
IP Fast ReRoute: Lightweight Not-Via

Gábor Enyedi1, Gábor Rétvári1, Péter Szilágyi1, and András Császár2

1 Department of Telecommunications and Media Informatics
Budapest University of Technology and Economics

Magyar tudósok körútja 2., Budapest, Hungary, H-1117
{enyedi, retvari, szilagyi}@tmit.bme.hu

2 Tra�cLab, Ericsson Research
Laborc utca 1., Budapest, Hungary, H-1037

Andras.Csaszar@ericsson.com

Abstract. In order for IP to become a full-�edged carrier-grade trans-
port technology, a native IP failure-recovery scheme is necessary that can
correct failures in the order of milliseconds. IP Fast ReRoute (IPFRR)
intends to �ll this gap, providing fast, local and proactive handling of
failures right in the IP layer. Building on experiences and extensive mea-
surement results collected with a prototype implementation of the pre-
vailing IPFRR technique, Not-via, in this paper we identify high address
management burden and computational complexity as the major causes
of why commercial IPFRR deployment still lags behind, and we present
a lightweight Not-via scheme, which, according to our measurements,
improves these issues.

Keywords: QoS, resilience, IP, fast reroute, redundant trees

1 Introduction

IP has come a long way to become a cost-e�ective bearing platform for com-
mercial services, providing scalable QoS, point-and-click management, secure
VPN services, unpaired scalability, etc. There is, however, an important piece
still missing in the puzzle: a resilience scheme capable to treat transient and
persistent failures in some tens of milliseconds. Nowadays, IP networks rely on
the somewhat outdated resilience scheme built into routing protocols, like Open
Shortest Path First (OSPF), hardly fast enough for multimedia applications.
Hence, operators resort to working around the limitations of IP, deploying for
instance MultiProtocol Label Switching (MPLS) Fast ReRoute, and tolerate the
implied boost in capital and operational expenditures.

In response to these challenges, the Internet Engineering Task Force has
initiated the IP Fast Reroute framework [1] to introduce fast, local and proactive
failure recovery in IP networks. �Local�, in this context, means that only routers

G. Rétvári was supported by the János Bolyai Fellowship of the Hungarian Academy
of Sciences.



2

in the vicinity of the failed component repair, and �proactive� means that detours
are precomputed well in advance. To our days, many IPFRR proposals have
come to existence, yet the largest industrial backing is undoubtedly behind the
technique based on the notion of �Not-via addresses� [2]. In order to distinguish
detoured packets from ordinary packets, so that special routing can be applied to
them, Not-via introduces an alternative address space: packets tunneled around
the failed component are destined to certain not-via addresses, clearly separable
from normal addresses and unambiguously communicating which component
the sender believes to be the cause of the failure. This way, detours simplify into
shortest paths in a topology with the failed component deleted, and rerouting
boils down to pushing the packet to a pre-established IP-in-IP tunnel, a cheap
operation now commonly implemented in the fast-path of IP routers. This makes
Not-via a practical and easy-to-deploy IPFRR technique.

This paper came into being in reaction to the vast operational experience we
gathered on a Not-via-enabled IP testbed deployed at BME-TMIT [3]. Thanks to
our prototype system, we are now in a position to be able to thoroughly judge on
Not-via's pros and cons. We found that Not-via raises serious address manage-
ment issues, originating from the need to hand out many not-via addresses, and
it poses substantial additional CPU-load on IP routers. This is objectionable, as
contemporary IP infrastructure, even without IPFRR, is actually struggling to
keep up with the ever-increasing routing tables. The signi�cant additional man-
agement and computational cost makes operators reluctant to adopt IPFRR,
despite of its potential bene�ts.

To improve the manageability of Not-via, we present a lightweight Not-via
scheme. The main idea is, on the traces of [4], to adopt the concept of node-
redundant trees (simply redundant trees in the sequel) for IPFRR and apply
them directly to Not-via. As shall be shown, this modi�cation reduces the num-
ber of not-via addresses, cuts the computational complexity down to the level of
plain shortest path routing, and it removes many corner cases that plague the
original Not-via proposal.

