
Rate-adaptive Multipath Routing: Distributed, Centralized,

and Hybrid Architectures

Gábor Németha,∗, Gábor Rétvárib

aInter–University Centre for Telecommunications and Informatics
Kassai u. 26., Debrecen, Hungary

bDept. of Telecommunication and Media Informatics
Budapest University of Technology and Economics

Magyar tudósok körútja 2, H-1117, Budapest, Hungary

Abstract

With the increasing volume and volatility of Internet traffic, the need for adaptive
routing algorithms has become compelling lately. An adaptive routing algorithm
controls the rate at which traffic is placed on forwarding paths in concert with the
actual user demands, making it possible to avoid congestion even when no infor-
mation on expected traffic is available. In this paper, we present a new model for
rate-adaptive multipath routing, which allows one to analyze distributed, central-
ized, and hybrid routing architectures within a single framework, and to develop
quantitative as well as qualitative arguments regarding their optimality, stability,
and realizability. By a novel generalization of oblivious routing, we present a cen-
tralized algorithm with provable optimality, and we arrive at the conclusion that
congestion can be completely eliminated even if routing decisions are completely
pre-computed. We find, though, that the complexity of the centralized scheme
can become exponential. Therefore, we develop a hybrid distributed-centralized
algorithm that combines the simplicity of distributed algorithms with the effi-
ciency of centralized ones, and we provide numerical studies demonstrating that
the hybrid scheme performs well in a broad selection of realistic scenarios.

Keywords: rate-adaptive routing, multipath routing, traffic engineering, convex
geometry, centralized routing, distributed routing, hybrid architecture

∗Corresponding author
Email addresses: nemethgab@tmit.bme.hu (Gábor Németh), retvari@tmit.bme.hu

(Gábor Rétvári)

Preprint submitted to Networks February 8, 2015

1. Introduction

Traffic engineering is the art and science of monitoring, analyzing, and opti-
mizing the way traffic is conveyed through a service provider network, in order
to deliver the required user experience to customers, to avoid congestion that
might cause service disruptions, and to materialize the largest profit margin at-
tainable with the installed network infrastructure [1]. The most important means
by which these diverse goals can be realized is a routing algorithm, responsible
for mapping traffic demands to the physical network infrastructure.

The characteristics of the traffic that enters and leaves the network is a cru-
cial factor affecting the design of routing algorithms. In cases when the traffic
matrix is reasonably static for a longer period of time, historical measurements
(and traffic matrices constructed based on them [2]), data mining techniques, and
behavioral analyses can be used to make accurate predictions about future de-
mands [3] and provision forwarding paths statically with respect to the predicted
traffic characteristics [4, 5].

Internet traffic, however, tends to exhibit substantial variation over a wide
range of timescales due to various reasons beyond the control of the operator [6].
The instabilities and oscillations in the inter-domain routing ecosystem [7, 8, 9],
the emergence of overlay networks and peer-to-peer applications, traffic bursts
caused by flash crowds, the emergence of communications protocols without rate
control, and the rapidly changing Internet application landscape, are all fac-
tors making accurate traffic matrix estimation and, correspondingly, provision-
ing static routes increasingly hard [10, 11, 12]. The problem is that when traffic
demands change abruptly on a small timescale, the traffic engineering algorithm
does not have time to re-adjust static forwarding paths appropriately, leading
to congestion, increased packet loss, delay, and jitter, all in all, a deterioration
of user experience. Accordingly, traffic engineering algorithms have gradually
evolved from what was initially a predominantly static setting [4, 5], through op-
timizing for multiple traffic matrices [13, 14, 15, 16, 17, 12] towards fully adaptive
schemes [18, 19, 20, 21, 22, 23, 24, 25].

A distributed routing algorithm applies local information exclusively for mak-
ing routing decisions, thus, at first sight, it might be favorable over a centralized
one. After all, a routing algorithm relying on the global state must permanently
monitor the network and necessitates an additional communications mechanism
to feed decisions back to the routers, raising substantial scalability and robustness
issues. A distributed scheme, on the other hand, does not need any of these, and
hence can be truly scalable and free of single points of failure. Unfortunately, a
distributed algorithm, having access to only a limited scope of the network state,
might be less efficient [26] and might also induce route oscillations arising from
the conflicting interventions of distant actors [27, 19]. Thus, most distributed

2

schemes resort to periodic probing of forwarding paths and collecting feedback
signals to avoid instability, which can cause substantial control overhead [11].

At the moment, very little is known about the price we pay for centralized
and distributed schemes in terms of efficiency, congestion, complexity, and sta-
bility, and whether there exists a practical middle-ground between the two. A
principal reason behind this is that current adaptive routing algorithms are just
too complex to be modeled in a single mathematical framework that would facil-
itate a fair comparison. The model has to be deep enough to expose the whole
spectrum of the distributed–centralized trade-off, while still being simple enough
to be subjected to a thorough mathematical analysis. In this paper, we propose
what we believe is the simplest such model.

In our model, which we call generalized oblivious routing, we are given a capac-
itated network with a set of source-destination pairs, but we do not have access
to any a priori information on traffic demands. The task is to pre-compute a
traffic-matrix-to-path-flow mapping (a so called routing function) that minimizes
congestion over any combination of demands. The model is oblivious in that the
routing function is not allowed to change with the demands.

Our key insight is that different types of routing functions give rise to different
routing architectures, be that distributed, centralized, or hybrid, and studying
the geometric properties of these routing functions allows us to reason about the
respective architectures. Distributed routing, in our model, precisely corresponds
to conventional oblivious routing algorithms [28, 29, 30, 31, 32, 33, 34]. Accord-
ingly, on the distributed end of the architecture spectrum are routing algorithms
that are extremely simple but might cause grave congestion [12, 32]. We show,
contrariwise, that on the centralized side we find provably zero congestion over
any routable traffic matrix and optimizability with respect to any reasonable
traffic engineering objective. However, we also find that centralized schemes can
become overly complex. The truth turns out to be in the middle: we show a
hybrid distributed-centralized scheme that unifies the advantages of the two ex-
tremes and we prove that this hybrid scheme is asymptotically optimal. We also
demonstrate the viability of this scheme in comprehensive numerical evaluations.

1.1. Related work

Traffic management algorithms strive to eliminate network-wide congestion.
To this end, a flow-control algorithm can vary the rate at which source nodes
emit traffic in concert with the congestion feedback received from the network.
Examples are various versions of the venerable Transmission Control Protocol
(TCP) and other network utility maximization schemes [35]. Recently, there
has been a trend towards generalizing these flow-control algorithms to the case
when users communicate over more than one path and they actively control
not only the source rate but the fraction of traffic routed along the individual

3

paths, or the paths themselves, as well [20, 21, 36, 37, 22, 38]. This brings us
to the second form of traffic management algorithms: multipath rate-adaptive
routing [18, 22, 24, 25, 38, 39, 11]. Here, the amount of traffic to be routed
is given, and the task is to distribute the load on the forwarding paths in a
way to minimize congestion. While flow control is chiefly an end-to-end scheme,
multipath rate-adaptive routing is much better suited to intra-domain traffic
engineering where the ingress nodes do not have control over the rate of user
generated traffic.

Right from the beginning, rate-adaptive routing algorithms were conceived
to be distributed [18], which means that only information available to a router
locally can be used to make routing decisions. It quickly turned out, however,
that conflicting decisions made by routers unaware of each other’s state can easily
lead to wide-scale route oscillations [27, 19].

A minimalistic approach to eliminate instability is to apply no rate-adaptation
at all: in oblivious routing traffic splitting ratios are set statically to minimize
congestion over any combination of demands [28, 29, 30, 31, 32, 33, 34]. Curiously,
oblivious routing can be surprisingly efficient: in his seminal work, Räcke showed
that in undirected graphs we pay only a polylogarithmic factor in congestion
compared to the best attainable routing [29]. He later improved the worst-case
bound to purely logarithmic [30], which is asymptotically tight [40]. Directed
graphs do not admit a logarithmic upper bound [31], but in most cases relevant
to practice the congestion penalty remains under 2 [32]. Even though surprisingly
small, this bound still allows substantial link over-subscription [12, 32].

It seems, therefore, that some forms of rate-adaptation is inevitable, but spe-
cial care must be taken to avoid instabilities. Most recent proposals, therefore,
introduce some forms of a signaling mechanism to collect state information from
the network. TeXCP applies periodic path probing to collect link utilization in-
formation [24], REPLEX uses a complete distance-vector protocol infrastructure
to distribute the network state [25], while DATE and TRUMP rely on timely
feedback from the network [22, 38]. This leads to control overhead, hampers
implementation and deployment, and often causes sub-optimality when links are
not allowed to be saturated to full capacity to avoid instability [22, 38]. For a
promising approach to mitigate these issues, see [11].

Recently, there has been a trend towards a hybridization of routing archi-
tectures, where decision making is partially migrated to a central controller [41,
42, 43]. A good example is [39], where a central node computes and sets link
weights based on which routers can calculate the best traffic splitting ratios in-
dependently. At the extreme, one can move the entire routing algorithm to the
central node, yielding a fully centralized architecture in which routers merely ex-
ecute the forwarding commands sent by the controller [44]. This architecture is
particularly well suited for software-defined networks [45, 46]. Unfortunately, a

4

centralized architecture presents its own set of challenges: the central controller
presents a single point of failure and scales badly, and it also needs a stable infor-
mation exchange mechanism implemented by all network nodes. This, in turn,
might induce dead-time control instabilities due to the delay between when data
is measured and respective control action is taken.

It seems, consequently, that each of the distributed, centralized, and hybrid
multipath rate-control architectural models bring about their very own benefits
and pose their own challenges. Measuring these against each other so far has only
been possible on a purely ad-hoc basis, supported only by piecemeal analysis
and anecdotal evidence, but an all-encompassing mathematical framework has
been missing. In this regard, our work can be seen as a sequel to [35]: whereas
Chiang et al. in [35] provide the first comprehensive mathematical framework
to understand control function layering in network architectures, ours is the first
mathematical framework for understanding the organization of control in network
architectures, be that distributed, centralized, or hybrid.

1.2. Our contributions

In this paper, we introduce a new model for rate-adaptive multipath routing.
In our model, different routing architectures correspond to different constraints
on the routing function, the mapping that embodies the very rate-adaptation
mechanism, and through a comprehensive analysis of these constraints we are
able to measure different routing architectures against one another on a common
ground.

