
IP Fast ReRoute:
Lightweight Not-Via without Additional Addresses

Gábor Enyedi, Péter Szilágyi, Gábor Rétvári
Dept. of Telecommunications and Media Informatics
Budapest University of Technology and Economics

Magyar tudósok körútja 2., Budapest, Hungary, H-1117
Email: {enyedi,szilagyi,retvari}@tmit.bme.hu

András Császár
TrafficLab,

Ericsson Research
Laborc utca 1., Budapest, Hungary, H-1037

Email: Andras.Csaszar@ericsson.com

Abstract—In order for IP to become a full-fledged carrier-
grade transport technology, a native IP failure-recovery scheme is
necessary that can correct failures in the order of milliseconds. IP
Fast ReRoute (IPFRR) intends to fill this gap, providing fast, local
and proactive handling of failures right in the IP layer. Building
on experiences and extensive measurement results collected with
a prototype implementation of the prevailing IPFRR technique,
Not-via, in this paper we identify high address management
burden and computational complexity as the major causes of
why commercial IPFRR deployment still lags behind, and we
present a lightweight Not-via scheme, which, according to our
measurements, improves these issues.

Index Terms—resilience, IP fast reroute, redundant trees

I. INTRODUCTION

IP has come a long way to become a cost-effective bearing
platform for commercial services. There is, however, an im-
portant piece still missing in the puzzle: a resilience scheme
capable to treat failures in tens of milliseconds. In response
to this challenge, the Internet Engineering Task Force has
initiated the IP Fast Reroute framework [1]. To our days,
many IPFRR proposals have come to existence, yet the largest
industrial backing is undoubtedly behind the technique based
on the notion of “Not-via addresses” [2].

This paper came into being in reaction to the vast opera-
tional experience we gathered on a Not-via-enabled IPFRR
testbed deployed at BME-TMIT [3]. We found that Not-
via raises serious address management issues, and it poses
substantial additional CPU-load on IP routers. This additional
management and the extra computational cost makes operators
reluctant to adopt IPFRR, despite of its potential benefits.

To improve the manageability of Not-via, we present a
lightweight Not-via scheme. The main idea is, on the traces
of [4], to adopt the concept of node-redundant trees (simply
redundant trees in the sequel) for IPFRR and apply them
directly to Not-via. As shall be shown, this modification re-
duces the number of not-via addresses, cuts the computational
complexity down to the level of plain shortest path routing, and
it removes many corner cases that plague the original Not-via
proposal.

G. Rétvári was supported by the János Bolyai Fellowship of the Hungarian
Academy of Sciences.

The rest of the paper is organized as follows. In Section II,
we discuss Not-via and we summarize our operational experi-
ences. In Section III, we recast Not-via over redundant trees,
we discuss the issue of additional addresses and we report
on a related theoretical result: a distributed algorithm which
finds next-hops in redundant trees corresponding to all nodes
in linear time. In contrast, this was only possible in quadratic
time or worse previously. We implemented the modified Not-
via in our prototype and in Section IV we present observations
and measurement results we gathered on our testbed. Finally,
in Section V we conclude the paper.

II. IPFRR USING NOT-VIA ADDRESSES

IP Fast ReRoute attains fast response time by handling
failures locally, with only the routers in the vicinity of the
failure participating in the repair but other, distant routers
not being informed of the failure in any ways. Therefore,
IPFRR applies special routing to packets being forwarded
along a detour. Otherwise, loops might emerge as a distant
router not aware of the failure might blindly loop the detoured
packet back along the default forwarding path. Not-via uses the
destination address in IP packets to mark whether the packet
is being forwarded on the default path or in an IP-to-IP tunnel
along a detour. The starting node of the detour is the router
whose next-hop has become unreachable, and the tunnel is
terminated at the next-next-hop (NNH), the second closest
node along the shortest path tree. This facilitates common
handling of node and link failures.

Although Not-via is a practical and rather straight-to-the-
point solution, it has some serious limitations. Below, we
highlight some of the most compelling issues we identified
during the implementation and evaluation of the Not-via-based
IPFRR testbed deployed at BME-TMIT.