The rest of the paper is organized as follows. In Section 2, we discuss Not-via
and we summarize our operational experiences. In Section 3, we recast Not-
via over redundant trees, we discuss the issue of additional addresses and we
report on a related theoretical result: a distributed algorithm which �nds next-
hops in redundant trees corresponding to all nodes in linear time. In contrast,
this was only possible in quadratic time or worse previously. We implemented
the modi�ed Not-via in our prototype and in Section 4 we present observations
and measurement results we gathered on our testbed. Finally, in Section 5 we
conclude the paper.

2 IPFRR using not-via addresses

IP Fast ReRoute attains fast response time by handling failures locally, with only
the routers in the vicinity of the failure participating in the repair but other,
distant routers not being informed of the failure in any ways. Therefore, IPFRR



3

applies special routing to packets being forwarded along a detour. Otherwise,
loops might emerge as a distant router not aware of the failure might blindly
loop the detoured packet back along the default forwarding path. Not-via uses the
destination address in IP packets to mark whether the packet is being forwarded
on the default path or in an IP-to-IP tunnel along a detour. The starting node of
the detour is the router whose next-hop has become unreachable, and the tunnel
is terminated at the next-next-hop (NNH), the second closest node along the
shortest path tree. This facilitates common handling of node and link failures.

Perhaps an example is in order here. Consider the network depicted in Fig. 1,
and suppose that a packet entering the network at node A is forwarded to the
egress node C. Furthermore, assume that the shortest path (marked by bold
arrows) goes through node B, but A suddenly loses contact with B. Now, B
encapsulates the packet in a new IP header with a special not-via address set as
destination address, which has the semantics �forward me to C (the NNH) not
via B�, and sends it to node D. Thanks to the special destination address, D
will not send the packet back to C on the shortest path (as it would be the case
if default routing applied), but instead sends it to E through LAN L. Node E
forwards the packet to node C where it is decapsulated and passed further along
the default forwarding path as if no failure happened.

Unfortunately, Not-via is a bit more di�cult than that, and anyone trying
to implement it faces painful exceptions and complex corner cases. Consider, for
instance, the so called LAN problem that arises when D tries to send a packet
to node E using LAN L but LAN L fails. On one hand, node D could assume
that all the nodes connected to this LAN failed, in which case it would lose
all connectivity to node E. On the other hand, if selective fault detection was
available on the LAN, then D could distinguish between a LAN failure (when
more than one router attached to the LAN becomes unavailable) and multiple
single router failures. This would provide more e�cient recovery, at the cost of
quadratic number of additional not-via addresses to cover all the possible fault
scenarios. Similar corner cases arise at the decapsulation point of the detours
(the so called last-hop problem) and at bridge nodes [2].

Despite these issues, Not-via is still a practical and rather straight-to-the-
point solution, therefore, we chose Not-via to base our IPFRR testbed onto. After
dealing with all the intricacies of implementing the standard and experimenting
with it in operation, we are now feeling con�dent enough to judge on Not-via's
merits and identify some of its pressing limitations.

Burdening address management: The �rst question an implementor inevitably
faces is how to assign and distribute not-via addresses. As of this writing, there
is no o�cial protocol support for advertising not-via addresses into the rout-
ing domain. The situation is worsened by the fact that a not-via address has
a compound meaning, as it encodes both a destination node and a component
to be avoided, and there is currently no way to communicate this rich seman-
tics between routers. As a work-around, network operators may assign not-via
addresses statically, but this is in�exible, subject to human con�guration errors
and breaks down rapidly as the network increases. Just the sheer number of



4

Fig. 1: Sample network with IP routers
A, B, C, D and E and LAN L. Bold
arrows mark the shortest path to C.

Fig. 2: Sample network. Bold arrows
mark the shortest path to C, dashed
arrows mark the primary and solid ar-
rows mark the secondary redundant
tree rooted at C.

not-via addresses can pose problems: the simple network of Fig. 1 would require
a total of 17 not-via addresses.

Considerable computational overhead: In an ordinary IP network, the next-
hops towards all destinations are obtained by a single shortest path tree (SPT)
calculation. With Not-via, a router must execute as many SPT instances as
there are components that can fail, with the failed component removed from
the topology. Using some simple heuristics one can go down to some few dozen
additional SPT calculations [5], which is still signi�cant. Note that substantial
additional costs show up due to having to deal with an increased number of
entries in the routing tables, establish, maintain and tear down tunnels, etc.

