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Navigable networks as Nash equilibria of navigation
games
András Gulyás1,2, József J. Bı́ró1,3, Attila K+orösi2, Gábor Rétvári1,3 & Dmitri Krioukov4

Common sense suggests that networks are not random mazes of purposeless connections,

but that these connections are organized so that networks can perform their functions well.

One function common to many networks is targeted transport or navigation. Here, using

game theory, we show that minimalistic networks designed to maximize the navigation

efficiency at minimal cost share basic structural properties with real networks. These

idealistic networks are Nash equilibria of a network construction game whose purpose is to

find an optimal trade-off between the network cost and navigability. We show that these

skeletons are present in the Internet, metabolic, English word, US airport, Hungarian road

networks, and in a structural network of the human brain. The knowledge of these skeletons

allows one to identify the minimal number of edges, by altering which one can efficiently

improve or paralyse navigation in the network.
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N
etworks are efficient conduits of information and other
media. News, ideas, opinions, rumours and diseases
spread through social networks fast, sometimes becoming

viral for reasons that are often difficult to predict1–12.
Many biological networks are also paradigmatic examples of
information routing, ranging from information processing and
transmission in the brain, to signalling in gene regulatory
networks, metabolic networks or protein interactions13–16.
Perhaps the most basic example is the Internet whose primary
function is to route information between computers. If one is to
list some common functions of different networks, then
information routing will likely be close to the top. It is thus not
surprising that many networks were found navigable, meaning
that nodes can efficiently route information through the network
even though its global structure is not known to any individual
node17–28.

These findings do not necessarily mean that real networks
evolve to become navigable. Navigability can be a by-product of
some other evolutionary incentives because different networks
have many other different functions as well. In other words, it
remains unclear whether ideal networks whose only purpose is to
be maximally navigable at minimal costs have anything in
common with real networks. Even if they do, then how close are
real networks to these ideal maximally navigable configurations?
If they are close but not exactly there, or if their navigability
suddenly deteriorates, possibly signifying an onset of a disease29,
then what can we do to cure the network and boost its
navigability?

Here we show that the ideal maximally navigable networks do
share some basic structural properties with the Internet, E.coli
metabolic network, English word network, US airport network,
the Hungarian road network and a structural network of the
human brain. Yet these ideal networks are not generative models
of the real networks, where by generative models we mean
function-agnostic models that simply try to reproduce some
structural properties of real networks. Instead these ideal
networks identify minimal sets of edges that are most critical
for navigation in the real network. In other words, they are
navigation skeletons or subgraphs of real networks. We find that
the considered real networks contain high percentages, exceeding
90% in certain cases, of edges from their navigation skeletons,

while the probability of such containment in randomized null
models is exponentially small. The knowledge of these skeletons
allows us to quantify exactly what connections the considered real
networks lack to be maximally navigable, and which of their
connections are not exactly necessary for that. To define and
construct these maximally navigable network skeletons we
employ game theory. Game theory is a standard tool to study
the behaviour of a population with given incentives. The
population members are called players, and their possible actions
are strategies, while cost functions or payoffs express players’
incentives. The purpose of a player is to minimize her costs (or
maximize her payoffs) by adjusting her strategy. A Nash
equilibrium is a game state such that no player can further
reduce her costs by altering her strategy unilaterally. Such
equilibrium states are local optima where the game can eventually
settle after some transient dynamics. The global optimum is an
optimum where the total cost of all players is minimized. Since
the inception of game theory a broad palette of games has been
introduced, modelling diverse properties of real-life situations30,
Fig. 1. Here we use game theory to find the structure of networks
that are Nash equilibria of a network construction game30–36 with
navigability incentives. The concept of Nash equilibrium captures
the idea of self-organization, that is, of the emergence of
structures from the local interaction of rational but selfish
players, in contrast to global optimization used in centralized
planning of globally optimal navigable structures37. In our
network navigation game (NNG), players are network nodes
whose optimal strategy is to set up a minimal number of edges to
other nodes ensuring maximum navigability. That is, the cost
function reflects trade-offs between the number of created edges
and navigability. If each node connects to each other node, then
this construction is maximally navigable but maximally expensive
too. If no edges are set up, then the cost is zero, but so is
navigability. There is a sweet spot of the least expensive but still
100% navigable network, defined as the network in which all pairs
of nodes can successfully communicate using geometric
routing38. The goal of our game is to find this sweet spot.