Burdening address management: The first question an im-
plementor inevitably faces is how to assign and distribute
not-via addresses. As of this writing, there is no official
protocol support for advertising not-via addresses into the
routing domain. The situation is worsened by the fact that a
not-via address has a compound meaning, as it encodes both a
destination node and a component to be avoided, and there is
currently no way to communicate this rich semantics between



2

Figure 1: Sample network. Bold arrows mark the shortest path
to C, dashed arrows mark the primary and solid arrows mark
the secondary redundant tree rooted at C.

routers. As a work-around, network operators may assign not-
via addresses statically, but this is inflexible, subject to human
configuration errors and breaks down rapidly as the network
increases. Just the sheer number of not-via addresses can pose
problems: the simple network of Fig. 1 would require a total
of 17 not-via addresses.

Considerable computational overhead: In an ordinary IP
network, the next-hops towards all destinations are obtained
by a single shortest path tree (SPT) calculation. With Not-
via, a router must execute as many SPT instances as there are
components that can fail, with the failed component removed
from the topology. Using some simple heuristics one can go
down to some few dozen additional SPT calculations [5],
which is still significant. Note that substantial additional
administrative costs show up due to having to deal with an
increased number of entries in the routing tables, establish,
maintain and tear down tunnels, etc.

Complexity and special cases: Unfortunately, Not-via brings
in subtle intricacies into routing and in many cases it overrides
well-known IP routing mechanisms. Numerous corner cases
must be dealt with, making the implementation convoluted
and operation of the protocol hardly tractable by operators.

In Section IV, we shall support the above claims with
measurement results obtained on an operational IP testbed.
In addition, we note that similar observations were reported
elsewhere [5]. In the next section, we propose deliberate mod-
ifications to Not-via in order to remove, or at least mitigate,
these compelling issues.

III. AN IMPROVED LIGHTWEIGHT NOT-VIA

Our modified Not-via technique uses the concept of re-
dundant trees [6]. Redundant trees are basically a pair of
directed spanning trees, which have the appealing property that
a single node or link failure destroys connectivity through only
one of the trees, leaving the path along the other tree intact.
The concept was first applied to IP Fast ReRoute in [4]. In
contrast, in this paper we apply redundant trees directly to
the prevailing IPFRR technique, Not-via. As shall be shown
below, organizing the detours over redundant trees gives rise
to an easily implementable and deployable “lightweight Not-
via” scheme: it significantly decreases the number of Not-via
addresses, with clever modifications it reduces computational
complexity to linear, and it eliminates most of Not-via’s corner
cases without introducing new ones.

A. Redefining the semantics of not-via addresses

Our lightweight Not-via uses ordinary shortest paths for
default forwarding, and a pair of redundant trees (the primary
and the secondary backup tree) for resilience. Correspond-
ingly, a node v has three IP addresses: a default (Dv), a
primary (Pv) and a secondary (Sv). If there is no failure,
packets are forwarded along the shortest paths as usual. On
the other hand, if a failure shows up, packets are tunneled
along either the primary or the secondary tree. This is achieved
by encapsulating the packets into a new IP header with the
primary (respectively, secondary) address of the Next-next-
hop set as the outer destination address. Since, by definition of
redundant trees, a single failure leaves at least one of the trees
intact, it is guaranteed that packets avoid the failed component.

Consider Fig. 1, depicting a network and the shortest path,
the primary and the secondary backup trees towards node C.
The special node L of this network is representing a LAN.
Suppose A has a packet to send to node C. As long as its
default next-hop, B, is alive, A simply passes the packet to
B. If, however, B goes down, A must find a backup path, or
at least a next-hop that can push the packet further, towards
C. So it encapsulates the packet, sets the outer destination
address to the primary backup address of the NNH (node C)
and passes it to the next-hop along the primary tree, node
D. Assuming that D computed the exact same redundant tree
to C (which is not hard to ensure), D will pass the packet
through LAN L and node E to C, where it gets decapsulated
and sent further. If, instead, it is now node E that has to get
a packet to C and it finds that connectivity to C went away,
both its shortest path and its primary backup path are affected
by the failure. In this case, the packet is encapsulated to the
secondary backup path and sent through L to B. Note that the
secondary backup path can not be impacted by the failure in
this case, as it is node disjoint from the primary path. Finally,
a packet forwarded along the primary path gets rerouted to the
secondary path should it encounter a failure on its path (this
might be the very same failure that pushed the packet to the
backup in the first place) but not vice versa.