The particular contributions are as follows:

• We introduce generalized oblivious routing, our model in which a routing
function is pre-computed to minimize congestion with respect to any traffic
matrix, and we cast conventional oblivious routing in this model.

• We prove that for any network a centralized adaptive routing algorithm
exists that can route any combination of user demands the network admits
with zero congestion.

• We present the first theoretical upper bound on the complexity of the cen-
tralized algorithm.

• We present a hybrid distributed-centralized algorithm that seems to unify
the advantages of the two worlds. We prove that our hybrid scheme is
asymptotically optimal.

• Finally, we evaluate the algorithms in extensive numerical studies and
we find that distributed schemes indeed cause congestion and centralized
schemes can become overly complex, while our hybrid scheme performs well
in many realistic scenarios with reasonable complexity.

5

1.3. Structure of the paper

The paper is organized as follows. We introduce basic notation in Section 2.
We state the model of generalized oblivious routing formally in Section 3 and we
introduce a geometric framework to describe it in Section 4. In Section 5, we cast
conventional oblivious routing algorithms within this framework. In Section 6,
we present the centralized algorithm that naturally arises in this model, we show
how to compute it, and we analyze its complexity. Then, in Section 7 we discuss
a hybrid scheme, in Section 8 we evaluate the algorithms numerically, and we
conclude our work in Section 9.

Mathematical proofs of the theorems are generally relegated to the Appendix,
with the exception of the few ones necessary to get an understanding of the paper.

2. Notation

Let G(V,E) be a strongly connected directed graph, where nodes represent
the routers and directed arcs represent the communication links1 between routers
(see Table 1 for a summary of notation). Let n = |V | and m = |E|, and let
c = [cij > 0 : (i, j) ∈ E] be the column m-vector of (finite) link capacities. Users
are represented by the set of unique source-destination pairs (sk, dk) : k ∈ K =
{1, . . . ,K}, between which a set of static paths Pk is provisioned2. The path set
Pk for user k ∈ K is represented by the arc-path-incidence matrix Pk: this matrix
has m rows and a column for each of the pk paths for user k, and the i, j entry
is 1 if the jth path of k traverses the ith arc and zero otherwise.

Let θk denote the momentary demand of the k-th user presented at the source
node sk. The columnK-vector θ = [θk : k ∈ K] ∈ R

K
+ is called a traffic matrix and

R
K
+ is called the throughput space. Let Θ ⊂ R

K denote the set traffic matrices
can take their values from. This set may be formed by an admission control
mechanism, it may be shaped by the capacity of the ingress and egress links of
the network (as of the so called hose-model [47]), or it might be determined by
some other means. We assume that Θ is compact (closed and bounded) and
contains the origin.

The task of a multipath rate-adaptive routing algorithm is to accommodate
any combination of demands θ on the paths P in a way as to avoid, or at least
to minimize, link over-subscription. The corresponding allocation of demands to
the paths is described by a vector of path-flows u = [uk : k ∈ K] ∈ R

p1 × R
p2 ×

. . .×R
pK = R

p, where uk = [uP : P ∈ Pk] is the path-flow vector of the kth user,
p is the number of all paths, and the Euclidean space R

p is called the flow space.

1In the rest of this paper we use the terms “link” and “arc” interchangeably.
2Path-flow formulation is chosen only for convenience. The results apply equally well to the

arc-flow formulation.

6

Table 1: Notations

G(V,E) a directed graph, with the set of nodes V (|V | = n) and the
set of directed arcs E (|E| = m)

c the column m-vector of arc capacities

(sk, dk) source-destination pairs for k ∈ K = {1, . . . ,K}

Pk the set of sk → dk paths assigned to some k ∈ K

pk the number of paths for user k, pk = |Pk|

p number of all paths, p =
∑

k∈K
pk

Pk an m× pk arc-path incidence matrix for user k

P ij
k the row of Pk corresponding to arc (i, j) ∈ E

uP path-flow routed over path P

uk a column-vector, whose components are uP : P ∈ Pk for
some k ∈ K (whether we mean uk or up will always be clear
from the context)

u a routing, a column p-vector u = [uk : k ∈ K]

θ a traffic matrix, a column K-vector θ = [θk : k ∈ K]

M flow polytope, the set of path flows on P subject to non-
negativity and capacity constraints

T throughput polytope, the set of throughputs realizable over
P subject to capacity constraints

S a routing function S : RK 7→ R
p; if S is affine, we write

S = F · +g, where F is a linear transformation and g is a
vector

Sk the routing function for user k with Sk : RK 7→ R
pk

1 a vector of all 1s of proper size

In fact, one can think of a rate-adaptive routing algorithm as a mapping that
indicates how to associate a path-flow vector u with a given traffic matrix θ.
We call this mapping a routing function, denoted by S (for a precise definition,
see the next section). Then, rate adaptation can be expressed as u = S(θ, . . .),
representing that the path-flows depend on the traffic matrix principally plus,
potentially, further parameters like the delay, free capacity, congestion price,
etc., collected from the forwarding paths. It will often prove convenient to write
S in a decomposed form, where for each k ∈ K a separate function Sk is used to
generate the path-flows uk.

The congestion produced by a routing function S is measured by themaximum
link utilization κS(θ), defined as the maximum of the utilizations taken over all

7

arcs of G when some θ is routed by S:

κS(θ) = max
(i,j)∈E

1

cij

∑

k∈K

P ij
k Sk(θk, . . .) .

3. Generalized oblivious routing

In this paper, our aim is to find a model for rate-adaptive routing that is just
sufficiently and necessarily complex to describe real routing algorithms, while also
lacks all unnecessary degrees of freedom that would inhibit an insightful analy-
sis. Our model, called generalized oblivious routing, is defined by the following
principles:

• Principle-1: The routing function is oblivious to the demands.

• Principle-2: The amount of flow placed to a path by the routing function
depends on the traffic matrix exclusively.

• Principle-3: The routing function is such that it minimizes the maximum
link utilization over any traffic matrix that can appear in the network.

The first principle in essence dictates that the routing function is pre-computed
and fixed for the lifetime of the network3. The second principle expresses that
the only input the routing function takes is the actual traffic matrix. In other
words, for S to be oblivious it must be Θ 7→ R

p. Finally, the third principle
states that a generalized oblivious routing function is such that it minimizes the
worst-case congestion.

In order to formalize the above principles, we need two additional definitions,
namely, the throughput-invariance rule and the related concept of the throughput
mapping T . The throughput-invariance rule expresses the natural requirement
for a routing function to be an actual flow mapping, that is, for any traffic matrix
the flows placed to the individual paths of a user must add up to the actual
demand of that user, as of the input traffic matrix. This requirement is formally
described with the notion of the throughput mapping, a linear transformation
that sums up the path-flows of each user.

Definition 1. The throughput mapping T is a R
p 7→ Θ function T (u) = Qu,

where Q is a K × p matrix, the elements in kth row of Q are all 1 at positions
∑

l<k pl + 1, . . . ,
∑

l≤k pl and all zero otherwise.

3Naturally, the routing function might indeed change whenever the topology changes, for
instance, due to a network upgrade or a device/link failure. These cases are, however, beyond
the scope of this paper.

8

Then, a function S fulfills throughput-invariance if it is Θ 7→ R
p and the

inverse S−1 exists and S−1 ≡ T . Denote the set of such functions by S̄.
Using this formalism, we define a function S∗ as an oblivious routing function,

satisfying the three principles of generalized oblivious routing, if it solves the
following optimization problem:

S∗ = argmin
S∈S̄

max
θ∈Θ

κS(θ) . (1)

The performance of S is measured by the maximum link utilization it produces
over any traffic matrix in Θ:

γS(Θ) = max
θ∈Θ

κS(θ) .

Easily, the smaller γS(Θ) the better the routing. When γS(Θ) ≤ 1 then the
routing function orders feasible routing to every traffic matrix in Θ, while γS(Θ) >
1 marks congestion. We define γ(Θ) = γS∗(Θ) as the absolute performance index.

4. A geometric framework

In this paper, we use a geometric framework to study routing algorithms. This
framework is built on the observation that one can describe routing algorithms
with certain geometric objects and can reason about them in purely geometric
terms. In the context of this paper, these geometric objects will almost exclu-
sively be provided by polyhedra. First, we introduce some basic definitions from
convex analysis [48, 49] and then we present the main geometric concepts of the
framework.

A polyhedron P is an intersection of finitely many half-spaces P = {x : Ax ≤
b} ⊆ R

d, where A is some q × d matrix and b is a column q-vector. A bounded
polyhedron is called a polytope. The scalar multiple of a polytope P = {x :
Ax ≤ b} is defined as λP = {x : Ax ≤ λb}. The boundary ∂P of P consists
of the set of points x ∈ P for which one or more inequalities in Ax ≤ b hold
with equality. Given some points {x1, x2, . . . , xs} in R

d, the convex combination
Conv{x1, . . . , xs} is defined as

Conv{x1, . . . , xs} =

{

x : ∃λ1, . . . , λd, λi ≥ 0, where x =
s

∑

i=1

λixi,
s

∑

i=1

λi = 1

}

.

Given a polytope P , some x ∈ P is an extreme point of P if it cannot be
generated as the convex combination of two distinct points in P . Any polytope
P = {x : Ax ≤ b} is equivalently described by the convex-combination of its
extreme points x1, . . . , xs: P = Conv{x1, . . . , xs}.

9

A simplex is a d-dimensional polytope arising as the convex-combination of
exactly d + 1 extreme points. A polyhedral partition of P is a set of disjunct
(apart from the boundaries) polytopes Qi : i ∈ {1, . . . , q} so that P =

⋃

iQi.
A triangulation is a polyhedral partition Qi : i ∈ {1, . . . , q} so that each Qi is
a simplex. A boundary-triangulation is a triangulation that does not introduce
interior points, i.e., each Qi is a convex combination of some subset of the extreme
points of P .

4.1. The geometry of rate-adaptive routing

Next, we introduce the most important objects that underly our geometric
model of rate-adaptive routing.

Definition 2. The flow polytope M is the subset of the flow space that contains
all admissible routings, subject to link capacities and non-negativity constraints:

M = {u :
∑

k∈K

Pkuk ≤ c, u ≥ 0} ⊂ R
p. (2)

Definition 3. The throughput polytope T is the set of traffic matrices θ for
which there is a routing u that accommodates θ in the network with no link over-
utilization:

T = {θ : ∃u ∈M so that T (u) = θ} .