Results
Geometrical considerations. The network construction game that
we employ is very general and applies to any set of points in any
geometry. The latent geometry of numerous real networks is not
Euclidean but hyperbolic as shown in ref. 39. Specifically, the
model in ref. 39 extends the preferential attachment mechanism of
network growth by observing that in many real networks the
probability of establishing a connection depends not only on
popularity of nodes, that is, their degrees, but also on similarity
between nodes. Similarity is modelled in ref. 39 as a distance
between nodes on the simplest compact space, the circle. The
connection probability thus depends both on node degrees
(popularity) and on the distance between nodes on the circle
(similarity). The node degrees are then mapped to radial
coordinates of nodes, thus moving nodes from the circle to its
interior, the disk. One can then show that the resulting connection
probability depends only on the hyperbolic (versus Euclidean)
distance between nodes on the disk, and that the resulting graphs
are random geometric graphs40 growing over the hyperbolic plane.
As shown in earlier work41, these graphs are maximally random,
that is, maximum-entropy graphs that have power-law degree
distributions and strong clustering. In other words, power-law
degree distributions, coupled with strong clustering, are
manifestations of latent hyperbolic geometry in networks. If this
geometry is not hyperbolic but Euclidean, then the resulting
random geometric graphs still have strong clustering, but their
degree distributions are Poisson distributions that do not have any
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Figure 1 | Illustration of game theory. Alice and Bob are happy only if they

go out to the movies together, but the level of their happiness depends on

what movie they watch. The basic notions of a game: Players: Alice and

Bob; strategies: go to see an action or a romantic movie; payoffs: the level of

happiness 0,1,2,3; Nash equilibria: situations in which the players cannot be

happier by unilaterally modifying their strategies. Among all the possible

states (a–d) in the figure, states (a) and (d) are equilibria when Alice and

Bob go together to watch a movie. State (a) is the global optimum since the

total happiness 3þ 2¼ 5 is maximized.
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fat tails40. The model in ref. 39 has been validated against long
histories of growth of several real networks, predicting their growth
dynamics with a remarkable precision. It is then not surprising that
as a consequence the same model also reproduces a long list of
structural properties of these networks39.

Random geometric graphs40 are defined as sets of points
sprinkled uniformly at random over a (chunk of) geometric
space. Every pair of points is then connected if the distance
between the points in the space is below a certain threshold.
Given that the latent space of real scale-free networks is
hyperbolic, our starting point is the first part (uniform
sprinkling) of the random geometric graph definition. That is,
we first randomly sprinkle a set of points over a hyperbolic disk.
We then do not proceed to the second part of the random
geometric graph definition. Instead, given only the coordinates of
sprinkled nodes, we identify the sets of edges, ideal for navigation,
that correspond to the Nash equilibria of our NNGs. We then
analyse the structural properties of the resulting ideal-navigation
networks, and find that, surprisingly, they also have power-law
degree distributions and strong clustering. This result invites us to
investigate whether these navigation-critical edges exist in real
networks. To check that, we have to know the hyperbolic
coordinates of nodes in these real networks in the first place. We
infer these coordinates in the considered collection of real
networks using the deterministic HyperMap algorithm
(Methods). Given only these inferred coordinates, we then
construct the ideal-navigation Nash equilibria defined by these
coordinates, and compare, edge by edge, the resulting Nash
equilibrium networks against the real networks. We find that the
real networks contain large percentages of edges from their Nash
equilibria. This methodology thus allows us to identify the
navigation skeleton of a given real network. We finally check
directly that edges in these skeletons are indeed most critical for
navigation by showing that their alterations affect markedly
network navigability.