Complexity and special cases: As mentioned above, Not-via brings in subtle
intricacies into routing and in many cases it overrides well-known IP routing
mechanisms. The corner cases mentioned above make implementations convo-
luted and operation of the protocol hardly tractable by operators.

In Section 4, we shall support the above claims with measurement results
obtained on an operational IP testbed. In addition, we note that similar obser-
vations were reported elsewhere [5]. In the next section, we propose deliberate
modi�cations to Not-via in order to remove, or at least mitigate, these compelling
issues.

3 An improved lightweight Not-via

Our modi�ed Not-via technique uses the concept of redundant trees [6]. Redun-
dant trees are basically a pair of directed spanning trees, which have the ap-
pealing property that a single node or link failure destroys connectivity through
only one of the trees, leaving the path along the other tree intact. The concept
was �rst applied to IP Fast ReRoute in [4]. In contrast, in this paper we apply
redundant trees directly to the prevailing IPFRR technique, Not-via. As shall be
shown below, organizing the detours over redundant trees gives rise to an eas-
ily implementable and deployable �lightweight Not-via� scheme: it signi�cantly



5

decreases the number of Not-via addresses, with clever modi�cations it reduces
computational complexity to linear, and it eliminates most of Not-via's corner
cases without introducing new ones.

3.1 Rede�ning the semantics of not-via addresses
Our lightweight Not-via uses ordinary shortest paths for default forwarding, and
a pair of redundant trees (the primary and the secondary backup tree) for re-
silience. Correspondingly, a node v has three IP addresses: a default (Dv), a
primary (Pv) and a secondary (Sv). If there is no failure, packets are forwarded
along the shortest paths as usual. On the other hand, if a failure shows up, pack-
ets are tunneled along either the primary or the secondary tree. This is achieved
by encapsulating the packets into a new IP header with the primary (respectively,
secondary) address of the Next-next-hop set as the outer destination address.
Since, by de�nition of redundant trees, a single failure leaves at least one of the
trees intact, it is guaranteed that packets avoid the failed component.

Consider Fig. 2, depicting the same sample network as before, but now not
only the shortest path but also the primary and the secondary backup trees
directed towards node C are given (observe that the paths in these trees are
node-disjoint). Suppose A has a packet to send to node C. As long as its default
next-hop, B, is alive, A simply passes the packet to B. If, however, B goes down,
A must �nd a backup path, or at least a next-hop that can push the packet
further, towards C. So it encapsulates the packet, sets the outer destination
address to the primary backup address of the NNH (node C) and passes it to
the next-hop along the primary tree, node D. Assuming that D computed the
exact same redundant tree to C (which is not hard to ensure), D will pass
the packet through LAN L and node E to C, where it gets decapsulated and
sent further. If, instead, it is now node E that has to get a packet to C and it
�nds that connectivity to C went away, both its shortest path and its primary
backup path are a�ected by the failure. In this case, the packet is encapsulated
to the secondary backup path and sent through L to B. Note that the secondary
backup path can not be impacted by the failure in this case, as it is node disjoint
from the primary path. Finally, a packet forwarded along the primary path gets
rerouted to the secondary path should it encounter a failure on its path (this
might be the very same failure that pushed the packet to the backup in the �rst
place) but not vice versa.

The forwarding process of the lightweight Not-via scheme is given in Algo-
rithm 1. Note that the operation push X in routing terminology means �encap-
sulate the packet into an IP-in-IP tunnel and set its outer destination address
to X �. The operation X ← pop does the reverse: decapsulates the packet and
puts the address of the innermost IP header to X . D, P and S are the address
spaces of the default, primary and secondary backup addresses.

It is easy to see intuitively that this forwarding rule is correct. First, in the
absence of failures, packets get to their destination along the shortest path as
usual. In case of a single failure, a packet �rst gets to the NNH along either the
primary or the secondary backup path, provided that such paths exist, which