A sample network with 2 users and 3 paths and the corresponding polytopes
are depicted in Fig. 1. The half-space representation of T is as follows:

T = {θ ≥ 0 : θ1 + θ2 ≤ 2 and θ2 ≤ 1 } .

The polytope T has the following properties [50, 51, 42]:

• T = T (M);

• as an affine mapping of a polytope, T is itself a polytope;

• T is convex : ∀θ1, θ2 ∈ T : Conv{θ1, θ2} ⊆ T ;

• if G is strongly connected, pk > 0 for each k ∈ K, and c > 0, then T is
full-dimensional ;

• T is down-monotone: for each θ ∈ T it holds that ∀0 ≤ τ ≤ θ : τ ∈ T ;

• in general, no polynomial size description for T exists, as there are networks
for which both the half-space and the vertex representation of T grows as
Ω(2K).

10

1 2 4

3

P3

P1

P2

(s1, d1) = (3, 4)
(s2, d2) = (1, 4)

P1 = {(3, 4)}

P2 = {(3, 2), (2, 4)}

P3 = {(1, 2), (2, 4)}

(a)

u2

u3

u1
1

1

1

(b)

θ2

θ1
1 2

1

(c)

Figure 1: A sample directed network with source-destination pairs and the set of paths for each
user (a), and the corresponding flow polytope (b) and throughput polytope (c).

In our geometric framework, the throughput polytope essentially stands for
representing the network (observe that T depends only on the network topology,
link capacities, the source-destination pairs, and the path set). In this regard,
T is more general than the hose model [47], which contains only the constraints
arising on the ingress and egress links of the network. In contrast, T contains all
the constraints arising on any of the bottlenecks within the network.

For our framework to be complete, we still need a geometric object to describe
routing functions. This object will be called the feasible region.

Definition 4. For some routing function S, the feasible region R(S) is the set
of traffic matrices that can be routed in the network by S without causing link
over-subscription:

R(S) = {θ ∈ Θ : S(θ) ∈M} .

A routing function S is optimal if R(S) = T . In this case, S can route any
traffic matrix the network admits.

As it turns out, the throughput polytope and the feasible region are enough
to develop a deep geometric theory for rate-adaptive routing. The optimization
objective of generalized oblivious routing (1) can be written in geometric terms
as

S∗ = argmin
S

{λ : S(Θ) ⊆ λM} . (3)

Correspondingly, γS(Θ) = min {λ : S(Θ) ⊆ λM}. The optimization problem (3)
asks for the routing function S whose image S(Θ) best fits into the set of feasible

11

routings M , in the sense that we need to scalar multiple M with the smallest
λ so that S(Θ) becomes the subset of λM . Here, we invoke the property that
scaling the link capacities c with some scalar λ equals, in geometric terms, scalar
multiplying M with the same λ to λM (c.f., (2)). In fact, if we scaled the link
capacities by exactly γS(Θ), then all traffic matrices in Θ would be routed by S
without congestion.

4.2. Piecewise affine routing functions

Piecewise affine routing functions constitute the foundation on which we build
our analysis, as they are simple enough to facilitate solving (3) yet broad enough
to express most routing methods relevant to practice, like single-path routing,
equal-cost multipath, traffic splitting ratios, etc.

A piecewise affine (or simply, affine) routing function S = {(Si(θ),Di) : i ∈
I} is defined as a collection of simple affine functions Si(θ) over a polyhedral
partition {Di} of Θ [52]:

Si(θ) = F iθ + gi whenever θ ∈ Di i ∈ I ,

where F i are p × K matrices and gi are column p-vectors. Equivalently, when
decomposed into separate routing functions Sk(θ) for the source-destination pairs
k ∈ K we get:

Sik(θ) = F i
kθ + gik whenever θ ∈ Di i ∈ I ,

where F i
k are pk ×K matrices and gik are column pk-vectors. For affine routing

functions the throughput-invariance rule takes the simple form:

∀i ∈ I : 1TF i
kl = δkl =

{

1 if k = l

0 otherwise
, 1T gik = 0 .

A piecewise affine routing function is called singular if it contains only a single
region. i.e., the entire set Θ is routed by the same affine function:

S(θ) = Fθ + g whenever θ ∈ Θ .

This is equal to saying that |I| = 1. Otherwise, S is compound.
We say that S(θ) is block-diagonal, if for the decomposed routing functions

Sik(θ) it holds that each column of the matrix F i
k except for the kth is zero:

∀i ∈ I, ∀k ∈ K, ∀l ∈ K \ {k} : F i
kl ≡ 0 ,

where F i
kl denotes the lth column of F i

k.
A piecewise affine routing function is called piecewise linear, or simply linear,

if ∀i ∈ I : gi ≡ 0. Otherwise, we call S (general) affine.
12

For a singular affine routing function S(θ) = Fθ+ g, the feasible region R(S)
is a polytope:

R(S) = {θ :
∑

k∈K

Pk(Fkθ + gk) ≤ c

Fkθ + gk ≥ 0 ∀k ∈ K} ⊂ R
K . (4)

For compound routing functions, R(S) can be obtained by taking the union
of the feasible regions of each Si(θ) : i ∈ I. This, however, is not necessarily
convex, let alone polyhedral.

5. Distributed architectures: oblivious routing

In the rest of this paper, we analyze the routing architectures that arise
when taking the generalized oblivious routing model over different piecewise affine
routing functions. We begin by showing that simplest of affine routing functions,
singular and block-diagonal functions, naturally give rise to conventional oblivious
routing algorithms [28, 29, 30, 31, 32, 33, 34]. Then, in the next section we
study gradually more complex routing functions and we shall see how these yield
centralized and hybrid generalized oblivious routing schemes.

5.1. Singular block-diagonal routing functions

Oblivious routing asks for a setting of traffic splitting ratios at source nodes
so that the resultant path-flows induce the smallest possible congestion over any
selection of traffic matrices [34]. The fact that a routing algorithm can be realized
in a distributed setting, within our model, precisely corresponds to the require-
ment that the routing function Sk at some source node sk : k ∈ K depends only on
information that is available locally at sk, and this is exactly the actual demand
θk of user k. See the simplified architectural model for our running example in
Fig. 2.

This leads us to the observation that if a piecewise affine routing function S
is singular and block-diagonal, then it can be realized in a distributed setting.
Singularity is important as source nodes sk do not have access to the entire
θ vector and so they cannot decide on which region Di to choose, and block-
diagonality formalizes the requirement for distributed architectures that ∀k ∈ K:
∂Sk

∂θl
= 0 if k 6= l.
The oblivious routing function S∗ for our sample network in Fig. 1 can be

computed as follows. First, observe that the second source-destination pair has
only a single path, thus all its traffic is sent through this path. On the other hand,
the first user has two paths. Let β denote the fraction of traffic sent through node
2. We consider two critical classes of traffic matrices, which produce the largest
link load. One is, obviously, the traffic matrix [1, 1], for which the maximum load

13

21

3

4

[u1u
2
]=S 1��1�

u
3
=S

2
��

2
�

Figure 2: Distributed oblivious routing architecture.

θ2

θ1

T

1 2

1

R(S)

Figure 3: The feasible region for the routing function (5).

1 + β occurs on link (2, 4). Second, the demand [0, 2] causes 2(1− β) maximum
load on link (3, 4). To find the oblivious routing function, we seek β so that the
maximum load is minimal. This occurs when 1 + β = 2(1 − β), which yields
β = 2

3 .
Based on this observation, the oblivious routing function S∗ for our sample

network in Fig. 1 is as follows:





u1
u2
u3



 = S∗(θ) = Fθ + g =





2
3 0
1
3 0
0 1





(

θ1
θ2

)

+





0
0
0



 . (5)

Observe how the blocks in the diagonal of the matrix F correspond to traffic
splitting ratios for the users. For instance, s1 needs to place two thirds of the
demand of user 1 to path P1 and the rest to P2, while for the second user all
traffic is routed along the single path P3. Using (4), for the feasible region we get
R(S∗) = {θ ≥ 0 : θ1 + 3θ2 ≤ 3 and θ1 ≤

3
2} (see Fig. 3). We observe that, in this

example, S∗ = Fθ with transposition g equal to zero and F ≥ 0. This is not a
coincidence, as the next results suggest.

Lemma 1. Suppose 0 ∈ Θ. Now, if a piecewise affine routing function S is
singular on Θ then it is also linear.

The next result allows us to seek singular block-diagonal routing functions
S(θ) = Fθ + g in the simpler form S : Sk = fkθk + gk, where fk and gk are
column pk vectors and fk ≥ 0 for all k ∈ K.

14

Lemma 2. Suppose that S : Sk = fkθk+gk is singular and block-diagonal. Then,
there exists S ′ : S ′k = f ′

kθk+g′k with f ′
k ≥ 0 for each k ∈ K, so that R(S) ⊆ R(S ′).

5.2. Computing the oblivious routing function

To obtain the oblivious routing function, one needs to solve the optimization
problem (3) over singular, block-diagonal routing functions. Below, we shall
aim for a bit more: we solve (3) for general block-diagonal affine functions (not
necessarily linear) over an arbitrary polyhedral set Θ = {θ : Hθ ≤ h}, where H is
a q×K matrix and h is a column q-vector. This generalization will be important
later, when we discuss hybrid oblivious routing algorithms.

Our approach builds on the linear programming method of [32] (but see also
[42]). First, we write (3) in a verbose form:

minλ : fk ≥ 0, 1T fk = 1, 1T gk = 0 ∀k ∈ K (6)

∀(i, j) ∈ E :
∑

k∈K P
ij
k
(fkθk+gk)

cij
≤ λ ∀θ ∈ Θ (7)

Constraint (6) enforces throughput-invariance and (7) requires utilization at
each link to be at most λ. Observe that such a constraint is present for every
θ ∈ Θ, which yields an infinitely large linear program. To overcome this problem,
first we organize (7) into a slave problem for each (i, j) ∈ E:

λ ≥ max
∑

k∈K
P

ij
k
(fkθk+gk)

cij
(8)

∑

k∈K Pkuk ≤ c, Hθ ≤ h (9)

1Tuk = θk, uk ≥ 0 ∀k ∈ K (10)

Dualizing (8)–(10) and collecting all dual slave problems yields a single giant
linear program:

minλ : fk ≥ 0, 1T fk = 1, 1T gk = 0 ∀k ∈ K (11)

∀(i, j) ∈ E : {wijc+ λijh+
∑

k∈K P
ij
k
gk

cij
≤ λ (12)

wijPk ≥ 1Tβij
k ∀k ∈ K (13)

λijHk − βij
k ≥

P
ij
k
fk

cij
∀k ∈ K (14)

wij , λij ≥ 0 } (15)

where Hk is the kth column of H, wij and λij are the duals to the constraints (9)
and βij

k to constraints (10), specific to the dual subproblem corresponding to each
(i, j) ∈ E. This is now a linear program of polynomial size, which can be solved
in polynomial time with standard linear program solvers. The oblivious routing
function can be obtained from the optimal solution in the form S∗k(θ) = fkθk+gk,

15

and the optimal objective function corresponds to γ(Θ). Note that the additional
constraints ∀k ∈ K : gk = 0 can be added to (11)–(15) to compute linear routing
functions instead of general affine ones.