Game definition. We start with a set of players u¼ 1,2,y, N,
that is, N nodes, scattered randomly over a hyperbolic disk of

radius R. The densities of players’ polar coordinates (r, f),
rA[0,R], fA[0, 2p], are 41

rðrÞ ¼ a sinhðarÞ
coshðaRÞ� 1

; rðfÞ ¼ 1
2p
; ð1Þ

where a41/2 is a parameter controlling the heterogeneity of the
layout. If a¼ 1, the players are distributed uniformly over the
hyperbolic disk because the area element at coordinates (r, f) is
dA¼ sinh(r)dr df. The desired player scattering is achieved in
simulations by placing players u at polar coordinates ru¼ (1/a)
acosh {1þ [cosh(aR)� 1]U} and fu¼ 2pU where U for each u is
a random number drawn from the uniform distribution on [0, 1].
The hyperbolic distance between any two players u and v is

dðu; vÞ ¼ acosh cosh rucosh rv � sinh rusinh rvcosðfu�fvÞ½ �: ð2Þ

In greedy geometric routing, player u routes information to some
remote player v by forwarding the information to its connected
neighbour u0 closest to v in the plane according to the distance
above. If u has no neighbour u0 closer to v than uself, then
navigation fails, and we say that u cannot navigate to v. The
percentage of pairs of players u, v such that u can successfully
navigate to v is called the success ratio. If this percentage is 100%,
we say that the network is maximally (100%) navigable.

The strategy space of player u is all possible combinations of
edges that u can establish to other players. One extremal strategy
is to establish no edges. The other extreme is to connect to
everyone. The total number of possibilities for u is 2N� 1. Any
combination of strategies that all players select is a network on
N nodes.

The objective of each player u is to set up a minimal number of
edges to other players such that u can still navigate to any other
player in the network. Formally, the cost function of player u that
it minimizes is cu¼ kuþ nu, where ku is the number of edges that
u establishes, and nu is either zero if u can navigate to everyone,
or infinity otherwise. A more formal description of the strategies
and payoffs can be found in Supplementary Note 1.
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Figure 2 | Illustration of the network navigation game (NNG). Panel (a) shows the optimal set of connections (optimal strategy) of node A in a

small simulated network. All nodes are distributed uniformly at random over the hyperbolic disk, and A’s optimal strategy is to connect to the

smallest number of nodes ensuring maximum (100%) navigability. These nodes are B, C and D because it is the smallest set of nodes whose

coverage areas, shown by the coloured shapes, contain all other nodes in the network. B’s coverage area for A (red) is defined as a set of points

hyperbolically closer to B than to A; therefore, if A is to navigate to any point in this area, A can select B as the next hop, and the message will eventually

reach its destination, as the second panel illustrates. Link AC (and AD) in panel (a) is also a frame link, because A is the closest node to C, as illustrated

by the hyperbolic disk of radius |AC| centred at C (the line-filled shape), which does not contain any nodes other than C and A. Therefore, to navigate to C,

A has no choice other than to connect directly to C. Panel (b) shows the sequence of shrinking coverage areas along the navigation path (blue arrows)

from D to E. The red curve is the geodesic between D and E in the hyperbolic plane. The coverage areas are shown by the shapes filled with lines of

increasing density. The largest is A’s coverage for D. The next one is B’s coverage for A. The smallest is E’s coverage for B.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8651 ARTICLE

NATURE COMMUNICATIONS | 6:7651 | DOI: 10.1038/ncomms8651 | www.nature.com/naturecommunications 3

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Nash equilibria of the game. Given any player u, we call player
v’s coverage area the set of all points closer to v than to u, Fig. 2.
Trivially v covers itself, since it is closer to itself (d(v, v)¼ 0) than
to u. Therefore if u connects to all other players, then u trivially
covers them all. The optimal strategy for u minimizing u’s costs is
thus to connect to a minimal number of players such that the
union of their coverage areas contains all the other players.
Indeed, if u does that, and if all other players do the same, then
the resulting network is 100% navigable at minimal number of
edges. The network is fully navigable because if u wants to
navigate to any remote player w, then by construction there exists
u’s neighbour v that contains w in its coverage area, and u can use
v as the next hop towards w. If v is not directly connected to w,
then there exists v’s neighbour v0 that contains w in its coverage
area, so that v can route to v0, and so on until the information
reaches destination w lying within the intersection of all the
coverage areas along the path, Fig. 2. The problem of finding the
optimal set of edges for u thus reduces to the minimum set cover
problem42. A formal description of the equilibrium network and a
detailed example (for simplicity in the Euclidean plane) can be
found in Supplementary Note 2 and Supplementary Fig. 1.