The forwarding process of the lightweight Not-via is given
in Algorithm 1. Note that the operation push X in routing
terminology means “encapsulate the packet into an IP-in-
IP tunnel and set its outer destination address to X ”. The
operation X ← pop does the reverse: decapsulates the packet
and puts the address of the innermost IP header to X . D, P and
S are the default, primary and secondary backup addresses.

It is easy to see intuitively that this forwarding rule is
correct. First, in the absence of failures, packets get to their
destination along the shortest path as usual. In case of a single
failure, a packet first gets to the NNH along either the primary
or the secondary backup path, provided that such paths exist,
which is always true as long as the network is 2-connected (see
more on this matter later). Both backups can not be affected
by the failure at the same time, as they are node disjoint.
So single node or link failures are handled correctly. Finally,
packets can not get into loops in the presence of multiple



3

Algorithm 1 Forwarding process at node u for a packet
destined to address A, given the set of unavailable neighbors
F . The next hop of X is given by nh(X ).

1: if A = Pu or A = Su then
2: A ← pop
3: end if
4: if A = Du then
5: consume the packet
6: end if
7: if A ∈ D and nh(A) ∈ F then
8: let v be the NNH to A
9: if nh(Pv) /∈ F then

10: push Pv and forward packet to nh(Pv)
11: else if nh(Sv) /∈ F then
12: push Sv and forward packet to nh(Sv)
13: end if
14: end if
15: if A ∈ P and nh(A) ∈ F then
16: X ← pop
17: SX ← the secondary backup address for X
18: if nh(SX) /∈ F then
19: push SX and forward packet to nh(SX)
20: end if
21: end if
22: if nh(A) /∈ F then
23: forward packet to nh(A)
24: else
25: drop the packet
26: end if

simultaneous failures, as a packet is unconditionally dropped
should it encounter a failure along the secondary path.

With this modification, a not-via address protects multiple
failures; the primary address protects the default path and the
secondary address protects the primary backup. In this way, the
number of addresses is decreased to 3 per node, the absolute
minimum realizable by the original Not-via only in special
topologies (point-to-point rings). What is more, in certain
cases it is possible to completely eliminate extra addresses.
In traditional IP networks, routers have a loopback address
and a unique address for each interface. Hence, one can use
any two interface addresses as the primary and the secondary
address. Since these addresses are always disseminated by the
IGP, other routers can easily learn them. Naturally, in this case
routers should be addressed via their loopback, otherwise traf-
fic destined directly to routers would not be protected. While in
a conventional IP network this technique removes the need to
maintain additional not-via addresses, it must be emphasized
that it is not applicable to any arbitrary IP network. Namely,
IP backbones running over unnumbered point-to-point links
(e.g., MPLS LSPs) still need to maintain at least two additional
addresses per router, since interfaces usually don’t have unique
IP addresses in such cases. Apart from simplifying IP address
management, redefining Not-via in terms of redundant trees

has another important benefit: it removes many of the corner
cases that make Not-via difficult to implement and understand
in operation. For proper operation, Not-via applies special
treatment to LANs, bridge nodes, or the ultimate hop along
the forwarding path. These special cases are all unnecessary
in our lightweight Not-via scheme.

B. Reducing the computational complexity of Not-via

The computational cost of Not-via is dominated by the
large number of SPT calculations, since an SPT with respect
to all potentially failing components needs to be obtained.
Suppose there are N nodes and E point-to-point links in
a network and there are no LANs. In this case, Not-via’s
complexity is O(N(N log N + E)) (N times the complexity
of Dijkstra’s SPT algorithm), which is worse than quadratic
in the number of nodes. Unfortunately, without careful mod-
ifications the lightweight Not-via would have essentially the
same complexity: although a pair of redundant trees comes in
linear time, O(E) [7], we need redundant trees with respect
to all destination nodes yielding O(NE) steps in general. In
this section, we show how to reduce this complexity to O(E).