It is important to call the attention to an important difference between con-
ventional oblivious routing and generalized oblivious routing. Generalized obliv-
ious routing aims at minimizing the performance index γS(Θ) = maxθ∈Θ κS(θ),
which captures the congestion in absolute terms. Conventional oblivious routing,
on the other hand, is defined in terms of a relative measure:

αS(Θ) = max
θ∈Θ

κS(θ)

κSOPT
(θ)

(16)

that compares the congestion produced by S to that of a hypothetical optimal
routing function SOPT, not necessarily affine, that attains the smallest possible
congestion for all θ ∈ Θ (see the next section for such a routing function). The
relative performance index α(Θ) = minS αS(Θ) is usually called the competitive
ratio or oblivious ratio.

The next result guarantees that these two performance metrics are equivalent4

in the simple case when Θ = T .

Lemma 3. For any singular linear affine routing function S: γS(T) = αS(T).

In our running example of Fig. 1, we get γ(T) = α(T) = 4
3 , putting the

worst-case congestion of oblivious routing to 4
3 .

6. Centralized architectures: optimal oblivious routing

Distributed oblivious routing is simple but inefficient. The reason is that
singular and block-diagonal routing functions are just too restrictive. In this
section, we show that compound affine routing functions, on the other hand,
allow for provably optimal routing in an inherently centralized setting.

6.1. Compound affine routing functions

We start by giving an example on the sample network of Fig. 1. A possible
routing would be to split the traffic of user 1 evenly between the two paths P1

and P2, and route all traffic of user 2 along its only available path P3. This
corresponds to the linear routing function S1:





u1
u2
u3



 =





1
2 0
1
2 0
0 1





(

θ1
θ2

)

(17)

4Similar argumentation appears in [32].

16

θ2

θ1

D2

1 2

1

D1

Figure 4: Control regions for the routing function (17)–(20).

The feasible region is as follows:

R(S1) = {θ : θ1 + 2θ2 ≤ 2, θ ≥ 0} . (18)

Next, we try to find a routing function S2 on T \ R(S1):

T \ R(S1) = {θ ≥ 0 : θ1 + 2θ2 ≥ 2

θ1 + θ2 ≤ 2, θ2 ≤ 1} . (19)

An adequate choice for S2 is





u1
u2
u3



 =





1 1
0 −1
0 1





(

θ1
θ2

)

+





−1
1
0



 , (20)

as the feasible region R(S2) = {θ : 1 ≤ θ1 + θ2 ≤ 2, 0 ≤ θ2 ≤ 1} contains
T \R(S1). What remained to be done is to determine regions D1 and D2. Easily,
for the routing function to be feasible on the entire set T , we need to ensure that
D1 ⊆ R(S1) and D2 ⊆ R(S2). Care must also be taken to eliminate overlapping
regions, in order for the compound routing function to be well-defined. In our
example, we may choose either S1 or S2 to cover R(S1) ∩ R(S2), but not both.
It is convenient to set D1 = R(S1) and let D2 be T \ D1 (see Fig. 4). This
way the compound routing function will be continuous over T . The resultant
piecewise affine routing function S(θ) = {(Si(θ),Di) : i ∈ {1, 2}} defines a rate-
adaptive multipath routing algorithm, which, as the reader easily checks, routes
any admissible traffic matrix without congestion.

6.2. Computing the oblivious routing function

The next result guarantees that an optimal affine routing function exists for
any network.

Theorem 1. For any capacitated network, there is a compound affine routing
function S = {(Di,Si) : i ∈ I} with I finite so that S is continuous and R(S) =
T .

17

21

3

4

 Routing controller

�
1

�
2

P
a
th

 f
lo

w
s

Figure 5: Centralized oblivious routing architecture.

Proof. Let f(u, θ) be a linear or convex quadratic objective function and con-
sider the multiparametric program

z(θ) = min f(u, θ) :
∑

k∈K Pkuk ≤ c (21)

1Tuk = θk ∀k ∈ K (22)

u ≥ 0 (23)

This is basically a conventional multicommodity flow problem with the specialty
that the right-hand-side depends on the input parameter θ. Then, existence of
a continuous, piecewise affine function S that optimizes (21)–(23) is guaranteed
by [52]. �

For a more in-depth exposition of this result, consult [44].
The significance of this theorem is that, theoretically, no information on ex-

pected traffic is necessary to design a rate-adaptive multipath routing algorithm
that guarantees feasibility over θ ∈ T . One solves a multiparametric linear or
quadratic program, which, although computationally quite involving, is viable
thanks to recent advances in geometric multiparametric programming [52, 53].
This phase can be done offline and yields an optimal compound affine routing
function.

In operation, a central controller periodically scans the network, reads the
momentary traffic demands θ, solves a series of polyhedron inclusion problems
to find i ∈ I so that θ ∈ Di, evaluates u = F iθ + gi and downloads the re-
sultant traffic splitting ratios to the routers (see Fig. 5 for a schematic model
of this architecture). An additional benefit is that centralized demand-oblivious
routing allows for optimizing the routing function through specifying the objec-
tive f(u, θ). Both linear and convex quadratic objective functions are permitted.
Plausible objectives would be to minimize delay or the maximum link utilization.
Furthermore, continuity guarantees smooth transients both within and between
regions.

18

S1 :





u1

u2

u3



 =





1
2

1
2

1
2 −

1
2

0 1





(

θ1
θ2

)

S2 :





u1

u2

u3



 =





1 0
0 0
0 1





(

θ1
θ2

)

(a)

θ2

θ1

D1

D2

1 2

1

0

(b)

Figure 6: An optimal compound affine routing function (a) and the corresponding triangulation
of T (b).

Unfortunately, the centralized routing architecture can become very complex,
as there is no polynomial upper bound on the number of regions and individual
simple routing functions that emerge when solving the multiparametric linear
program [52, 53]. When I exceeds about 105, centralized routing becomes im-
practical as the controller spends most of its time solving polyhedron inclusion
problems trying to figure out which individual routing function to apply. Storage
requirements too can become an issue.

Below we provide an alternative way to calculate the routing function, which
establishes a firm upper bound on the complexity while still maintaining opti-
mality.

Theorem 2. For any capacitated network and any boundary-triangulation Qi :
i ∈ {1, . . . , q} of T , there exists a continuous compound affine routing function
S = {(Di,Si) : i ∈ I} so that |I| = q and R(S) = T .

Corollary 1. The number of the minimal triangulation represents an upper-
bound on the complexity of centralized algorithms.

Note that finding a triangulation for which q is minimal is a very difficult
problem [54], and even if we manage to find one q can still be exponential. For
the running example, we obtain the routing function as depicted in Fig. 6.

7. Hybrid distributed-centralized architectures

Next, we introduce a hybrid distributed-centralized scheme, in order to com-
bine the useful properties of centralized architectures with the simplicity of dis-
tributed ones.

7.1. Compound block-diagonal routing functions

There are two reasons due to which implementing a compound affine routing
function S = {(Di,Si) : i ∈ I} needs central control. First, picking the region

19

21

3

4

 Routing controller

�
1

�
2

S
2

S
1

Figure 7: Hybrid oblivious routing architecture.

S1 :





u1

u2

u3



 =





1 0
0 0
0 1





(

θ1
θ2

)

S2 :





u1

u2

u3



 =





0 0
1 0
0 1





(

θ1
θ2

)

+





1
−1
0





(a)

θ2

θ1D1 D2

1 2

1

0

(b)

Figure 8: A compound block-diagonal routing function (a) and the corresponding control regions
(b).

Di : i ∈ I that contains the actual traffic matrix θ necessitates the knowledge of
each coordinate of θ (c.f., (19)). The control does not need to be particularly fast
in this regard, as usually only a relatively large change in the traffic matrix can
trigger a control region transition. Second, configuring the correct traffic splitting
ratios as prescribed by Si(θ) also needs full knowledge of θ (c.f., (20)). This
process must be very fast to avoid dead-time control instabilities. Nevertheless,
if Si(θ) takes the form of a compound and block-diagonal routing function, then
the second issue is eliminated as now the individual routing functions Si(θ) can
be realized in a distributed fashion and the task of the central node reduces to
the coarse-grained control of the routing function rather than the fine-grained
control of the traffic splitting ratios. This yields a hybrid distributed-centralized
routing architecture (see Fig. 7).

For a hybrid routing function on our running example, see Fig. 8. Observe
that S1 and S2 are block-diagonal and, once downloaded to the routers, do not
need central orchestration. Note that this routing function happens to be optimal
and continuous, but this cannot be guaranteed in general.

7.2. Computing the oblivious routing function

Unfortunately, neither the multiparametric programming techniques nor the
triangulation method can be used to compute compound block-diagonal routing

20

Algorithm 1 Hybrid oblivious routing algorithm

hybrid oblivious routing(Θ)
function hybrid oblivious routing(X)

(λ,S)← minS λ : S(X) ⊆ λM
if λ ≤ Γ then

store (X,S) and return

end if

(X1, X2)←generate cut(X)
hybrid oblivious routing(X1)
hybrid oblivious routing(X2)

end function

functions. Thus, based on [41, 44, 43] we developed a new cutting plane algorithm.
First, we sketch the algorithmic framework and then we discuss how to generate
the cutting planes.

The idea is to compute gradually more efficient and more complex routing
functions by iteratively dividing the input set Θ into smaller and smaller regions.
In the first iteration, we compute a singular block-diagonal routing function S0 for
the entire set Θ. If γS0

(Θ) is below a configured limit, say, Γ, we stop. Otherwise,
Θ is too large to be covered with a single routing function, so we generate a cut
that divides it into two and recurse into the subregions. In the general step, we
divide the actual region X into subregions X1 and X2 so that X = X1 ∪ X2

and we calculate separate block-diagonal routing functions S1 and S2 for X1 and
X2. This can be done by solving (11)–(15) over X1 and X2. The algorithm
terminates if the congestion max γSi

(Xi) falls below Γ, or when the number of
iterations exceeds a certain threshold.