The Nash equilibrium of this game is not necessarily unique.
There can exist different networks minimizing the cost defined
above. As specified in Supplementary Note 2, in what follows,
among all the NNG equilibria, we always select the unique one
that minimizes the sum of distances span by its edges, thus
making the NNG Nash equilibrium network construction
deterministic. However, there also exist certain edges, which we
call frame edges, necessarily present in any Nash equilibrium.
Edge u-v is a frame edge if u is the closest player to v. In this
case u cannot navigate to v through any other players since there
is no one closer to v than uself, so that u must connect directly to
v to reach it, Fig. 2. If at least one of such edges is absent,
the network is not fully navigable. The exact definition of the
‘frame topology’ consisting the frame edges can be found in
Supplementary Note 3 and Supplementary Fig. 2.

In any Nash equilibrium of this game, each player computes its
optimal strategy independently of others. In game theory such
equilibria are called dominant strategy equilibria. Moreover, the
equilibrium is also a social optimum since one cannot create a
fully navigable network using less edges.

Structural properties of Nash-equilibrium networks. Using the
trigonometry of overlapping hyperbolic disks, we show in
Supplementary Note 4 and Supplementary Figs 2–6 that, if the

node density is uniform (a¼ 1), then the probability p(d) that
two players u and v located at distance d�d(u, v) are connected
in a Nash equilibrium network lies between exp(� 8ded/2) and
exp(� 2ded/2),

e� 8ded=2 � pðdÞ � e� 2ded=2
; ð3Þ

where d is the average density of players on the disk, that is
d¼N/A, where A is the disk area. The expected degree of player u
at polar coordinates (ru, 0)—we can assume that u’s angular
coordinate is fu¼ 0 without loss of generality—is then
�kðruÞ ¼ N

R
p½dðu; vÞ�rðrvÞrðfvÞdrvdfv , where r(rv) and r(fv)

are the player densities from Equation 1. We can evaluate this
integral to find that the expected number �kðrÞ of connections of a
player at radial coordinate r is bounded by (analytically shown in
Supplementary Note 5 and Supplementary Fig. 7)

1
2

eðR� rÞ=2 � �kðrÞ � 2eðR� rÞ=2 ; ð4Þ

where r�ru. It then follows that the average degree of players in
the network, given by �k ¼

R R
0

�kðrÞrðrÞdr, lies between 1 and 4,

1 � �k � 4: ð5Þ
We also see from Equation 4 that the degree of players
decays exponentially as the function of their radial position,
�kðrÞ � e� r=2, while their density exponentially increases,
r(r)Ber, Equation 1. The combination of these two exponentials
yields the power-law degree distribution (see Supplementary
Note 6 and Supplementary Fig. 8 for the detailed derivation)
in the network43,44

PðkÞ ¼ 1
k !

Z R

0
e�

�kðrÞ½�kðrÞ�krðrÞdr

¼ 2
�k
2

� �2
Gðk� 2; �k=2Þ

k !
� k� 3: ð6Þ

We also show analytically in Supplementary Note 7–8,
Supplementary Fig. 9 and Supplementary Table 1 that the
average clustering �cðkÞ of players of degree k decays with k as 1/k,
while the average clustering �c ¼

P
k PðkÞ�cðkÞ in the network is

around 0.45, also confirmed in simulations. Clustering does not
depend on network size or average degree, meaning that
clustering is a positive constant even in the large graph size
limit. Remarkably, neither degree distribution nor clustering
depends on the player density d.

For non-uniform node density aa1, we can analytically obtain
only the lower bound for �kðr; aÞ, which is still proportional e�
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Figure 3 | Topological properties of NNG equilibrium networks as a function of the power-law exponent. Panel (a) shows the total cost (number of

edges), average clustering �c and stretch in NNG-simulated networks as functions of g. Stretch (shown in the inset) is the average factor showing by how

much longer the greedy navigation paths are, compared with the shortest paths in the network. Stretch equal to 1 means that all navigation paths are

shortest possible. The plotted points are mean values while the error bars show minimum and maximum values obtained for the NNG over 10 random

sprinkling of nodes for a given value of g. Panel (b) shows the success ratio as a function of the percentage of edges randomly deleted from the network.

