation control loop in OSPF.

router, initiates the self-advertisement functionality to flood the (changed) net-
work state information throughout the network. Routers, upon the receipt of
new LSAs, calculate new routing tables based on refreshed routing information,
which makes it possible to always self-adapt to the actual network topology.

In GANA, this self-adaptation mechanism is a typical example of a protocol-
intrinsic control-loop, with the OSPF protocol acting as a virtual distributed
Decision Element (DE) scattered all over domain. The following important au-
tonomic networking components are involved in this control-loop (see Fig. 1):

– The Managed Entity is the collective set of all Routing Tables in the net-
work, which are then used to populate the Forwarding Information Bases
(FIBs). The Routing Table(s) is the entity on which the control-loop’s effec-
tor operates.

– Monitoring of the links/interfaces and their forwarding state is implemented
by the Hello protocol

– Analyze/Plan is broadly mapped to the process of routing table (re)calcu-
lation

– Execution corresponds to the process of updating the Routing Tables as well
as the FIBs across the routers with the next-hops obtained during the last
routing table calculation

– Knowledge is manifested in this self-adaptation control-loop by the collective
set of the LSDBs of the routers. Note that, however, OSPF pays special
attention to always keep the LSDBs at each router consistent, synchronized
and up-to-date, therefore the Knowledge component is in fact replicated
throughout the network instead of being unified at a central knowledge base.

– Sensors/Effectors for higher level DEs: the OSPF protocol supplies a number
of interfaces for higher level DEs to interact with it, including (usually) a
set of OSPF configuration files, a Command Line Interface (CLI) plus a
versatile, standardized Management Information Base (MIB).



2.2 Extensions to the intrinsic Self-adaptation control-loop of OSPF

The self-adaptation mechanism built into OSPF is somewhat basic, although
quite straight-to-the-point: it only involves tracking topology changes. However,
it does not contain mechanisms, knowledge, services, algorithms or other protocol
machinery to self-adapt other aspects of routing to the actual environment, or
to adapt the self-adaptation control-loop itself when changing conditions make
it necessary. Below, we give a brief overview of the state-of-the-art as to how the
research community proposes to extend the basic self-adaptation control-loop of
OSPF beyond its present capabilities. Note that the survey below lists only those
proposals that build the extensions right into OSPF itself, and do not involve
those ones that organize OSPF into an external control-loop with a separate
Decision Element (we discuss the latter option in the next section)

Self-adaptation to changing resource availability: it has been pointed out
many times as one of the major shortcomings of OSPF-type link-state rout-
ing protocols that their self-adaptation mechanism is static, as it only involves
adaptation to the (changing) topology, but not to the changing operational con-
ditions, the amount and type of actual ingress or egress traffic, availability of
free resources, QoS criteria, Service Level Agreements, customer-provider and
peering relationships, etc. This makes OSPF routing insensitive to the fluctua-
tions of user traffic, or its changing/evolving embedment into a vibrant socio-
cultural/economic environment. The result is often suboptimal routing: traffic
tends to concentrate along shortest paths while, at the same time, complete por-
tions of the network remain under-utilized. Various attempts have been made to
introduce some forms of dynamic routing into OSPF, by adding further informa-
tion to the link state, most importantly, the amount of provisionable resources
at network elements, and selecting routes that avoid overloaded components. A
good example is the Quality of Service extensions to OSPF (QoSPF, [8]), or
recent standardization efforts, like OSPF-TE and OSPF-TE-GMPLS.