The pseudo-code for the hybrid oblivious routing algorithm is given in Algo-
rithm 1. The result is a compound block-diagonal routing function S = {(Di,Si) :
i ∈ I}, in which all the individual routing functions take the form uk = f i

kθk+gik.
This routing function lends itself readily to distributed implementation, and only
minimal central control is required to pick the right region i ∈ I and the appropri-
ate settings of f i

k and gik. For this, the central controller periodically determines
the actual traffic matrix θ and checks whether θ resides in the current region Di.
If yes, no action is taken. Otherwise, the controller searches for a new region and
downloads the new settings of f i

k and gik to the routers (see again Fig. 7).

7.3. Generating cutting planes

What remained to be done is to define the function GENERATE CUT in
Algorithm 1. Albeit there are infinitely many cutting planes we can choose from,
it is worthwhile to pick one that is orthogonal to one of the axes, that is, can be
written in the form θk ≤ t for some k ∈ K (c.f., Fig. 8). This way, the regions

21

become K-dimensional hyper-rectangles, which simplifies the central controller
significantly.

In operation, the controller first checks whether the cut generated in the first
iteration of Algorithm 1, say, θk1 ≤ t1, holds for θ. Half of the regions is beneath
and the other half is beyond this cut, which immediately rules out half of I.
In the next step, the controller checks the cut arising from the second iteration,
θk2 ≤ t2, and so on, in each step halving the remaining I. Organizing the regions
into such a decision tree improves the online complexity to O(log|I|) from O(|I|).
For more information on orthogonal decision trees, consult [55].

Below, we show a method to search for a given setX the orthogonal cut θk ≤ t,
which for any selection of k ∈ K and any value of t reduces the performance index
the most in the resultant subregions. Choose some k ∈ K, let τk = minθ∈X θk
and Tk = maxθ∈X θk, define the set X1(t) = X ∩ {θ : θk ≤ t} on t ∈ [τk, Tk], and
let γ1(t) = γ(X1(t)). For the “other side” of the cut, let X2(t) = X ∩ {θ : θk ≥
t} : t ∈ [τk, Tk] and let γ2(t) = γ(X2(t)).

Theorem 3. The function γ1(t) is monotonically increasing and continuous,
and γ2(t) is monotonically decreasing and continuous on [τk, Tk].

Our task is now to find a value t for which maximum congestion on the two
subregions is minimal. We observe that (i) as γ1(t) and γ2(t) are continuous on
[τk, Tk], so is their maximum; (ii) X1(Tk) = X2(τk) = X, so γ1(Tk) = γ2(τk) =
γ(X); (iii) max(γ1(t), γ2(t)) has a unique minimum as one of them is increasing
and the other is decreasing; and (iv) this occurs when γ1(t) = γ2(t). This t,
however, is then easy to find by binary search. Note that neither γ1(t) nor γ2(t)
changes strictly, thus the t at which the minimum occurs is not necessarily unique,
but the resultant γ1(t) = γ2(t) is.

Pseudo-code for the binary search algorithm is presented in Algorithm 2. In
every iteration, we compute γ1(t) and γ2(t) for the present value of t ∈ [τk, Tk]
(this amounts to solving the linear program (11)–(15) twice). If |γ1(t)−γ2(t)| < ǫ,
we stop. Otherwise, we continue the search until we find a t for which γ1(t) is
(approximately) equal to γ2(t). We repeat this for all k ∈ K, and we choose the
dimension for which congestion reduces the most. Finally, if multiple dimensions
produce the same worst-case congestion, we divide the current region along its
largest diameter. The role of this tie-breaking rule will be revealed immediately.

Let S∗ be the hybrid oblivious routing function calculated by the above algo-
rithm. We show that S∗ is asymptotically optimal, in the sense that if the control
regions of S∗ are sufficiently small then maximum link utilization converges to 1.
Thanks to the tie-breaking rule in Algorithm 2, this is guaranteed in our case.

Theorem 4. Let S∗ = {(Di,Si) : i ∈ I} be the compound block-diagonal routing
function on T obtained by executing Algorithm 1, so that ∀i ∈ I : Di ⊆ Hbi

ai
with

22

Algorithm 2 Generate an orthogonal cut on region X

function generate cut(X)
for l ∈ K

τl ← minθ∈X θl; Tl ← maxθ∈X θl
tl ← BinarySearch(t ∈ [τl, Tl] : γ1(t) = γ2(t))

end for

ρ← minl∈K γ1(tl)
k ← argmin

l∈K:γ1(tl)=ρ

(Tl − τl)

X1 ← X ∩ {θ : θk ≤ tk}, X2 ← X ∩ {θ : θk ≥ tk}
return (X1, X2)

end function

bik − aik ≤ ǫ for some ǫ > 0 for all k ∈ K. Then, γS∗(T) ≤ 1 + ǫmax(i,j)∈E
ξij
cij

,

where ξij denotes the number of paths sharing link (i, j) ∈ E.

8. Numerical evaluations

So far, we have seen that generalized oblivious routing encompasses dis-
tributed, centralized, and hybrid routing architectures, which naturally arise as
the applications of the model to different piecewise affine routing functions. In
the numerical evaluations presented next, we were curious of the performance of
rate-adaptive routing algorithms within these architectures.

In what follows, for the input traffic matrix set Θ we used the setting Θ = T .
This choice allows us to contrast our results to those obtained for the conventional
competitive ratio α in the literature (since α(T) = γ(T) in this case, as guaranteed
by Lemma 3) and to compare to the optimum γ(T) = 1, which we know is
attainable by a centralized algorithm. Extending the numerical analysis to the
hose model is for further study.

Below, we show the results for three representative ISP topologies (other
topologies showed similar behavior). The first topology is the NSFNET Phase
II network [56], while the remaining two, namely AS 3257 (Tiscali, Europe) and
AS 1239 (Sprint), come from the ISP data maps of the Rocketfuel dataset [57].
We used the same method as in [32] to obtain approximate POP-level topologies:
we collapsed the topologies so that nodes correspond to cities, we eliminated
leaf-nodes and we set link capacities inversely proportional to the link weights.
Details of the topologies are given in Table 2.

We found that it is the number of source-destination pairs K that determines
the complexity and performance of the algorithms to the largest extent, as K
directly influences the size and dimension of the linear programs. Thus, all our
evaluations were run for increasing K, generating multiple scenarios for each

23

0.25

0.5

0.75

1

1.25

1.5

1.75

2

 5 10 15 20 25 30

c
o
m

p
e
ti
ti
v
e
 r

a
ti
o

K

competitive ratio (average)

0.25

0.5

0.75

1

 5 10 15 20 25 30
p
ro

b
a
b
ili

ty
 o

f
c
o
n
g
e
s
ti
o
n

K

PoC (average)
PoC

(a)

0.25

0.5

0.75

1

1.25

1.5

1.75

2

 5 10 15 20 25 30

c
o
m

p
e
ti
ti
v
e
 r

a
ti
o

K

competitive ratio (average)

0.25

0.5

0.75

1

 5 10 15 20 25 30

p
ro

b
a
b
ili

ty
 o

f
c
o
n
g
e
s
ti
o
n

K

PoC (average)
PoC

(b)

0.25

0.5

0.75

1

1.25

1.5

1.75

2

 5 10 15 20 25 30

c
o
m

p
e
ti
ti
v
e
 r

a
ti
o

K

competitive ratio (average)

0.25

0.5

0.75

1

 5 10 15 20 25 30

p
ro

b
a
b
ili

ty
 o

f
c
o
n
g
e
s
ti
o
n

K

PoC (average)
PoC

(c)

Figure 9: The absolute performance index γ and the probability of congestion η as the function
of the number of users K for the distributed oblivious architecture on (a) the NSF, (b) the AS
3257, and (c) the AS 1239 topologies.

24

Table 2: Network topologies used in the evaluations

Name Number of nodes Number of links

NSFNET Phase II topology 12 30

AS3257 (Tiscali, Europe) 27 128

AS1239 (Sprint) 30 138

topology and each selection of K by selecting the source-destination pairs ran-
domly, and finally averaging the results. The source-destination pairs themselves
were chosen according to the bimodal distribution and 2 maximally node-disjoint
paths were provisioned per user.

8.1. Distributed oblivious routing

First, we examined the distributed oblivious routing architecture arising over
singular and block-diagonal routing functions. This corresponds to conventional
oblivious routing, for which plenty of performance studies are available in the
literature [32]. Our geometric approach, however, allows to define a new per-
formance measure, called the probability of congestion (POC). The POC η(S)
is defined as the probability that a traffic matrix chosen according to a uniform
distribution on T causes link over-utilization at some parts of the network when
routed by a routing function S:

η(S) =
Vol(T \ R(S))

Vol(T)
= 1−

Vol(R(S))

Vol(T)
,

where Vol(X) denotes the volume of the setX. In other words, η(S) measures the
quantity of traffic matrices routable by S to that of all routable traffic matrices.
Easily, η(S) ∈ [0, 1] and for an optimal algorithm η(S) = 0. Volumes were
calculated using a home-grown Monte–Carlo integration code.

The average results for γ(T) and η(S) from 50 different evaluations on each K
are given in Fig. 9. What is interesting in the diagrams is not that the worst-case
congestion γ seems to increase as the number of users grow (this trend mostly
vanishes for higher Ks), but rather that even for very small values of γ, say, 1.5,
there is an overwhelming chance (70-90%) that a randomly picked traffic matrix
will overload some link in the network. This suggests that the competitive ratio
α (which, recall, coincides with γ in this case) used extensively in the literature,
is not really a good measure to characterize the performance of oblivious routing.

8.2. Centralized oblivious routing

In contrast to the distributed case, centralized oblivious routing is theoreti-
cally guaranteed to eliminate congestion for any traffic matrix in T . The price

25

1

10

10e2

10e3

10e4

1 2 3 4 5 6 7 8 9 (K)

MP-LP
triangulation

(a)

1

10

10e2

10e3

2 3 4 5 6 7 8 9 (K)

MP-LP
triangulation

(b)

1

10

10e2

10e3

10e4

10e5

2 3 4 5 6 7 8 9 (K)

MP-LP
triangulation

(c)

Figure 10: Number of control regions with the multiparametric programming (“MP-LP”) and
the triangulation technique, as the function of K for (a) the NSF, (b) the AS 3257, and (c) the
AS 1239 topology, respectively.

we pay for optimality, however, is increased complexity, manifesting itself as an
immense number of control regions needed to implement the routing function as
evidenced by the results below.