The idea is that for our lightweight Not-via to work cor-
rectly, we do not need the entire redundant tree instances to all
destinations, we just need the corresponding next-hops. Thus,
at each node we compute a single pair of redundant trees, the
primary P and the secondary S, rooted at some designated
node r. Then, for any d 6= r we rewire these trees with d set
as root, and we take the corresponding next-hops along the
rebased trees. Since computing the initial redundant tree takes
O(E) steps and, as shall be shown below, we can decide on the
next-hops for a particular node in O(1), the overall complexity
is O(N + E) = O(E).

Proposition 1: Let P and S be a pair of redundant trees,
rooted at some r, and perform the following steps: (i) reverse
the edges in S, (ii) take the union of the edges of the resultant
trees and (iii) split r into two nodes, r+ and r−, so that edges
only enter r+ and only leave r−.

We assume that P and S were so that the graph D yielded
by the above steps is: (i) a directed acyclic graph (DAG) and
(ii) there is only one edge entering r+.

While these requirements seem somewhat strong, the major-
ity of the redundant tree algorithms available in the literature
easily satisfy Proposition 1. Good candidates are [7] or [8].

Definition 1: Let the node set of D be V and define a
relation (≺) on V as follows: u ≺ v : u, v ∈ V if and only if
there is a directed path from u to v in D.

It is easy to see that (V, (≺)) makes up a bounded partially
ordered set (poset). Because D is a DAG, (≺) is unambiguous.
Additionally, since edges only leave r−, the minimal element
is exactly r−. Similarly, r+ is the maximal element.

Definition 2: For some node u, let V +
u be the set of the

nodes larger than u: V +
u = {v ∈ V |u ≺ v}. Similarly, let

V −
u be the set of nodes smaller than u: V −

u = {v ∈ V |v ≺
u}. Additionally, let f+

u (d) denote the first hop along some
path from u to any d ∈ V +

u , and f−u (d) be the same for any



4

d ∈ V −
u . For the root node r, we define f+

r (d) = f+
r−(d) and

f−r (d) = f−r+(d) for all d ∈ V \ {r+, r−}.
V + and f+(.) can be computed by a Breadth-First-Search

(BFS) traversal of D. Similarly, V − and f−(.) come from
a reverse BFS. This way, f+(.) and f−(.) encode the next-
hop along the minimum-hop path, which makes our detours
shorter. Note that in general V +

u ∩ V −
u = ∅ but V +

u ∪ V −
u 6=

V \{u}, because some nodes might not be ordered with respect
to u.

Theorem 1: Given nodes u and d, u 6= d, choose the
primary next-hop hP

u (d) and the secondary next-hop hS
u(d)

from u to d as follows:
1) If d ∈ V +

u : hP
u (d) = f+

u (d) and hS
u(d) = f−u (r−)

2) If d ∈ V −
u : hP

u (d) = f+
u (r+) and hS

u(d) = f−u (d)
3) Else: hP

u (d) = f−u (r−) and hS
u(d) = f+

u (r+)
4) Special rules apply at the root node (if u = r):

hP
r (d) = f+

r (d) and hS
r (d) = f−r (d)

Then, interleaving the primary next-hops hP (d) and the sec-
ondary next-hops hS(d) makes up a pair redundant trees
rooted at d.

Proof: To prove the theorem, it is enough to show that fol-
lowing the primary and the secondary next-hops comprises two
loop-free, node-disjoint paths. The rules encode the intuitive
idea: following the next-hops hP (d) we move in increasing
direction in the poset, along hS(d) in decreasing direction,
and if u and d are not mutually ordered, we move downwards
in the poset until we can move upwards (or vice versa).

First, we show that for two nodes v, w : v ≺ w, what we
obtain by following the primary next-hops hP (w) is a loop-
free v → w path. Observe that either w = f+

v (w) and we
arrive to w in the next step, or w ∈ V +

x : x = f+
v (w) and we

can step to hP
x (w) and repeat the same reasoning to eventually

arrive to w. Along the similar lines, following hS(w) yields a
loop-free v → w path for v, w : v Â w.