Self-adaptation and multipath routing: the basic mode of operation in OSPF
is to select the shortest weighted path towards a destination, where path weight
is understood in terms of some administrative cost set for each network link.
Where ambiguity arises (that is, when there are more than one shortest paths
to a destination), one path is selected somewhat randomly. In the Equal-Cost-
MultiPath (ECMP) mode, however, a router is allowed to use all the potential
shortest paths to the destination, by splitting traffic roughly equally amongst
the available next-hops. Unfortunately, however, OSPF-ECMP still does not
qualify as a self-adaptive multipath routing protocol, because traffic is not bal-
anced with respect to available resources along the paths. Additionally, the path-
diversity of ECMP is somewhat insufficient, as in many topologies it is only
a rare accident that multiple shortest paths become available to a destination.
OSPF-Optimized-MultiPath (OSPF-OMP, [9]) is aimed at overcoming these dif-
ficulties: it improves path diversity by not confining itself to shortest paths but
utilizing all loop-free paths instead, and it makes self-adaptation sensitive to
varying operational conditions by dynamically readjusting traffic shares at indi-



vidual forwarding paths with respect to actual resource availability along those
paths.

Fast self-adaptation and self-healing: as mentioned earlier, the self-adaptation
control-loop in OSPF involves a tedious global resynchronization of Link State
Databases plus additional recalculations of the routing tables. This scheme of
global, reactive response makes the convergence of the control-loop slow, which
yields that the reaction to failures is a lengthy process in OSPF. Furthermore,
the auto-discovery process, responsible for detecting the error in the first place,
adds its own fair share of slugishness to the process (the smallest granularity of
the Hello timers is 1 sec, basically increasing the convergence time to the order
of seconds). To speed up convergence, a localized, proactive approach should be
taken instead, and this is exactly the way the IP Fast ReRoute (IPFRR, [10])
suite of standards is set to remedy the situation. In IPFRR, OSPF pre-computes
detours with respect to each potentially failing component and stores the next-
hops in an alternative forwarding table. By using an explicit, fast detection
mechanism like Bidirectional Forwarding Detection (BFD, [11]), discovering a
failure is possible within milliseconds of its occurrence. If an error is detected,
OSPF switches to this alternative table and suppresses global response by with-
holding the fresh LSA in the hope that the failure is transient. Should the failure
go away soon after, OSPF switches back to the original forwarding table as if no
failure happened. Only when a failure persists for a longer period of time, global
re-convergence is initiated. IPFRR proved highly efficient in practice, bringing
down to failure recovery to the order of milliseconds [12].

Self-adaptation with partial/outdated link-state information: a basic assump-
tion lying in the heart of the design of OSPF is that the information in the Link
State Database is always consistent and up-to-date. Otherwise, self-adaptation
might suffer as certain destinations might become unreachable and transient or
even persistent routing loops might emerge. The assumption of consistency and
freshness, however, might not always hold: in fixed or slowly changing wireless
networks, it would be crucial to limit the amount of signaling traffic exchanged
between nodes in order to save battery power. The idea here is to tweak the
self-advertisement mechanism so that routers hold precise information only in
a limited vicinity, and the further they look the more inaccurate the link state
information. As a packet travels hop by hop in the network, it will always see
locally accurate link state, leading to, hopefully, close to optimal shortest path
forwarding. For pointers on how to change the intrinsic self-adaptation of OSPF,
see FishEye State Routing [13] or XL Link State [14].

3 OSPF for implementing truly self-adaptive routing

So far, we have seen that OSPF implements a solid number of self-* functions
in itself, by means of control-loops embedded deep into the protocol machin-
ery. The most important of these, the self-adaptation control-loop, is an effi-
cient and robust control-loop and, considering the numerous extensions to this
control-loop on their way to standardization and large-scale deployment, OSPF



is expected to need only very little governance from higher layers to achieve its
full potential. This does not mean that OSPF on its own qualifies as an auto-
nomic, self-managing protocol entity, only that certain functionality it embeds
can be interpreted, to some extent, within the context of autonomic network-
ing frameworks, like GANA. Instead, to truly realize the vision of autonomic,
self-managing routing, separate Decision Element(s) are needed, decoupled from
OSPF and implemented in higher layers of the GANA DE-hierarchy, either be-
cause, due to implementation considerations, decision making would be very dif-
ficult to engineer into OSPF itself, or the decision making process would make
use of external information that is simply not available at the lowest level of
the DE hierarchy OSPF resides at in the GANA architectural Reference Model.
Or, one might deliberately choose not to embed certain control-loops into OSPF
in order to better modularize the architecture, to separate managed and man-
aging functionality from each other, to easily swap/change the decision making
process, etc.