The smaller the g, the more robust the navigability with respect to this network damage.
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that is, independent of a if a41/2, Supplementary Note 9. This
lower bound suggests that the degree distribution is a power law
P(k)Bk� g with exponent g¼ 2aþ 1, which we confirm in
simulations in Supplementary Note 9 and Supplementary Fig. 10.
Figure 3 shows that the closer the g to 2, the stronger the
clustering, the cheaper the network and the more efficient and
robust the navigability. The value of g¼ 2 thus appears as the
‘best choice’ for a network—the network is maximally navigable
at the lowest cost. These results complement existing works23,45

showing that g¼ 2 yields most navigable networks, by adding that
this g also provides a minimum cost equilibrium topology as well,
explaining the emergence of these networks from the interaction
of selfish players.

Figure 4 and Table 1 confirm our analytic results and shows
that some basic structural properties of NNG-simulated networks
are similar to some real networks. Our results also suggest that
the incentive for navigability alone may be sufficient to explain
the properties of complex networks to a certain degree. Yet we
cannot really make this claim based only on such large-scale
statistical similarities. A more detailed link-by-link comparison
between real and corresponding NNG networks is needed to
understand how well the NNG reflects reality.

Network navigation game versus real networks. Figure 5 and
Table 2 show the results of this analysis applied to these and other
real networks. We cannot expect real networks to be identical to
NNG networks because the latter are minimum-cost maximum-
navigation idealizations, while each individual real network per-
forms many other functions different from navigation. In parti-
cular, since real networks must be error-tolerant and robust with
respect to different types of network damage, we expect the
number of edges in real networks to be noticeably larger than that
in their minimalistic NNG counterparts—something we indeed
observe in Table 2. Yet if navigation efficiency does matter for real
networks, then we should expect a majority of edges present in
these NNG idealizations to be also present in the corresponding
real networks. Table 2 confirms these expectations as well. The
NNG precision in predicting links in real networks, defined as the
ratio of NNG true positive links to the total number of NNG
links, exceeds 80% for most networks, while the precision in
predicting frame links, crucial for navigation, exceeds 90% for
some networks. In Supplementary Note 10 we juxtapose these
numbers against the corresponding numbers in randomized null

models, where they are exponentially small, upper bounded by
0.1%. We also note that, as the real networks have many more
links than NNG networks, their navigability may not suffer much
from missing a small percentage of NNG links, as confirmed by
the success ratio results in the same figure.

Of particular interest to us here are networks that are explicitly
embedded in the physical space. In these cases we may not need
to embed the network, but use instead the physical coordinates of
its nodes to construct the NNG equilibria. We consider three
examples: the Hungarian road network, the airport network of
the United States and a structural network of the human brain. In
the first network the nodes are the cities, towns and villages of
Hungary, while in the second network the nodes are US airports.
Two nodes are linked if they are connected by a direct road or
flight. In the brain network the nodes are small regions of average
size 1.5 cm2 covering entirely both hemispheres of the cerebral
cortex, and two regions are connected if a structural connection
between them is detected in diffusion spectrum imaging. We
expect the NNG to be particularly accurate in predicting links
in these networks using the physical—instead of hyperbolic—
coordinates of nodes. We note that these physical coordinates
are Euclidean in all the three cases. The embedding space is
two-dimensional Euclidean and spherical space in the road and
airport cases, and it is three-dimensional Euclidean space in the
brain case. Our method to construct an NNG equilibrium applies
without change to any set of points in any geometric space, and
the analytic results on the structure of NNG equilibrium networks
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Figure 4 | NNG equilibrium networks share basic structural properties with real networks. The real networks considered are the Internet, metabolic

reactions, and the English word network, see Methods. Panels (a,b) show the degree distribution and the average clustering coefficient of nodes of a given

degree in the real and NNG networks. The dashed black lines are the power laws with exponents � 2 and � 1. The power law decay of the clustering

coefficient for the NNG is shown analytically in Supplementary Note 7. The clustering coefficient of a node of degree k is the number of triangular

subgraphs containing the node, divided by the maximum possible such number, which is k(k� 1)/2. In the NNG network, the disk radius is R¼ 21.2 and

a¼0.5. There are no other parameters.

Table 1 | Comparison of basic structural properties of real
and NNG networks.

