Dynamic Compilation and Optimization of Packet
Processing Programs

Gabor Rétvari+, Laszlé Molnart, Gabor Enyedif, Gergely Pongraczt
*MTA-BME Information Systems Research Group, BME-TMIT
tTrafficLab, Ericsson Research, Hungary

ABSTRACT

Data plane compilation is a transformation from a high-level
description of the intended packet processing functionality
to the underlying data plane architecture. Compilation in this
setting is usually done statically, i.e., the input of the com-
piler is a fixed description of the forwarding plane seman-
tics and the output is code that can accommodate any packet
processing behavior set by the controller at runtime. Below
we advocate a dynamic approach to data plane compilation
instead, where not just the semantics but the intended behav-
ior is also also input to the compiler. We uncover a handful
of runtime optimization opportunities that can be leveraged
to improve the performance of custom-compiled datapaths
beyond what is possible in a static setting.

Keywords

data plane programming, template-based code genera-
tion, runtime optimization

1. INTRODUCTION

Recent innovations in data plane technologies, from
flexible switch ASICs [1,7] and programmable NPUs [3]
to versatile software packet forwarding toolkits [4, 5],
have one thing in common: reconfigurability. These
reconfigurable data plane architectures expose a set of
header-parsing, table-matching, and action primitives
to the controller so that the required packet process-
ing behavior can be constructed from these elementary
templates mid-deployment.

Static data plane compilers are the most prevalent
approach to programming such reconfigurable pipelines
(POF [8], P4 [2]). Given an abstract, declarative de-
scription of the data plane semantics (header fields,
parsers, matching tables, action primitives, and control
flow graph), a static compiler outputs an architecture-
specific switch runtime, coupled with a northbound API,
that can be readily deployed on the target (see Fig. 1la).
Since the actual packet processing behavior, that is, the
contents of the match-action tables, metadata, etc., is
made available by the controller only at runtime, a stat-
ically compiled datapath must perform efficiently with
respect to any packet processing program it may exe-

Ll static Jee e Runtime |- i N L Runtime |-
/ Data plane sy N Data plane acket processing
semantics Packet processing : semantics program

| i | headers, parsers. || flow entries +
headers, parsers. i program i tables, actions, i actions
tables, actions, flow entries + control flow + data plane ¥ behavior
control flow + : actions i _architecture model) |

model) i

Data plane

P4 Control plane [I— compller &
; ; APl data plane optimizer
i ‘ semantics
Data plane
; D;::l;;lila;‘e ; P Data plane
| Parsers
PKT IN Interconnect
! Inte t
(e PKT_OUT interconnect
-t [Match-acti
PKT_OUT fables afab;?o] |

(a) static compilation (b) dynamic compilation
Figure 1: Static vs. dynamic data plane compilation:
the static compiler knows only the forwarding plane se-
mantics, while a dynamic compiler knows both the se-
mantics and the behavior for the switch.

cute, subject to the forwarding plane semantics as spec-
ified in the compiler input. A dynamic approach to data
plane compilation, however, would allow to sidestep this
genericity of statically generated codes, opening up a
wealth of new optimization possibilities (Fig. 1b).

Imagine a P4 compiler that, besides the target ar-
chitecture specification and the basic switch functional-
ity, would also be aware of the actual contents for the
generated pipeline, like the flows and actions to be in-
stalled into the match-action tables at runtime. Such a
dynamic P4 compiler would repeatedly rebuild and re-
optimize the data plane every time the controller alters
some aspect of the switch’s program, like adding a new
flow to a table or modifying the action associated with
an existing one. This would make it possible to compile
a custom switch runtime that would be optimal to the
data plane semantics and the packet processing behavior
at the same time (see also Cilium/eBPF [4])).

In fact, we have started to experiment with such
a dynamic data plane compiler on top of ESWITCH,
a high-performance dynamic data plane compiler cur-
rently hard-coded for the OpenFlow semantics [6]. In
this memo, we sketch some interesting runtime opti-
mization opportunities that we expect such an ESWITCH-
based dynamic P4 compiler to uncover.

3
JT —5—
Exact-match <
ACL -l

running time [CPU cycles]

1 2 3 4 5 6 7 8 9
number of flow entries

Figure 2: Lookup time on an exact-match table, a SW
packet classifier data-structure (ACL), and a just-in-
time compiled table (JIT), as the function of table size.

2. DYNAMIC DATA PLANE COMPILATION

Of course, a dynamic P4 compiler must be very fast in
order to keep track with data plane modifications. We
argue that the template-based code generation frame-
work we picked for ESWITCH would be an ideal choice
for a dynamic P4 data plane compiler.