Next, we discuss how Autonomic Routing is modelled in the GANA frame-
work, and then we describe some additional control-loops to realize this vision
on top of OSPF.

3.1 Implementing Autonomic Routing following the GANA

approach

The Routing Functionality of network nodes and the network as whole can be
made autonomic by making diverse Routing Schemes and Routing Protocol Pa-
rameters employed and altered based on network-objectives, changes to the net-
work’s context and the dynamic network views in terms of events, topology
changes, etc. Fig. 2 depicts how the routing behavior of a node/device and the
network as a whole can be made autonomic. The cloud on Fig. 2 represents
an overlay or logically centralized DE(s): (1) With wider network-wide view to
perform sophisticated decisions, e.g., network optimization; (2) Centralized to
either avoid processing overhead in managed nodes or scalability and/or com-
plexity problems with distributed decision logic in network elements; (3) The
Elements in this cloud may be the ones that provide an interface for a humans
to define network Goals and Objectives or Policies, e.g., Business Goals.

Two types of control-loops are required for managing/controlling the routing
behavior. The first type is a node-local control-loop that consists of a Function-
Level Routing Management DE embedded inside an autonomic node, e.g., a
router. The local Function-Level Routing Management DE is meant to process
only that kind of information that is required to enable the node to react auto-
nomically and autonomously (according to some goals) by adjusting or chang-
ing the behavior of the individual routing protocols and mechanisms required
to be running on the node. It reacts to “views”, such as “events” or “inci-
dents”, exposed by its Managed Entities (MEs), i.e., the underlying routing
protocols or mechanisms. Therefore, the Routing Management DE implements
self-configuration and dynamic reconfiguration features specific to the routing
functionality of the autonomic node.



Objectives, Policies from a higher

level (network-level)

Routing Protocol(s) and

Mechanisms of the Node e.g.

OSPFv3, BGP-4

Only the kind of Information

Set(s) required for local

control-loop reaction

Other Information

Sources/

Suppliers Exposing

“Views”

Decision Element of the Node

(Node_Main_DE)

Routing_Management_DE

Control Loop

(Controls the

„Routing“)

Network-Level-

Routing_Management_DE

Network-Level-

Fowarding_Management_DE

Network-Level-

QoS_Management_DE

Other Network-Level-DEs

IPv6-based Network

Fig. 2. Autonomicity as a feature in Routing Functionality.

It is important to note that due to scalability, overhead and complexity
problems that arise with attempting to make the Routing Management DE of
a node process huge amounts of information/data for the control-loop, logi-
cally centralized DE(s), outside the routing nodes, may be required, in order
to relieve the burden. In such a case, a network-wide slower control-loop is
deployed in addition to the faster node-local control-loop (with both types of
loops working together in controlling/managing the routing behavior). There-
fore, both types of control-loops need to work together in parallel via the in-
teraction of their associated Routing Management DEs (one in the node and
another in the realm of the logically centralized network overlay DEs). The
Node-scoped Routing Management DE focuses on addressing those limited rout-
ing control/management issues for which the node needs to react fast (the faster
control-loop). At the same time, it listens to control from the Network-level
Routing Management DE of the outer, slower control loop, which has wider
network-views and dedicated computational power, and thus is able to compute
routing specific policies and new parameter values to be used by individual rout-
ing protocols of the node. The Network-level Routing Management DE dissem-
inates the computed values/parameters to multiple node-scoped Function-Level
Routing Management DEs of the network-domain that then directly influence
the behaviour of the targeted MEs, that is, the routing protocols and mecha-
nisms within a routing node. The interaction between the two types of Rout-
ing Management DEs is achieved through the Node Main DE of a node, which
verifies those interactions against the overall security policies of the node. The



Node-scoped Routing Management DE also relays “views”, such as “events” or
“incidents”, to the Network-level Routing Management DE for further reason-
ing.