Network Internet Metabolic Word NNG

Nodes 23,748 602 4065 5000
Edges 58,414 2498 38631 7955
Average degree 4.92 8.29 19.01 3.18
Average clustering 0.61 0.55 0.45 0.60
Average distance 3.52 3.22 2.43 3.89
Diameter 10 6 6 10

NNG, network navigation game. The average distance and diameter are the average and
maximum hop lengths of the shortest paths in the network. The average degree in the NNG-
simulated network is lower than that in the real networks because the NNG generates navigable
networks with minimum numbers of edges. In the NNG network, the disk radius is R¼ 21.2 and
a¼0.5. There are no other parameters.
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Figure 5 | Network navigation game predicts well links in real networks. Panels (a–c) visualize the Internet, metabolic and word networks mapped to the

hyperbolic plane as described in the Methods section. The hyperbolic coordinates of nodes are then supplied to the minimum set cover algorithm that finds

a Nash equilibrium of the NNG for each network. Panels (d,e) do the same for the US airport network and for the human brain, except that in the brain the

physical coordinates of nodes are used. The grey edges are present in the real networks but not in the NNG networks. These edges may exist in real

networks for different purposes other than navigation, so that the NNG can say nothing about them. The false-positive turquoise edges are present in the

NNG networks but not in the real networks. The true-positive magenta edges are present in both networks. Panels (f,g) show the NNG equilibrium network

based on the physical (geographic, versus hyperbolic) coordinates of US airports, and the NNG network for the Hungarian road network. The NNG

networks have the same sets of nodes as the corresponding real networks, but the sets of edges are different. For visualization purposes the grey edges are

suppressed in the human brain and Hungarian road networks. The detailed statistics of edges are in Table 2. The cartography in the background of panels

(f,g) have been generated with OpenStreetMap, r OpenStreetMap contributors (see www.openstreetmap.org/copyright for details).

Table 2 | The table quantifies the relevant edge statistics in Fig. 5, showing the total number of edges in the real networks |R|,
and in their NNG equilibrium networks |M|, the number of true positive (magenta edges in Fig. 5) |T|¼ |M-R|, the number of
false positive (turquoise edges in Fig. 5) |F|¼ |M\R|, and the true positive rate, or precision, defined as |T|/|M|.

Internet H Metabolic H Word H Roads E Airport S Airport H Brain E

Nodes 4,919 602 4,065 3,136 283 283 998
Real edges (|R|) 28,361 2,498 38,631 — 1,973 1,973 17,865
NNG edges (|M|) 5,490 743 4,634 9,808 643 328 2,591
True positives (|T|) 4,556 643 3,311 8,776 65 277 2,306
False positives (|F|) 934 100 1,323 1,032 578 51 285
Precision (|T|/|M|) 83% 87% 71.5% 89.48% 10.1% 84% 89%
Frame edges (|MF|) 3,680 415 3,304 3,105 199 249 716
Frame true positives (|TF|) 3,243 378 2,528 2,931 15 216 677
Frame precision (|TF|/|MF|) 88% 91% 77% 94.40% 7.5% 87% 94.6%
Navigation success ratio 87% 85% 81% — 54% 89% 89%

The precision statistics is also shown for the frame edges. Capital letters H,E,S after the network names refer to the embedding geometry: E, Euclidean; H, hyperbolic; S, spherica l. The Euclidean
coordinates in the brain are three-dimensional.
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in Euclidean spaces are in Supplementary Note 11 and
Supplementary Fig. 11. We apply our method to find the NNG
equilibrium networks using the physical coordinates of nodes in
these three real networks, and then compare them with their
NNG equilibria also in Fig. 5 and Table 2.

We observe that in the brain and road networks the NNG link
prediction accuracy is particularly high, reaching 89% for all the
links and 94–95% for the frame links. For the brain this result
implies that the spatial organization of the brain is nearly optimal
for information transfer, in agreement with previous results46–49.
In the Hungarian road network, nearly all frame links, crucial for
efficient navigation using geography, are present. Practically this
means that Hungarians have luxury to go on a road trip without a
map since all the major roads required by geographic navigation
are there, albeit the condition of some of those roads is not as
luxurious. To put it simply, there are roads where people with a
compass may think they should be.