Dynamic template-based code generation. Switch
pipelines, simple non-recursive programs executing over
a match-action abstract machine, are all about tem-
plates [1,6]. Packet parsing is essentially taking some
value from a fixed offset and branching, match tables
use prefab exact, LPM, or wildcard classifier primi-
tives, and actions are just a sequence of packet pro-
cessing primitives that are to be executed on a match.
In this context, template-based code generation lends
itself as an appealing dynamic compilation and opti-
mization technique, for the speed, the amenability to
hardware offloading (primitives are easy to map to HW
resources), and the potential to eliminate unused code.

In a real-life deployment at any particular instance
of time a lot of switch features go unused, like core
switches may not be terminating VXLAN tunnels (in
which case parsing VXLAN headers is unnecessary) or
would run with empty ACL tables (in which case time-
consuming wildcard matches would unnecessarily bur-
den the data plane). Template-based code generation
would look into the actual match-action tables and would
optimize away all parsing/matching/action templates
that are currently unused; with a static compiler the
control plane would need to maintain an accurate, per-
switch inventory of features currently compiled into the
data plane to achieve the same level of code specializa-
tion. In other words, with dynamic data plane compiler
we indeed only pay for the features we actually use.
Dynamic match-table optimization. A look-up ta-
ble is an abstract finite map that, given a key, produces
as a result an entry that most specifically matches the
key, along with the corresponding action that is to be
executed. Then, it is left for the data plane compiler to
choose the best implementation for a given look-up ta-
ble. In a static setting the implementation must match
the most complex header field’s semantics that partici-
pates in the look-up, e.g., if a table contains a ternary

field (a wildcard) then it must be implemented in a
TCAM or a software-based packet classifier (ACL).

Dynamic code generation, on the other hand, would
allow to promote a table to a more efficient implementa-
tion if the contents made this possible. For instance, we
see many ACL tables that match on only the destination
TCP/UDP port, a wildcard match that is very easy to
convert into a very fast and cheap exact-matching look-
up semantics. In a more complicated case, a complex
match table could be converted into a hierarchy of sim-
ple (say, exact-matching) and thusly very fast look-up
tables [6], but note again that such conversion necessar-
ily depends on the actual contents of the tables that a
dynamic compiler does have, whereas a static one does
not have, at hand. Our early stage experimentation
has indicated that dynamic look-up table optimization
can yield orders-of-magnitude higher performance over
realistic data plane programs (see Fig. 2).
Just-in-time (JIT) compilation. Just-in-time com-
pilation is the ultimate level of code specialization: hot
code paths are turned into actual machine code that
can be directly executed on the target. This allows to
customize generic code paths, inline constants, unroll
loops, and hard-code jump pointers, in order to min-
imize the working set size, to eliminate costly branch
instructions, to redirect data-cache load to the instruc-
tion cache, etc. A dynamic data plane compiler can
take full advantage of just-in-time compilation (in con-
trast to a static one); especially actions and action sets
lend themselves as the most plausible candidates. How-
ever, we have found that just-in-time compiling smaller
match tables (e.g., per-ingress-port tables, per-tenant
logical datapaths, or small ACLs) also yields substan-
tial performance benefits (see again Fig. 2).

In the full version of this memo, we shall look into
the dynamic compilation and optimization strategies we
used for building ESWITCH and discuss how these tech-
niques transform to the more general context of P4.

3. REFERENCES

[1] BOsSHART, P., ET AL. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for
SDN. In SIGCOMM (2013), pp. 99-110.

[2] BOSSHART, P., ET AL. P4: programming
protocol-independent packet processors. SIGCOMM
Comput. Commun. Rev. 44, 3 (2014), 87-95.

[3] Cavium. Cavium’s XPliant Ethernet switch supports the
emerging open ecosystems.

[4] GrAF, T. Next generation of programmable datapath. In
OVS Conference (2016).

[5] INTEL. Data Plane Development Kit. http://dpdk.org.

[6] MOLNAR, L., PoNGRACZ, G., ENYEDI, G., Kis, Z. L.,
CSIKOR, L., JUHASZ, F., KOROsI, A., AND RETVARI, G.
Dataplane specialization for high performance OpenFlow
software switching. In SIGCOMM (2016).

[7] Ozpag, R. Intel Ethernet Switch FM6000 Series — Software
Defined Networking, 2012.

[8] Sona, H. Protocol-oblivious forwarding: Unleash the power
of SDN through a future-proof forwarding plane. In HotSDN
(2013), pp. 127-132.