We used both the multiparametric linear programming approach (Theorem 1)
and the boundary triangulation method (Theorem 2) to obtain optimal routing
controllers5. In particular, we used Multi-Parametric Toolbox (MPT, [58]) for
Matlab to solve (21)–(23) and polymake [59] to compute boundary triangulations.
The objective function for (21)–(23) was set for minimizing the total cost of the
routing.

The average number of control regions, the principal measure of the complex-

5The code of the routing controllers, the network topologies and the path sets used in the
paper are available at https://github.com/ng201/mrx.

26

Table 3: A summary and evaluation of generalized oblivious routing.

Routing
architecture

Routing function Pros Cons

Distributed singular block-diagonal scalable, continuous,
stable

inefficient

Centralized compound general affine optimal, optimizable,
continuous

complex, unstable
(dead-time)

Hybrid compound block-diagonal simple, asymptotically
optimal, stable

not optimizable, only
piecewise continuous

ity of compound routing functions, on 10 evaluations is depicted in Fig. 10 when
K was varied between 1 and 9. The main observations are as follows. First,
for networks serving only a couple of users centralized routing is clearly a viable
option. However, complexity seems to increase exponentially with the number of
users, and it becomes prohibitive when the total number of paths in the system
surpasses about 20. In addition, we found that the multiparametric programming
approach produces slightly better results. As an added bonus, it also allows for
optimizing for arbitrary linear or quadratic objectives, therefore this approach
seems more appealing for obtaining centralized routing controllers.

8.3. Hybrid oblivious routing

Finally, we asked to what extent the hybrid architecture can compensate for
the inefficiency of the distributed architecture and the complexity of the central-
ized one.

The results were obtained as follows. We implemented the cutting plane
algorithm described in Algorithm 1 in a mixture of Matlab, Perl and the GNU
Linear Programming Kit [60]. We gradually increased the iteration limit from
0 to 8. Recall that in each iteration Algorithm 1 subdivides each region into
two, which means that the complexity of the controller has increased from 1
to 28 = 256 control regions. This way, the algorithm essentially reproduces
conventional oblivious routing at the iteration depth of zero, and from this point
it generates consecutively more complex and more efficient routings. The results
for the worst-case congestion γ for K = 7, K = 14, and K = 21 averaged over
50 evaluations are depicted in Fig. 11. The level of significance is beyond 95%.
Results are given both on linear routing functions (fixing gk at zero in the affine
routing functions Sk = fkθk+gk) and general affine functions as well. The former
corresponds to setting traffic splitting ratios at routers, while the latter needs a
somewhat more sophisticated (although still local) load distribution mechanism.

The results are convincing. In all cases our algorithm achieved significant
performance improvement: for K = 7 it essentially eliminated congestion for
AS 3257 and AS 1239 and halved it for NSF, and the reduction in worst-case
congestion is well beyond the confidence level for larger settings of K as well.

27

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

0 1 2 3 4 5 6 7 8 (d)

λ

aff(K=7)
lin(K=7)

aff(K=14)
lin(K=14)
aff(K=21)
lin(K=21)

(a)

 1

 1.1

 1.2

 1.3

 1.4

 1.5

0 1 2 3 4 5 6 7 8 (d)

λ

aff(K=7)
lin(K=7)

aff(K=14)
lin(K=14)
aff(K=21)
lin(K=21)

(b)

 1

 1.1

 1.2

 1.3

 1.4

 1.5

0 1 2 3 4 5 6 7 8 (d)

λ

aff(K=7)
lin(K=7)

aff(K=14)
lin(K=14)

(c)

Figure 11: The absolute performance index γ for (a) the NSF, (b) the AS 3257, and (c) the
AS 1239 topology, as the function of the iteration depth d with linear (“lin”) and affine (“aff”)
routing functions for K = 7, K = 14, and K = 21.

28

Recall that this efficiency was achieved with only 256 control regions. We also
see that general affine routing functions are somewhat more efficient than linear
ones, but the improvement does not seem worth the increased implementation
complexity.

9. Conclusions

In this paper, we have introduced generalized oblivious routing as a general
model for rate-adaptive multipath routing. The model is defined by three prin-
ciples, namely, that the mapping from traffic matrices to routes (i.e., the routing
function) is completely pre-computed; the routing algorithm does not use any
network state or feedback signal apart from the amount of traffic seen at network
ingress; and the objective is to minimize the worst-case congestion. It turned out
that just these principles, when placed into an expressive geometric framework,
can give rise to a rich theory of rate adaptive routing. A summary on the gener-
alized oblivious architectures, the routing functions they are generated with, and
the advantages and disadvantages thereof, is given in Table 3.

It seems that the hybrid distributed-centralized scheme realizes an appealing
trade-off between the two extremes. It needs only minimal control to pick the
routing that best fits the actual user demands, and to do this it uses information
that is often present in central network management software anyways. Once
the correct routing function is downloaded, routers do not need further central
management as long as the traffic matrix does not change too much to warrant
a transition to another control region. With the theoretical guarantee on asymp-
totic optimality, the hybrid scheme looks an appealing option for deploying traffic
engineering in service provider networks.

References

[1] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao. Overview and principles of
Internet traffic engineering. RFC 3272, May 2002.

[2] S. Gunnar, M. Johansson, and T. Telkamp. Traffic matrix estimation on a large IP back-
bone: a comparison on real data. In ACM SIGCOMM conference on Internet measurement,
IMC’04, pages 149–160, 2004.

[3] Kuai Xu, Zhi-Li Zhang, and Supratik Bhattacharyya. Profiling internet backbone traf-
fic: behavior models and applications. SIGCOMM Comput. Commun. Rev., 35:169–180,
August 2005.

[4] D. G. Cantor and M. Gerla. Optimal routing in a packet-switched computer network. IEEE
Transactions on Computer, 23(10):1062–1069, 1974.

[5] B. Fortz, J. Rexford, and M. Thorup. Traffic engineering with traditional IP routing
protocols. IEEE Communications Magazine, 40(10):118–124, Oct 2002.

[6] Matthew Roughan, Albert Greenberg, Charles Kalmanek, Michael Rumsewicz, Jennifer
Yates, and Yin Zhang. Experience in measuring backbone traffic variability: models, met-
rics, measurements and meaning. In ACM SIGCOMM Workshop on Internet measurment,
IMW ’02, pages 91–92, 2002.

29

[7] Renata Teixeira, Aman Shaikh, Tim Griffin, and Jennifer Rexford. Dynamics of hot-potato
routing in IP networks. In Conference on Measurement and modeling of computer systems,
SIGMETRICS ’04/Performance ’04, pages 307–319, 2004.

[8] Renata Teixeira, Sharad Agarwal, and Jennifer Rexford. BGP routing changes: merging
views from two ISPs. SIGCOMM Comput. Commun. Rev., 35:79–82, October 2005.

[9] Renata Teixeira, Nick G. Duffield, Jennifer Rexford, and Matthew Roughan. Traffic matrix
reloaded: Impact of routing changes. In PAM’05, pages 251–264, 2005.

[10] Murali Kodialam, T. V. Lakshman, and Sudipta Sengupta. Efficient and robust routing
of highly variable traffic. In In Proceedings of Third Workshop on Hot Topics in Networks
(HotNets-III, 2004.

[11] A. Kvalbein, C. Dovrolis, and C. Muthu. Multipath load-adaptive routing: putting the
emphasis on robustness and simplicity. In IEEE International Conference on Network
Protocols, ICNP 2009, pages 203–212, oct. 2009.

[12] Hao Wang, Haiyong Xie, Lili Qiu, Yang Richard Yang, Yin Zhang, and Albert Greenberg.
COPE: traffic engineering in dynamic networks. SIGCOMM Comput. Commun. Rev.,
36(4):99–110, 2006.

[13] M. Roughan, M. Thorup, and Y. Zhang. Traffic engineering with estimated traffic matrices.
In ACM SIGCOMM conference on Internet measurement, IMC ’03, pages 248–258, 2003.

[14] C. Zhang, Y. Liu, W. Gong, J. Moll, and R. D. Towsley. On optimal routing with multiple
traffic matrices. In INFOCOM 2005, volume 1, pages 607–618, 2005.

[15] B. Fortz and M. Thorup. Optimizing OSPF/IS-IS weights in a changing world. IEEE
Journal of Selected Areas in Communications, 20(4):756–767, May 2002.

[16] S. Suri, M. Waldvogel, and P. R. Warkhede. Profile-based routing: a new framework for
MPLS traffic engineering. In F. Boavida, editor, Quality of Future Internet Services, volume
2156 of LNCS. Springer, 2001.

[17] D. Medhi. Multi-hour, multi-traffic class network design for virtual path-based dynami-
cally reconfigurable wide-area ATM networks. IEEE/ACM Transactions on Networking,
3(6):809–818, 1995.

[18] R. Gallager. A minimum delay routing algorithm using distributed computation. Commu-
nications, IEEE Transactions on, 25(1):73–85, jan 1977.

[19] D. P. Bertsekas. Dynamic behavior of shortest path routing algorithms for communication
networks. IEEE Trans. on Automatic Control, 27:60–74, 1982.

[20] Frank Kelly and Thomas Voice. Stability of end-to-end algorithms for joint routing and
rate control. SIGCOMM Comput. Commun. Rev., 35(2):5–12, 2005.

[21] P. Key, L. Massoulie, and P.D. Towsley. Path selection and multipath congestion control.
In INFOCOM 2007, pages 143 –151, May 2007.

[22] J. He, M. Bresler, M. Chiang, and J. Rexford. Towards robust multi-layer traffic engineer-
ing: Optimization of congestion control and routing. Selected Areas in Communications,
IEEE Journal on, 25(5):868–880, June 2007.

[23] Constantino M. Lagoa, Hao Che, and Bernardo A. Movsichoff. Adaptive control algorithms
for decentralized optimal traffic engineering in the internet. IEEE/ACM Trans. Netw.,
12(3):415–428, 2004.

[24] Srikanth Kandula, Dina Katabi, Bruce Davie, and Anna Charny. Walking the Tightrope:
Responsive Yet Stable Traffic Engineering. In ACM SIGCOMM’05, August 2005.