6

Algorithm 1 Forwarding process at node u for a packet destined to address A,
given the set of unavailable neighbors F . The next hop of X is given by nh(X ).
1: if A = Pu or A = Su then # This is the end of the tunnel
2: A ← pop;
3: end if
4: if A = Du then # This is the destination
5: consume the packet; return ;
6: end if
7: if nh(A) /∈ F then # Next hop is operational
8: forward packet to nh(A); return ;
9: end if
10: if A ∈ D then # Default path failed
11: let v be the NNH to A;
12: if nh(Pv) /∈ F then # Forward to primary next hop
13: push Pv and forward packet to nh(Pv); return ;
14: else if nh(Sv) /∈ F then # Forward to secondary next hop
15: push Sv and forward packet to nh(Sv); return ;
16: end if
17: else if A ∈ P then # Primary backup path failed
18: X ← pop;
19: SX ← the secondary backup address for X ;
20: if nh(SX) /∈ F then # Forward to secondary next hop
21: push SX and forward packet to nh(SX); return ;
22: end if
23: end if
24: drop the packet; # Secondary backup failed

is always true as long as the network is 2-connected (see more on this matter
later). Both backups can not be a�ected by the failure at the same time, as they
are node disjoint. So single node or link failures are handled correctly. Finally,
packets can not get into loops in the presence of multiple simultaneous failures,
as a packet is unconditionally dropped should it encounter a failure along the
secondary path.

With this modi�cation, a not-via address protects multiple failures; the pri-
mary address protects the default path and the secondary address protects the
primary backup. In this way, the number of addresses is decreased to 3 per
node, the absolute minimum realizable by the original Not-via only in special
topologies (point-to-point rings). What is more, in certain cases it is possible to
completely avoiding using extra addresses. In traditional IP networks, routers
have a loopback address and a unique address for each interface. Hence, one can
use any two interface addresses as the primary and the secondary address. Since
these addresses are always disseminated by the IGP, other routers can easily
learn them. Naturally, in this case routers should be addressed via their loop-
back, otherwise tra�c destined directly to routers would not be protected. While
in a conventional IP network this technique removes the need to maintain addi-
tional not-via addresses, it must be emphasized that it is not applicable to any



7

arbitrary IP network. Namely, IP backbones running over unnumbered point-
to-point links (e.g., MPLS LSPs) still need to maintain at least two additional
addresses per router, since interfaces usually don't have unique IP addresses in
such cases.

We have seen previously that the original Not-via proposal has some subtle
details, making it di�cult to implement it correctly and understand it in oper-
ation. Though, rede�ning Not-via in terms of redundant trees removes most of
the corner cases. For instance, LANs no more need special treatment: a LAN is
handled like any ordinary node except that it does not get not-via addresses. Ad-
ditionally, in [7] we show an easy way to tackle the problem of bridge nodes that
show up in non-2-connected networks, another corner case in Not-via. Finally,
the last-hop problem is treated by simply repairing to the next-hop, similarly to
Not-via (as a matter of fact, we have already seen this case when we examined
the case of E sending a packet to C and losing connectivity to it).

3.2 Reducing the computational complexity of Not-via

The computational cost of Not-via is dominated by the large number of SPT
calculations, since an SPT with respect to all potentially failing components
needs to be obtained. Suppose there are N nodes and E point-to-point links
in a network and there are no LANs. In this case, Not-via's complexity is
O(N(N log N+E)) (N times the complexity of Dijkstra's SPT algorithm), which
is worse than quadratic in the number of nodes. Unfortunately, without careful
modi�cations the lightweight Not-via would have essentially the same complex-
ity: although a pair of redundant trees comes in linear time, O(E) [8], we need
redundant trees with respect to all destination nodes yielding O(NE) steps in
general. In this section, we show how to reduce this complexity to O(E) using a
simple distributed algorithm.

The idea is that for our lightweight Not-via to work correctly, we do not
need the entire redundant tree instances to all destinations, we just need the
corresponding next-hops. Thus, we compute a single pair of redundant trees, the
primary P and the secondary S, rooted at some designated node r. Then, for
any d 6= r we rewire these trees with d set as root, and we take the corresponding
next-hops along the rebased trees. Since computing the initial redundant tree
takes O(E) steps and, as shall be shown below, we can decide on the next-hops
for a particular node in O(1), the overall complexity is O(N + E) = O(E).

Proposition 1. Let P and S be a pair of redundant trees, rooted at some r, and
perform the following steps to obtain a graph D:

1. reverse the edges in S
2. take the union of the edges of the resultant trees
3. split r into two nodes, r+ and r−, so that edges only enter r+ and only

leave r−

We assume that P and S were so that the graph D yielded by the above steps is:



8

(i) a directed acyclic graph (DAG) and
(ii) there is only one edge entering r+.