3.2 Control-loops for Autonomic routing on top OSPF

Auto-discovery: as mentioned earlier, auto-discovery in OSPF lacks box-level
discovery. This means that there is no way for an OSPF router to learn au-
tonomously the set of functional interfaces it has, and configure the protocol
properly on those interfaces. Unless OSPF is explicitly told so (by means of
manual configuration, intervention at the CLI or through central network man-
agement), an OSPF router will not use an interface, even if, by all measures, it
legitimately could. The reasons for this are multi-faceted. First, whether to run
or not run OSPF on a specific interface is a crucial configuration issue, dependent
on high-level network engineering policies, and it has important security implica-
tions as well. There are various configuration parameters (e.g., timers, link cost,
authentication, link type, etc.) that quite commonly need manual tweaking too.
Additionally, every interface must uniquely be associated with a specific OSPF
area, retaining the consistency of the network via the Backbone Area, and this
also must be handled through explicit configuration. Therefore, OSPF must be
involved in some forms of a auto-discovery/self-configuration control-loop: an
OSPF router needs to send its identity and some router-specific data upstream
to the Network-level Routing Management DE, and in turn it gets back a routing
profile with a complete set of configuration parameters to set, including the list
of interfaces to bootstrap, timer settings, authentication keys, link costs, etc.

Self-configuration: as discussed previously, the network operator can tweak
the operation of OSPF, with considerable detail and granularity, through config-
uration parameters. Monitoring, setting, and adjusting from time to time these
configuration parameters might benefit the operation and the performance of the
network. The main enabler for this is OSPF’s timer mechanism, which allows
the network operator to manipulate the way certain events are scheduled.

For instance, in networks with limited resources the signaling traffic gener-
ated by OSPF might put too much burden on the network infrastructure, lead-
ing to premature drainage of battery power, congestion along low-capacity links,
etc. Thus, relying on monitoring data, a higher level DE might instruct OSPF to
slow down LSA propagation (OSPF parameter: MinLSInterval, MinLSArrival3

and RxmtInterval, see Appendix A and C in [1]). The Hello protocol could
also be tweaked to generate smaller keep-alive traffic in slowly changing envi-
ronments or between high-reliability interfaces where failures only rarely show
up (OSPF parameter: HelloInterval, RouterDeadInterval). To save precious
battery power at wireless nodes, OSPF routing table recalculations could also
be throttled leading to smaller computational burden on the CPU (note that

3 These two parameters are protocol constants, or architectural constants, which
means that they are not marked as user configurable in the OSPF standard, though,
they could be easily made to be so in implementations.



the OSPF standard does not provide an OSPF parameter to throttle SPF cal-
culations, but implementations usually do).

Self-optimization: in OSPF, link weights completely determine, through the
shortest path algorithm, the emergent forwarding paths and thus have crucial
impact on the way user traffic flows through the network. Even though link costs
are set to a constant value almost universally in today’s OSPF deployments, it
does not necessarily has to be so. Constant weight setting (either to a default
constant or a static value reciprocal to the link capacity) leads to a routing that
is completely and adversely independent of the operating conditions (i.e., the
load at network links, the amount of incoming user traffic, etc.), which often
leads to inefficient data forwarding.