[25] Simon Fischer, Nils Kammenhuber, and Anja Feldmann. REPLEX: dynamic traffic engi-
neering based on wardrop routing policies. In CoNEXT’06, pages 1–12, 2006.

[26] Jukka Suomela. Survey of local algorithms. ACM Comput. Surv., 45(2):24:1–24:40, March
2013.

[27] A. Khanna and J. Zinky. The revised ARPANET routing metric. SIGCOMM Comput.
Commun. Rev., 19(4):45–56, 1989.

[28] L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication. In ACM

30

symposium on Theory of computing, STOC ’81, pages 263–277, 1981.
[29] Harald Räcke. Minimizing congestion in general networks. In IEEE Symposium on Foun-

dations of Computer Science, FOCS ’02, pages 43–52, 2002.
[30] Harald Räcke. Optimal hierarchical decompositions for congestion minimization in net-

works. In ACM symposium on Theory of computing, STOC ’08, pages 255–264, 2008.
[31] Yossi Azar, Edith Cohen, Amos Fiat, Haim Kaplan, and Harald Räcke. Optimal oblivious

routing in polynomial time. In ACM symposium on Theory of computing, STOC ’03, pages
383–388, 2003.

[32] D. Applegate and E. Cohen. Making intra-domain routing robust to changing and uncertain
traffic demands: understanding fundamental tradeoffs. In Proceedings of SIGCOMM ’03,
pages 313–324, 2003.

[33] Matthias Englert and Harald Räcke. Oblivious Routing for the Lp-norm. IEEE Foundations
of Computer Science, pages 32–40, 2009.

[34] Harald Räcke. Survey on oblivious routing strategies. In Proceedings of the 5th Conference
on Computability in Europe: Mathematical Theory and Computational Practice, CiE ’09,
pages 419–429, 2009.

[35] Mung Chiang, S.H. Low, A.R. Calderbank, and J.C. Doyle. Layering as optimization
decomposition: A mathematical theory of network architectures. Proceedings of the IEEE,
95(1):255–312, 2007.

[36] Jung-Hoon Yun, Anseok Lee, and Song Chong. Multi-path aggregate flow control for real-
time traffic engineering. In Global Telecommunications Conference, 2008. IEEE GLOBE-
COM 2008. IEEE, pages 1 –5, 2008.

[37] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and D. Towsley. Multi-Path TCP: A joint
congestion control and routing scheme to exploit path diversity in the Internet. Networking,
IEEE/ACM Transactions on, 14(6):1260 –1271, dec 2006.

[38] Jiayue He, Martin Suchara, Ma’ayan Bresler, Jennifer Rexford, and Mung Chiang. Rethink-
ing internet traffic management: from multiple decompositions to a practical protocol. In
ACM CoNEXT’07, pages 1–12, 2007.

[39] D. Xu, M. Chiang, and J. Rexford. Link-state routing with hop-by-hop forwarding can
achieve optimal traffic engineering. Networking, IEEE/ACM Transactions on, 19(6):1717–
1730, 2011.

[40] Yair Bartal and Stefano Leonardi. On-line routing in all-optical networks. In Proceedings
of the 24th International Colloquium on Automata, Languages and Programming, ICALP
’97, pages 516–526, 1997.

[41] Walid Ben-Ameur and Mateusz otkiewicz. Robust routing and optimal partitioning of a
traffic demand polytope. International Transactions in Operational Research, 18(3):307–
333, 2011.

[42] G. Rétvári and G. Németh. Demand-oblivious routing: distributed vs. centralized ap-
proaches. In INFOCOM 2010, March 2010.

[43] G. Németh and G. Rétvári. Hybrid demand oblivious routing: Hyper-cubic partitions and
theoretical upper bounds. In BROADNETS, 2010.

[44] G. Rétvári and G. Németh. On optimal multipath rate-adaptive routing. In 15th IEEE
Symposium on Computers and Communications (ISCC 2010), Riccione, Italy, 2010.

[45] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jen-
nifer Rexford, Scott Shenker, and Jonathan Turner. OpenFlow: enabling innovation in
campus networks. ACM SIGCOMM Computer Communication Review, 38(2):69–74, April
2008.

[46] L. Yang, R. Dantu, T. Anderson, and R. Gopal. Forwarding and control element separation
(ForCES) framework. RFC 3746, April 2004.

[47] J.Andrew Fingerhut, Subhash Suri, and Jonathan S. Turner. Designing least-cost non-
blocking broadband networks. Journal of Algorithms, 24(2):287–309, 1997.

31

[48] G.M. Ziegler. Lectures on Polytopes, volume 152 of Graduate Texts in Mathematics.
Springer, 1998.

[49] B. Grünbaum. Convex Polytopes. John Wiley & Sons, 1967.
[50] L. Boróczki. Átvihető folyamokat léıró poliéder keresése hálózatokban (in Hungarian),

2006. Student’s Tech. Rep.
[51] G. Rétvári, J. J. B́ıró, and T. Cinkler. Fairness in capacitated networks: A polyhedral

approach. In INFOCOM 2007, volume 1, pages 1604–1612, May 2007.
[52] F. Borrelli, A. Bemporad, and M. Morari. Geometric algorithm for multiparametric linear

programming. Journal of Optimization Theory and Applications, 118:515–540, September
2003.

[53] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos. The explicit linear quadratic
regulator for constrained systems. Automatica, 38:3–20, January 2002.

[54] Alexander Below. Complexity of triangulation. Doctoral thesis, Diss., Technische Wis-
senschaften ETH Zurich, Nr. 14672, 2002, 2002.

[55] T. Johansen, A. Grancharova, and R. Grancharova. Approximate explicit constrained
linear model predictive control via orthogonal search tree. IEEE Trans. Automatic Control,
48:810–815, 2003.

[56] B. Chinoy and H. W. Braun. The national science foundation network. Tech.
Rep., CAIDA, available online: http://www.caida.org/outreach/papers/1992/nsfn/

nsfnet-t1-technology.pdf, Sep 1992.
[57] Ratul Mahajan, Neil Spring, David Wetherall, and Tom Anderson. Inferring link weights

using end-to-end measurements. In ACM SIGCOMM Workshop on Internet measurment,
IMW ’02, pages 231–236, 2002.

[58] M. Kvasnica, P. Grieder, and M. Baotić. Multi-Parametric Toolbox (MPT), 2004. available
online: http://control.ee.ethz.ch/~mpt/.

[59] Ewgenij Gawrilow and Michael Joswig. polymake. http://www.math.tu-berlin.de/

polymake/.
[60] The GLPK project: http://www.gnu.org/software/glpk/glpk.html.

Appendix

Proof (Proof of Lemma 1). Throughput-invariance on the singular affine rout-
ing function S(θ) = Fθ + g at the point θ = 0 gives T (S(0)) = T (g) ≡ 0, which
can hold only if g ≡ 0. �

Proof (Proof of Lemma 2). Let Pk = P−
k ∪ P

+
k , where ∀p ∈ P−

k : fkp < 0
and ∀p ∈ P+

k : fkp ≥ 0. Moreover, ∀k ∈ K let τk = min {θk : θ ∈ R(S)} and
Tk = max {θk : θ ∈ R(S)}. Obviously, if τk = Tk, then the routing function
f ′
kp = (Sk(Tk))p/Tk, g

′
kp = 0 satisfies the properties prescribed in the lemma.

Otherwise, we construct S ′ as follows. Set

∀p ∈ P−
k : f ′

kp = 0 and g′kp = fkpTk + gkp .

Note that
∑

p∈P−

k
g′kp ≤ τk, thus, Tk −

∑

p∈P−

k
g′kp > 0. Moreover, let ν =

∑

q∈P−

k
g′kq, and ∀p ∈ P+

k let ρp = fkpTk + gkp and µp = τk−ν
Tk−ν

(fkpTk + gkp).

Finally, set

∀p ∈ P+
k :f ′

kp =
ρp − µp

(Tk − τk)
32

g′kp = fkpτk + gkp −
ρp − µp

Tk − τk
τk .

We show that S′ is a routing function with the required properties. First,
(i) S ′k(τk) ≥ 0 and S ′k(Tk) ≥ 0; (ii) throughput-invariance holds for S ′k(τk) and
S ′k(Tk); (iii) by convexity, non-negativity and throughput invariance holds on
the entire set θk ∈ [τk, Tk]; and finally (iv) ∀k ∈ K, ∀p ∈ Pk, ∀θk ∈ [τk, Tk] :
(S ′k(θk))p ≤ (S ′k(Tk))p = (Sk(Tk))p, so R(S) ⊆ R(S

′). �

Proof (Proof of Lemma 3). Since S is singular and linear, S(λθ) = λS(θ)
for any scalar λ ∈ R. Therefore, κS(θ) is spherical, and hence it reaches its
maximum on the boundary ∂T of T . Then, we get

γS(T) =max
θ∈T

κS(θ) = max
θ∈∂T

κS(θ)

=max
θ∈∂T

κS(θ)

κSOPT
(θ)

= αS(T) ,

using the trivial observation that ∀θ ∈ ∂T : κSOPT
(θ) = 1. �

Proof (Proof of Theorem 2). Let θ1, . . . , θs be the extreme points of T and
let u1, . . . , us be path-flows realizing these extreme points. For any simplex Qj

in a boundary triangulation of T , Qj = Conv{θi0 , θi1 , . . . , θiK} for some K + 1
affinely independent extreme points of T . Let ui0 , . . . , uiK be the path-flows
corresponding to the extreme points θi0 , . . . , θiK . Without loss of generality,
choose θi0 as a basis point and define the K×K matrix Bj = [θi1−θi0 , . . . , θiK −
θi0]. Note that Bj is invertible. Let ui0 be the path-flow realizing θi0 and Uj be
a p×K matrix defined as Uj = [ui1 − ui0 , . . . , uiK − ui0].