While these requirements seem somewhat strong, in reality the majority of
the redundant tree algorithms in the literature easily satisfy Proposition 1. We
used the linear time algorithm in [8]. An alternative is to modify a redundant tree
algorithm so that it immediately produces the DAG (a good candidate would
be the algorithm in [9]). Henceforward, we shall assume that the DAG D is at
our disposal, it satis�es (i) and (ii) and it can be computed in linear time.

De�nition 1. Let the node set of D be V and de�ne a relation (≺) on V as
follows: u ≺ v : u, v ∈ V if and only if there is a directed path from u to v in D.

It is easy to see that (V, (≺)) makes up a bounded partially ordered set
(poset). Because D is a DAG, (≺) is unambiguous. Additionally, since edges
only leave r−, the minimal element is exactly r−. Similarly, r+ is the maximal
element.

De�nition 2. For some node u, let V +
u be the set of the nodes larger than u.

Similarly, let V −
u be the set of nodes smaller than u:

V +
u = {v ∈ V |u ≺ v} , V −

u = {v ∈ V |v ≺ u} .

Additionally, let f+
u (d) denote the �rst hop along some path from u to any d ∈

V +
u , and f−u (d) be the same for any d ∈ V −

u . For the root node r, we de�ne
f+

r (d) = f+
r−(d) and f−r (d) = f−r+(d) for all d ∈ V \ {r+, r−}.

V + and f+(·) can be computed by a Breadth-First-Search (BFS) traversal of
D. Similarly, V − and f−(·) come from a reverse BFS. This way, f+(·) and f−(·)
encode the next-hop along the minimum-hop path, which makes our detours
shorter. Note that in general V +

u ∩ V −
u = ∅ but V +

u ∪ V −
u 6= V \ {u}, because

some nodes might not be ordered with respect to u.

Theorem 1. Given nodes u and d, u 6= d, choose the primary next-hop hP
u (d)

and the secondary next-hop hS
u(d) from u to d as follows:

1. If d ∈ V +
u : hP

u (d) = f+
u (d) and hS

u(d) = f−u (r−)
2. If d ∈ V −

u : hP
u (d) = f+

u (r+) and hS
u(d) = f−u (d)

3. Else: hP
u (d) = f−u (r−) and hS

u(d) = f+
u (r+)

4. Special rules apply at the root node (if u = r):
hP

r (d) = f+
r (d) and hS

r (d) = f−r (d)

Then, interleaving the primary next-hops hP (d) and the secondary next-hops
hS(d) makes up a pair of redundant trees rooted at d.

Proof. To prove the theorem, it is enough to show that following the primary and
the secondary next-hops comprises two loop-free, node-disjoint paths. The rules
encode the intuitive idea: following the next-hops hP (d) we move in increasing
direction in the poset, along hS(d) in decreasing direction, and if u and d are not



9

(a) ordered case (b) unordered case

Fig. 3: Illustration for Theorem 1.

mutually ordered, we move downwards in the poset until we can move upwards
(and vice versa).

First, we show that for two nodes v, w : v ≺ w, what we obtain by following
the primary next-hops hP (w) is a loop-free v → w path. Observe that either
w = f+

v (w) and we arrive to w in the next step, or w ∈ V +
x : x = f+

v (w) and
we can step to hP

x (w) and repeat the same reasoning to eventually arrive to
w. Along the similar lines, following hS(w) yields a loop-free v → w path for
v, w : v Â w.

If d = r, the claim is trivial. Suppose d 6= r and there is an ordering between
u and d, say u ≺ d. Now, following hP (d) yields an u → d path pp (the path
marked by solid arrow in Fig. 3a), and following hS(d) yields �rst a u → r−

path p1
s and then an r+ → d path p2

s (dashed arrow in Fig. 3a). Based on the
observation above, these subpaths are indeed paths and they are loop-free. The
concatenation of p1

s and p2
s gives the secondary path ps. Finally, pp and ps are

node-disjoint: nodes along pp belong to the interval [u, d], p1
s to [r−, u] and p2

s to
[d, r+], and these intervals are disjunct except the endpoints.