If d = r, the claim is trivial. Suppose d 6= r and there is an
ordering between u and d, say u ≺ d. Now, following hP (d)
yields an u → d path pp (the path marked by solid arrow in
Fig. 2a), and following hS(d) yields first a u → r− path p1

s

and then an r+ → d path p2
s (dashed arrow in Fig. 2a). Based

on the observation above, these subpaths are indeed paths and
they are loop-free. The concatenation of p1

s and p2
s gives the

secondary path ps. Finally, pp and ps are node-disjoint: nodes
along pp belong to the interval [u, d], p1

s to [r−, u] and p2
s to

[d, r+], and these intervals are disjunct except the endpoints.
If there is no ordering between u and d, the situation is

slightly more difficult: following hP (d) first yields an u → y
path p1

p and then a y → d path p2
p, where y is the first node

for which u Â y and y ≺ d holds (see the solid arrows in
2b). Similarly, hS(d) yields first a u → x path p1

s and then an
x → d path p2

s for the first x : u ≺ x and x Â d (dashed arrows
in 2b). Again, concatenation of the corresponding subpaths
yields two node-disjoint paths: first, p1

p and p1
s are node-

disjoint because p1
p ∈ V −

u , p1
s ∈ V +

u and V −
u ∩ V +

u = ∅;
second, p1

p and p2
s are also node-disjoint because the nodes

of p1
p are not ordered with respect to d but those of p2

s are;
third, pP and pS can not both traverse r, because x ≺ r+ (due

(a) ordered case (b) unordered case

Figure 2: Illustration for Theorem 1.

to Proposition 1, condition (ii), we have a node m for which
v ≺ m : v ∈ V \ {r+,m}, so the secondary path turns back
in m at the very latest). Similar reasoning applies to see that
the rest of the subpaths are mutually node-disjoint too.

Hence, computing the primary and the secondary next-
hops with respect to each node in the network involves first
obtaining a pair of redundant trees, then converting them to a
DAG using Proposition 1, two BFS traversals to compute V +

and V − and finally cycling through all nodes to compute the
corresponding next-hops using Theorem 1. All these steps can
be performed in linear time, therefore, the overall complexity
of our method is O(E). Thanks to these modifications, now
it takes O(N log N + E) steps to compute the default next-
hops and an extra O(E) steps specific to IPFRR. Therefore,
the computational complexity of the lightweight Not-via is
dominated by the cost of standard shortest path routing and
the additional penalty of IPFRR simply disappears in the long
run.

Finally, we point out that basically any protection and
restoration scheme relying on redundant trees faces with the
problem of finding redundant trees to all destinations at the
same time. Therefore, the result that this can be done in linear
time might have generic interest beyond IPFRR.

IV. PERFORMANCE EVALUATION

In this paper, we argue that it is not some theoretical
limitation or trade-off that hampers the wide-scale deployment
of IPFRR the most, but rather a couple of very technical
and practical issues. In order to confirm this claim, we
implemented and tested both the prevailing IPFRR proposal,
Not-via, and also our lightweight Not-via in an operational
IP testbed. Our test system is a full-fledged IPFRR prototype,
deployed on 9 PC routers complete with Open Shortest Path
First (OSPF) routing and Bidirectional Forwarding Detection
[9]. Below, we briefly report on some of our most important
observations. More details can be found in [3].

Our experiences indicate that IP Fast ReRoute is just what
it promises to be: fast. Configuring BFD so that any failure is
detected in at most 9 ms (BFD interval = 3 ms, BFD multiplier
= 3), Not-via repairs single failures in 16.65 ms on average
and 18.5 ms at maximum. With conventional OSPF, on the
other hand, one can measure anything between 120 ms and
several seconds depending on the actual circumstances.

Our measurements were primarily aimed at identifying the
management cost of Not-via. We found that considerable



5

Figure 3: Number of additional addresses for the original and
lightweight Not-via in commonplace ISP topologies (number
of nodes is given in parentheses), with every fifth node
substituted by a LAN.

Figure 4: Execution time of computing the default and backup
next-hops and configuring the forwarding engine for the orig-
inal and the lightweight Not-via.

management complexity arises from the need to hand out
and maintain vast numbers of not-via addresses. Fig. 3 gives
this number for both the original Not-via and our lightweight
Not-via, as computed by our prototype system for some
commonplace ISP topologies. To simulate the effect of LANs,
we treated 20% of the routers as if they were LANs. We ob-
serve that using lightweight Not-via the number of additional
addresses remains modest even in very large topologies.