Consider an arbitrary point θ ∈ Qj . Then, there exist λ0, λ1, . . . , λK , λk ≥ 0,
∑K

k=0 λk = 1, so that

θ =
K
∑

k=0

λkθik =
K
∑

k=0

λkθik − θi0 + θi0

=
K
∑

k=0

λkθik −
K
∑

k=0

λkθi0 + θi0 =
K
∑

k=0

λk(θik − θi0) + θi0

=

K
∑

k=1

λk(θik − θi0) + θi0 = Bjλ+ θi0 , (24)

where λ is a column K-vector formed by the coordinates λk. Consider the path-
flow

u =
K
∑

k=0

λkuik =
K
∑

k=1

λk(uik − ui0) + ui0 = Ujλ+ ui0 . (25)

33

Observe that u is a routing for θ, as T (u) = T (Uλ + ui0) = T (U)λ + T (ui0) =
Bλ+ θi0 = θ. In addition, u ∈M as u is a convex combination of vectors in M .
Noting that λ = B−1

j (θ − θi0) by (24), we have that

u = UjB
−1
j (θ − θi0) + ui0 = UjB

−1
j θ + (ui0 − UjB

−1
j θi0) (26)

is a feasible singular affine routing function for θ. Since the above holds for any
θ ∈ Q we conclude that (26) is a routing function on the entire simplex Qj .
Using the above construction on each Qi : i ∈ {1, . . . , q} gives a compound affine
routing function S = {(Sj , Qj) : j ∈ {1, . . . , q}}. Finally, continuity is trivial by
(24) and (25). �

Proof (Proof of Theorem 3). Instead of proving this theorem directly, we
rather prove a more general result which establishes the continuity of γ over
any sequence of sets whose elements are sufficiently “close”. Here, closeness
is defined in terms of the Hausdorff distance dH : given polytopes P and Q,
dH(P,Q) = maxx∈P miny∈Q ||x− y||. The following lemma serves as the basis if
the proof.

Lemma 4. Let X ⊂ R
K
+ and let S : Sk(θ) = fkθk + gk be a singular block-

diagonal routing function with ∀k ∈ K : fk ≥ 0 that solves (3) on X. Then, for
any X ⊆ X ′ ⊂ R

K
+ with dH(X,X ′) ≤ ǫ, there is a modified singular block-diagonal

routing function S ′ on X ′ so that

0 ≤ γS′(X ′)− γS(X) ≤
KΠǫ

Λ
,

where Λ is the minimum link capacity and Π = maxk∈K {pk}.

Proof. Starting from the block-diagonal routing function S : Sk(θ) = fkθk +
gk, k ∈ K we construct a modified routing function S so that ∀θ ∈ X ′: S ′(θ) ≥ 0
and γS(X) ≤ γS′(X ′) ≤ γS(X) + KΠǫ

Λ . Note that γS′(X ′) ≥ γS(X) is trivial by
X ⊆ X ′. For each k ∈ K, define τk and Tk as above, and let τ ′k = minθ∈X′ θk
and T ′

k = maxθ∈X′ θk. Note that τ ′k ≤ τk and T ′
k ≥ Tk, and |τk − τ ′k| ≤ ǫ

and |Tk − T ′
k| ≤ ǫ as dH(X,X ′) ≤ ǫ. Let ρ = Sk(τk)

τ ′
k

τk
= fkτ

′
k +

τ ′
k

τk
gk and µ =

Sk(Tk)
T ′
k

Tk
= fkT

′
k+

T ′
k

Tk
gk, and consider the function S ′k(θk) = ρ+(µ−ρ)

θk−τ ′
k

T ′
k
−τ ′

k

. Note

that {S ′k(θk) : θk ∈ [τ ′k, T
′
k]} = Conv(ρ, µ). We observe that (i) S ′k(τ

′
k) = ρ ≥ 0

and S ′k(T
′
k) = µ ≥ 0; (ii) ∀θk ∈ [τk, Tk]: S

′
k(θ) ≥ 0 by the convexity of S ′k;

and (iii) throughput-invariance holds for ρ and µ, and so for S ′k too again by
convexity. Hence, S ′ : S ′k, k ∈ K is an affine block-diagonal routing function. If
S is linear, so is S ′. Next, we show that S and S ′ are close to each other in the
terms of the Hausdorff metric:

∀θ′k ∈
[

τ ′k, T
′
k

]

, ∃θk ∈ [τk, Tk] : |S
′
k(θ

′
k)− Sk(θk)| ≤ 1ǫ (27)

34

First, we prove that ∃θk ∈ [τk, Tk] : |S
′
k(τ

′
k) − Sk(θk)| ≤ 1ǫ. We write |S′

k(τ
′
k) −

Sk(θk)| ≤ |S
′
k(τ

′
k)− Sk(τk)| = |Sk(τk)

τ ′
k

τk
− Sk(τk)| = Sk(τk)

ǫ
τk
≤ 1ǫ. Here, we use

the fact that fk ≥ 0 and 1T fk = 1, thus fk ≤ 1. Similar argumentation shows
∃θk ∈ [τk, Tk] : |S

′
k(T

′
k) − Sk(θk)| ≤ 1ǫ, which proves (27) by convexity. Putting

it all together:

|γS′(X ′)− γS(X)|

=

∣

∣

∣

∣

∣

max
(i,j)∈E

max
θ∈X′

∑K
k=1 P

ij
k S

′
k(θ)

cij
− max

(i,j)∈E
max
θ∈X

∑K
k=1 P

ij
k Sk(θ)

cij

∣

∣

∣

∣

∣

≤ max
(i,j)∈E

{∣

∣

∣

∣

∣

max
θ∈X′

∑K
k=1 P

ij
k S

′
k(θ)

cij
−max

θ∈X

∑K
k=1 P

ij
k Sk(θ)

cij

∣

∣

∣

∣

∣

}

≤ max
(i,j)∈E

1

cij

{∣

∣

∣

∣

∣

K
∑

k=1

P ij
k max

θ∈X′
S ′k(θ)−

K
∑

k=1

P ij
k max

θ∈X
Sk(θ)

∣

∣

∣

∣

∣

}

≤ max
(i,j)∈E

1

cij

{

K
∑

k=1

P ij
k |max

θ∈X′
S ′k(θ)−max

θ∈X
Sk(θ)|

}

(1)

≤ max
(i,j)∈E

1

cij

{

K
∑

k=1

P ij
k 1ǫ

}

≤
KΠǫ

Λ
,

where (1) comes by (27). �

A simple corollary of the above proves the increasing property and left-
continuity of γ1(t).

Corollary 2. Let X ⊂ R
K
+ and let S : Sk(θ) = fkθk + gk be a singular block-

diagonal routing function with ∀k ∈ K : fk ≥ 0 that solves (3) on X. Then, for
any δ > 0 there is ǫ > 0 so that for any convex set X ′ ⊃ X with dH(X,X ′) ≤ ǫ and
the singular block-diagonal routing function S ′ that solves (3) on X ′: |γS(X) −
γS′(X ′)| ≤ δ.

To show right-continuity, we need a little more work.

Corollary 3. Let X ⊂ R
K
+ and let S : Sk(θ) = fkθk + gk be a singular block-

diagonal routing function with ∀k ∈ K : fk ≥ 0 that solves (3) on X. Then, for
any δ > 0 there is ǫ > 0 so that for any convex set X ′ ⊂ X with dH(X,X ′) ≤ ǫ and
the singular block-diagonal routing function S ′ that solves (3) on X ′: |γS(X) −
γS′(X ′)| ≤ δ.

Proof. Suppose we know S ′. Then, using Lemma 4 there is a routing function
S ′′ defined over X ′ so that γS′(X ′) ≤ γS′′(X). Then, due to the optimality of S
on X: |γS′(X ′)− γS(X)| ≤ |γS′(X ′)− γS′′(X)| ≤ KΠǫ

Λ = δ. �

35

Proving the other claim of Theorem 3 that γ2(t) = γ(X2(t)) is decreasing and
continuous goes along similar lines. �

Proof (Proof of Theorem 4). Let S∗ : {(Di,Si) : i ∈ I} be a compound
block-diagonal routing function, obtained by executing Algorithm 1 over the cut-
ting planes generated by Algorithm 2 on the input set Θ. For column K-vectors

a and b: 0 ≤ a ≤ b, define the K-dimensional hyper-rectangle Hb
a =

K
×
k=1

[ak, bk].

Let Hb = Hb
a : a = 0. For any θ ∈ R

K
+ let u be the path-flow vector that mini-

mizes the maximum link utilization for θ and define the trivial routing function
Sθ : Sθk(τ) =

uk

θk
τk, k ∈ K over the singleton set {θ}.

Lemma 5. Let Sθ be a trivial routing function for some θ ∈ Θ.

(i) Sθ is a singular, linear, block-diagonal routing function;

(ii) γS∗(Hθ) ≤ γSθ(Hθ); and

(iii) if θ ∈ T , then γSθ(Hθ) ≤ 1.

Proof. Item (i) is trivial from the definition, (ii) comes by observing that Sθ

is a feasible solution of (3) for each Di : i ∈ I while S∗ is optimal, and (iii) is by
the down-monotonity of R(Sθ). �

Lemma 6. Let 0 ≤ a ≤ b : a, b ∈ R
K
+ with maxk∈K(bk− ak) ≤ ǫ and Hb

a ∩T 6= ∅,
let τ = min{τ : τ ∈ Hb

a} and let Sτ be the trivial routing function for τ . Then,

γSτ (H
b
a ∩ T) ≤ 1 + max

(i,j)∈E

{

ξij
cij

}

ǫ . (28)

Proof. If Hb
a ⊆ T , then γSτ (Hb

a) ≤ 1 by Lemma 5 and so (28) obviously holds.
Otherwise, we write

γSτ (Hb
a) ≤ max

(i,j)∈E
max

θ∈Hb
a∩T

∑K
k=1 P

ij
k S

τ
k (θ)

cij

≤ max
(i,j)∈E

max
θ∈Hb

a

K
∑

k=1

P ij
k S

τ
k (θ)

cij
≤ max

(i,j)∈E

K
∑

k=1

P ij
k S

τ
k (τ + 1ǫk)

ce

≤ max
(i,j)∈E

{

∑K
k=1 P

ij
k S

τ
k (τ)

cij
+

∑K
k=1 P

ij
k S

τ
k (1ǫ)

cij

}

(i)

≤1 + max
(i,j)∈E

∑K
k=1 P

ij
k S

τ
k (1ǫ)

cij

(ii)

≤ 1 + max
(i,j)∈E

{

ξij
cij

}

ǫ ,

where (i) is because τ ∈ T by the down-monotonity of T and (ii) comes by the
definition of ξij . �

36

Putting the above results together: γS∗(T) = max
i∈I

γSi(Di) ≤ max
i∈I

γSi(Hbi
ai
∩

T) ≤ 1 + max
(i,j)∈E

{

ξij
cij

}

ǫ using Lemma 5 and Lemma 6. �

37