If there is no ordering between u and d, the situation is slightly more di�cult:
following hP (d) �rst yields an u → y path p1

p and then a y → d path p2
p, where

y is the �rst node for which u Â y and y ≺ d holds (see the solid arrows in 3b).
Similarly, hS(d) yields �rst a u → x path p1

s and then an x → d path p2
s for

the �rst x : u ≺ x and x Â d (dashed arrows in 3b). Again, concatenation of
the corresponding subpaths yields two node-disjoint paths: �rst, p1

p and p1
s are

node-disjoint because p1
p ∈ V −

u , p1
s ∈ V +

u and V −
u ∩ V +

u = ∅; second, p1
p and

p2
s are also node-disjoint because the nodes of p1

p are not ordered with respect
to d but those of p2

s are; third, pP and pS can not both traverse r, because
x ≺ r+ (due to Proposition 1, condition (ii), we have a node m for which
v ≺ m : v ∈ V \ {r+,m}, so the secondary path turns back in m at the very
latest). Similar reasoning applies to see that the rest of the subpaths are mutually
node-disjoint too. ut

Hence, computing the primary and the secondary next-hops with respect to
each node in the network involves �rst obtaining a pair of redundant trees, then
converting them to a DAG using Proposition 1, two BFS traversals to compute



10

V + and V − and �nally cycling through all nodes to compute the corresponding
next-hops using Theorem 1. All these steps can be performed in linear time,
therefore, the overall complexity of our method is O(E). Thanks to these mod-
i�cations, now it takes O(N log N + E) steps to compute the default next-hops
and an extra O(E) steps speci�c to IPFRR. Therefore, the computational com-
plexity of the lightweight Not-via is dominated by the cost of standard shortest
path routing and the additional penalty of IPFRR simply disappears in the long
run.

Finally, we point out that basically any protection and restoration scheme
relying on redundant trees faces with the problem of �nding redundant trees to
all destinations at the same time. Therefore, the result that this can be done in
linear time might have generic interest beyond IPFRR.

4 Performance evaluation

In this paper, we argue that it is not some deep theoretical limitation or trade-o�
that hampers the wide-scale deployment of IPFRR the most, but rather a couple
of very technical and very concrete practical issues. In order to con�rm this
claim, we implemented and tested both the prevailing IPFRR proposal, Not-via,
and also our lightweight Not-via in an operational IP testbed. Our test system
is a full-�edged IPFRR prototype, deployed on 9 PC routers running a stock
Debian GNU/Linux distribution, the Open Shortest Path First routing protocol
(OSPF) from the Quagga suite of routing daemons [10] and kbfd, a kernel-based
implementation of the Bidirectional Forwarding Detection [11] protocol3. Below,
we brie�y report on some of our most important observations. For a complete
coverage on the measurement results, the reader is referred to [3].

Our experiences indicate that IP Fast ReRoute is just what it promises to
be: fast. Con�guring BFD so that any failure is detected in at most 9 ms (BFD
interval = 3 ms, BFD multiplier = 3), Not-via repairs single failures in 16.65 ms
on average and 18.5 ms at maximum. With conventional OSPF, on the other
hand, one can measure anything between 120 ms and several seconds depending
on the actual topology, the nature and the location of the failure, etc.

Our measurements were primarily aimed at identifying the management cost
of Not-via. We found that considerable management complexity arises from the
need to hand out and maintain vast numbers of not-via addresses. Fig. 4 gives
this number for both the original Not-via and our lightweight Not-via, as com-
puted by our prototype system for some commonplace ISP topologies. To sim-
ulate the e�ect of LANs, we treated 20% of the routers as if they were LANs.
Observe that with the lightweight Not-via, the number of additional addresses
remains modest even in very large topologies. We found, in addition, that the
second most important cost of Not-via comes from its considerable computa-
3 Our modi�cations to Quagga and kbfd are maintained separately at http://opt.
tmit.bme.hu/~kbfd until all of our upstream patches go into the respective produc-
tion releases.



11

Fig. 4: Number of additional addresses
for the original and lightweight Not-via
in commonplace ISP topologies (num-
ber of nodes is given in parentheses),
with every �fth node substituted by a
LAN.

Fig. 5: Execution time of computing the
default and backup next-hops and con-
�guring the forwarding engine for the
original and the lightweight Not-via.

tional complexity. Fig. 5 shows the CPU time needed to compute the default
and the backup next-hops and downloading them into the forwarding engine.