The second most important cost of Not-via comes from
its considerable computational and administrative complexity.
Fig. 4 compares the CPU time needed to compute the default
and the backup next-hops and downloading them into the
forwarding engine, over both the original and the lightweight
Not-via. It turns out that even though the computational com-
plexity of Not-via is substantial, yet it is the extra management
burden caused by the extension of the address pool that
dominates its complexity. Our measurements reproduce this
burden spectacularly. On the other hand, it is exactly this
burden where the advantages of the lightweight Not-via really
manifest themselves: the time of computing the next-hops and
configuring the forwarding engine decreases by an order of
magnitude into the range of some few hundred milliseconds.

V. CONCLUSION

IP Fast ReRoute is the last missing technological component
from the IP protocol suite to become a mature carrier-grade
transport technology. In this paper, we argued that, despite
of the strong incentives, wide-spread adoption of IPFRR will
not occur until the additional cost of IPFRR is significantly
reduced. To support our claims, we presented a formal perfor-
mance evaluation of IPFRR obtained on a full-fledged proto-
type. These performance evaluations showed that the currently
standardized IPFRR technique, Not-via, imposes considerable
extra load on both IP routers and network management.

To tackle these issues, we introduced “lightweight Not-via”:
Not-via reformulated in terms of redundant trees. This allowed
us to decrease the complexity of computing the detours to strict

linear time, so the extra CPU load of IPFRR is amortized as
compared to even plain shortest path routing. We redefined the
semantics of not-via addresses, so that one address covers not
just one but many failure scenarios, and we found that having
to deal with less additional addresses causes a spectacular
drop in the associated management cost. Using measurements,
we identified this drop both in terms of the running time of
Not-via and in terms of implicit cost components. Redundant
trees, furthermore, allow for a simpler implementation, and
the simpler semantics of not-via addresses permits invoking
standard IGPs to advertise them. This demonstrates that, with
clever modifications to Not-via, the extra complexity of IPFRR
can be brought down to a tolerable level. We believe that this
will further incentivize network operators to seriously consider
deploying IPFRR in the future.

REFERENCES

[1] M. Shand and S. Bryant, “IP Fast Reroute framework,”
Internet Draft, available online: http://tools.ietf.org/html/
draft-ietf-rtgwg-ipfrr-framework-08, Feb. 2008.

[2] S. Bryant, M. Shand, and S. Previdi, “IP fast reroute using Not-
via addresses,” Internet Draft, available online: http://www.ietf.org/
internet-drafts/draft-ietf-rtgwg-ipfrr-notvia-addresses-00.txt, Feb. 2008.

[3] P. Szilágyi and Z. Tóth, “Design, implementation and evaluation of an
IP Fast ReRoute prototype,” BME, Technical Report, 2008, first prize at
Scientific Student Conference’08, available online: http://opti.tmit.bme.
hu/~enyedi/papers/.

[4] T. Cicic, A. F. Hansen, and O. K. Apeland, “Redundant trees for fast IP
recovery,” in Broadnets, 2007, pp. 152–159.

[5] A. Li, P. Francois, and X. Yang, “On improving the efficiency and
manageability of NotVia,” in Proc. of ACM CoNEXT, 2007, pp. 1–12.

[6] M. Médard, R. A. Barry, S. G. Finn, and R. G. Galler, “Redundant trees
for preplanned recovery in arbitary vertex-redundant or edge-redundant
graphs.” IEEE/ACM Transactions on Networking, vol. 7, no. 5, pp. 641–
652, Oct 1999.

[7] W. Zhang, G. Xue, J. Tang, and K. Thulasiraman, “Linear time construc-
tion of redundant trees for recovery schemes enhancing QoP and QoS,”
INFOCOM 2005, pp. 2702–2710, March 2005.

[8] G. Enyedi, G. Rétvári, and A. Császár, “On finding maximally redundant
trees in strictly linear time,” to be submitted to IEEE ISCC’09, 2009,
available online: http://opti.tmit.bme.hu/~enyedi/papers/.

[9] D. Katz and D. Ward, “Bidirectional forwarding detection,” Internet Draft,
available online: http://tools.ietf.org/html/draft-ietf-bfd-base-08, March
2008.