In order to improve the performance of the network, link costs could (and
should) be regularly updated to better reflect the actual operational circum-
stances, and this could be done by organizing OSPF into a self-optimization
control-loop. In this control-loop, either the router itself (in particular, the
router’s Node-scoped Routing Management DE ) or the the Network-level Rout-
ing Management DE could readjust the link costs (OSPF parameter: Interface
output cost). The difference between the two approaches is the amount of mon-
itoring data based on which link cost recalculation can be done. If the link costs
are readjusted at the node level, only knowledge available to that node can be
used in the readjustment. For instance, cost of overloaded or heavily used local
interfaces could be increased, while the cost of underutilized local links could
be decreased, but no information on the load at links at remote parts of the
network could be used in this process. Unfortunately, careless local intervention,
apart from flooding the network with excess signaling traffic, usually leads to
global oscillations and instability [15]. Hence, it is better to readjust link weights
at the network level [3], [16]. It is important to note that, as theoretical results
confirm, it is hopeless to drive the network right to optimal performance, due to
the inherent limitations and inflexibility of shortest path routing. Yet, one can
go pretty close to the optimum [3], and this is more than enough in most of the
cases.

Self-organization: routers in an OSPF domain can be structured into so
called areas, with complete topology information available inside the area but
only limited, summarized information flooded between the areas. This makes it
possible to reduce the signaling overhead of OSPF, better modularize the net-
work, eliminate excess signaling in stub areas (parts of the network with a single
ingress/egress router), etc. In a bandwidth-constrained network, the area struc-
ture could be readjusted every time it is believed that the signaling overhead
of OSPF could be reduced that way. Note that, however, changing area bound-
aries on the fly may lead to routing-loops and transient spillage of reachability,
making this self-organization function less appealing. Curiously, even the raison
d’être of areas has been questioned quite vigorously in the near past [17].

Inter-domain self-adaptation: interaction between intra-domain and inter-
domain routing has for a long time been a hardly understood and thus heavily re-
searched question [18]. The two are not completely independent from each other:



a simple change of an intra-domain forwarding path might have far-reaching con-
sequences, causing routing updates in a significant portion of the entire Internet.
Additionally, many of the changes of external routes are advertised into the rout-
ing domain, often causing the the fluctuation of ingress traffic and/or outgoing
traffic. This makes it important to try to readjust the interaction between intra-
and inter-domain routing based on a detailed knowledge of topology, monitoring
data, network mining data, predicted profiles, AS paths, BGP policies, etc. How-
ever, currently there exists very little understanding as to how changing some
aspects of this interaction effects the rest of the network, which makes designing,
implementing and optimizing such an inter-domain self-adaptation control-loop
quite a task.

4 Conclusions

In this paper, we have seen that one of the most widely known network proto-
cols, the OSPF routing protocol, includes a fair number of traits that qualify
as some forms of self-management. Apart from the main control-loop, the self-
adaptation control-loop, we have shown examples of auto-discovery, self-healing,
self-configuration, etc. Taking a wider look, it turns out that many network pro-
tocols in existence today, especially telecommunication protocols, are designed
around some forms of a control-loop. A good example is the venerable TCP
flow control protocol. However, these control-loops were designed piece-meal
and were deeply hidden in the very substrate of the network protocol engines. A
basic promise of the emerging concept of Autonomic Networking is to give a new
and enlightening way to think about network-management, thus facilitating for
implementing advanced and enriched self-manageability of network devices and
networks. This allows us to re-engineer implicit control-loops, that are currently
buried deeply into many protocol engines, into explicit control-loops, communi-
cating over standardized interfaces with heavily optimized and flexible decision
making logics changeable and swappable on the fly.

In the case of OSPF, we undertook the first steps of this process. We identified
the most important control-loops intrinsic to OSPF, which makes it possible to
open up the protocol and incorporate it into external control-loops, where neces-
sary. We found that very little external control is needed for the basic operation
of OSPF. One such issue is auto-configuration with proper routing profiles for
bootstrapping. In the case of self-optimization, another area where OSPF is in
need for external control, we found that decision making has the chance to be
more effective at higher levels of the network management hierarchy, due to the
greater amount of knowledge that can be made available to the optimization
algorithm. For further information on standardizing autonomic behaviors, DEs,
MEs and their interactions over well-defined control loop hierarchies, see the
EFIPSANS project page at [5], or consult [4].