These measurement results cast Not-via in a completely di�erent light: al-
though the computational complexity of Not-via is substantial, yet it is the extra
management burden caused by the extension of the address pool that dominates
its complexity. Our measurements reproduce this burden spectacularly even in
small and middle-sized topologies, and we expect it to become prohibitive in
larger networks. On the other hand, it is exactly this burden where the advan-
tages of the lightweight Not-via really manifest themselves: the time of comput-
ing the next-hops and con�guring the forwarding engine decreases by an order
of magnitude into the range of some few hundred milliseconds, which falls well
within the time range contemporary IP routers perform ordinary shortest path
routing [12].

5 Conclusion

IP Fast ReRoute is one of the last missing technological components from the IP
protocol suite on its way to become a mature carrier-grade transport technology.
In this paper, we argued that, despite of the strong incentives, wide-spread adop-
tion of IPFRR will not occur until the additional cost of IPFRR is reduced to a
level tolerable to network operators. To support our claims, we presented a for-
mal performance evaluation of IPFRR obtained on a full-�edged prototype. As
far as we are aware of, this is the �rst time that such an evaluation is published
in the literature.

Our measurements showed that the immense number of not-via addresses
imposes considerable load on both IP routers and network management. How-
ever, by reformulating Not-via in terms of redundant trees we could decrease the



12

number of additional addresses substantially. We also improved the complexity
of computing the detours to strict linear time from the worse than quadratic
complexity of Not-via. Hence, in the lightweight Not-via the extra computa-
tional complexity of fast reroute amortizes as compared to even shortest path
routing. We discovered, however, that a more signi�cant improvement comes
from rede�ning the semantics of Not-via addresses, so that one address covers
not just one but many failure scenarios, since fewer additional addresses caused
a spectacular drop in the associated management cost. This demonstrates that,
with clever modi�cations to Not-via, the extra load of IPFRR can be brought
down to a tolerable level. We believe that this will further incentivize network
operators to seriously consider deploying IPFRR in the future.

References
1. M. Shand, S. Bryant: IP Fast Reroute framework. Internet Draft, available online:

http://tools.ietf.org/html/draft-ietf-rtgwg-ipfrr-framework-08 (Febru-
ary 2008)

2. S. Bryant, M. Shand, S. Previdi: IP fast reroute using Not-via ad-
dresses. Internet Draft, available online: http://www.ietf.org/internet-drafts/
draft-ietf-rtgwg-ipfrr-notvia-addresses-00.txt (February 2008)

3. P. Szilágyi, Z. Tóth: Design, implementation and evaluation of an IP Fast ReRoute
prototype. Technical report, BME (2008) First prize at Scienti�c Student Confer-
ence '08, available online: http://opti.tmit.bme.hu/~enyedi/ipfrr/.

4. T. Cicic, A. F. Hansen, O. K. Apeland: Redundant trees for fast IP recovery. In:
Broadnets. (2007) 152�159

5. A. Li, P. François, X. Yang: On improving the e�ciency and manageability of
NotVia. In: Proc. of ACM CoNEXT. (2007) 1�12

6. Médard, M., Barry, R.A., Finn, S.G., Galler, R.G.: Redundant trees for preplanned
recovery in arbitary vertex-redundant or edge-redundant graphs. IEEE/ACM
Transactions on Networking 7(5) (Oct 1999) 641�652

7. Enyedi, G., Rétvári, G., Császár, A.: On �nding maximally redundant trees in
strictly linear time. to be submitted to IEEE ICC (2008) available online: http:
//opti.tmit.bme.hu/~enyedi/ipfrr/.

8. Zhang, W., Xue, G., Tang, J., Thulasiraman, K.: Linear time construction of
redundant trees for recovery schemes enhancing QoP and QoS. INFOCOM 2005
(March 2005)

9. Enyedi, G., Rétvári, G.: Finding redundant trees in linear time. submitted to
IEEE Communications Letters (2008) available online: http://opti.tmit.bme.
hu/~enyedi/ipfrr/.

10. : GNU Quagga routing software http://www.quagga.net.
11. D. Katz, D. Ward: Bidirectional forwarding detection. Internet Draft, available

online: http://tools.ietf.org/html/draft-ietf-bfd-base-08 (March 2008)
12. Shaikh, A., Greenberg, A.: Experience in black-box OSPF measurement. In: IMW

'01: Proceedings of the 1st ACM SIGCOMM Workshop on Internet Measurement.
(2001) 113�125