We believe that taking a fresh look at OSPF from the standpoint of auto-
nomic networking, identifying some of its intrinsic self-* functionality and dis-
covering the ways these functions can be enriched, three ends we tackled in this



paper, will help better understand the fundamentals of how protocol-intrinsic
and external control-loops need to interact wherever necessary, and it will be
instructive in engineering a truly self-adaptive future routing architecture, as
the one illustrated in this paper.

Acknowledgement

The first author was supported by the Janos Bolyai Fellowship of the Hungarian
Academy of Sciences. This work was carried out as part of the EU FP7 EFIP-
SANS project [5]. The authors would like to thank for the anonymous reviewers
for their insightful comments, which greatly contributed to advance the quality
of the paper.

References

1. Moy, J.: OSPF Version 2. RFC 2328 (April 1998)
2. Oran, D.: OSI IS-IS Intra-domain Routing Protocol. RFC 1142 (February 1990)
3. Fortz, B., Thorup, M.: Internet traffic engineering by optimizing OSPF weights.

In: INFOCOM (2). (2000) 519–528
4. Chaparadza, R., Papavassiliou, S., Kastrinogiannis, T., Vigoureux, M., Dotaro, E.,

Davy, A., Quinn, K., Wodczak, M., Toth, A., Liakopoulos, A., Wilson, M.: Creating
a viable evolution path towards self-managing future internet via a standardizable
reference model for autonomic network engineering. In: Proceedings of FIA’09,
also published in the Future Internet Book, Prague (May 2009)

5. The EFIPSANS Project: http://www.efipsans.org.
6. Katz, D., Kompella, K., Yeung, D.: Traffic Engineering (TE) Extensions to OSPF

Version 2. RFC 3630 (September 2003)
7. Kompella, K., Rekhter, Y.: OSPF Extensions in Support of Generalized Multi-

Protocol Label Switching (GMPLS). RFC 4203 (October 2005)
8. Apostolopoulos, G., Kama, S., Williams, D., Guerin, R., Orda, A., Przygienda, T.:

QoS Routing Mechanisms and OSPF Extensions. RFC 2676 (August 1999)
9. Villamizar, C.: OSPF Optimized Multipath (OSPF-OMP). Internet Draft (Feb

1999)
10. Shand, M., Bryant, S.: IP Fast Reroute Framework. Internet Draft (Feb 2009)
11. Katz, D., Ward, D.: Bidirectional forwarding detection. Internet Draft (Feb 2009)
12. Enyedi, G., Szilágyi, P., Rétvári, G., Császár, A.: IP Fast ReRoute: Lightweight

Not-Via without additional addresses. to appear at INFOCOM’09 (May 2009)
13. Pei, G., Gerla, M., Chen, T.W.: Fisheye state routing: A routing scheme for ad

hoc wireless networks. In: Proceedings of ICC 2000, New Orleans, LA (June 2000)
14. Levchenko, K., Voelker, G.M., Paturi, R., Savage, S.: XL: an efficient network

routing algorithm. SIGCOMM Comput. Commun. Rev. 38(4) (2008) 15–26
15. Khanna, A., Zinky, J.: The revised arpanet routing metric. SIGCOMM Comput.

Commun. Rev. 19(4) (1989) 45–56
16. Rétvári, G., B́ıró, J.J., Cinkler, T.: On shortest path representation. IEEE/ACM

Trans. Netw. 15(6) (2007) 1293–1306
17. Thorup, M.: OSPF areas considered harmful. Internet Draft (April 2003)
18. Teixeira, R., Shaikh, A., Griffin, T., Rexford, J.: Dynamics of hot-potato routing

in IP networks. SIGMETRICS Perform. Eval. Rev. 32(1) (2004) 307–319