For the US airport network, however, the geographic results are
poor. These poor results may be unexpected at first, but they have
a simple explanation in that the geometry of the airport network
is not really Euclidean, as the geometry of the nearly planar road
network, but hyperbolic. Indeed, efficient paths in the airport
network optimize not so much the geographic distance travelled,
but the number of connecting flights. As a consequence, most
paths go via hubs. As opposed to the road network, where the
number of roads meeting at an intersection does not vary that
much from one intersection to another, the presence of hubs in
the airport network makes the network heterogeneous, that is,
node degrees vary widely. This heterogeneity effectively creates an
additional dimension (the ‘popularity’ dimension in ref. 39). That
is, in addition to their geographic location, airports also have
another important characteristic—the size or degree. This extra
dimension makes the network hyperbolic41. The NNG results for
the hyperbolic map of the airport network in Fig. 5 are as good as
for the other networks.

How to cure or injure a network efficiently. The knowledge of
the NNG equilibrium of a given real network makes it possible to
efficiently identify links that are most critical for navigation in the
network. As NNG equilibrium networks are maximally navigable
networks composed of the smallest number of links, we expect
that if we alter a real network by either adding or removing a
relatively small number of links belonging to the NNG equili-
brium of the network, then such network modifications may
significantly affect network navigability.

Figure 6 supports these expectations. In the figure, we take the
considered real networks, and add to them certain numbers of
links that are present in the NNG equilibria of the real networks,
but not present in the networks themselves. About 1–2% of added
edges, compared with the original numbers of edges in the
networks, increase network navigability significantly, while the
addition of 2–5% of edges makes all the networks 100% navigable.
Similarly, the targeted removal of a small portion (1–5%) of edges
belonging both to the NNG equilibria of the networks, and to the
network themselves, degrades network navigability by 10–30%.

Discussion
We emphasize that the considered Nash equilibrium networks are
minimalistic idealizations, concerned only with maximizing the
efficiency of the navigation function at minimal cost (number of
links). Reality differs from this ideal in many ways. First, real
networks must be robust with respect to noise and random
failures. This robustness requirement explains why the considered
real networks have strictly more links than their Nash equilibria.
Maximum navigability can obviously be achieved not only at the
minimal cost, but also at a higher cost. Second, transport
processes in real networks are also noisy, and can follow not only
steepest descent path (greedy navigation), but also any down-
stream paths, still achieving 100% reachability. Yet the noisier the
transport process, the less likely it stays to the shortest path,
leading to higher stretch and longer travel times, thus degrading
navigation efficiency in terms of these parameters. Third,
navigability does not always have to be maximized as many
specific networks perform many specific functions other than
navigation. Our game-theoretic approach can be extended to
accommodate some of these functions, such as error tolerance or
policy compliance50, but not all possible functions of different
real networks can be formalized within this game-theoretic
framework. Some networks are centrally designed to optimize a
particular function globally37. Game theory is not needed to
formalize such global optimization strategies. It is more suited for
self-organized networks, in which each node behaves selfishly
according to its own incentive, independent of other nodes.
In other words, Nash equilibrium networks are structural
manifestations of local incentives of nodes for efficient
transport or communication, in contrast with existing
generative or optimization models of complex networks51,52.
Finally, all real networks are dynamic and growing, while Nash
equilibria correspond to static network configurations. However,
it has been recently shown53 that in case of random geometric
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Figure 6 | NNG equilibria of real networks helps to improve or degrade their navigability. The edges from the NNG equilibria of the considered

real networks are first sorted in the decreasing order of betweenness centrality, and then either added to the real network if not already there (panel (a)),

or removed from the network if present (panel (b)). The x-axis shows the percentage of added or removed edges compared with the number of

edges in the original real network. Navigation success ratio is computed as the number of node pairs between which geometric routing is successful

divided by the number of all node pairs.
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graphs—to which the considered Nash equilibrium networks
effectively belong according to the results in Supplementary
Note 12—one can map an equilibrium network model to an
identical growing one.

Notwithstanding these limitations we have shown that ideal
networks designed to be maximally navigable at minimal cost
share basic structural properties with real networks. Compared
with existing works on navigation-optimal distributions of
shortcut edges in Euclidean grids19,54–56, which do not yield
realistic network topologies, this result is quite unexpected
because there is absolutely nothing in the definition of these
ideal networks that would enforce or even welcome a formation
of any particular network structure. The networks are defined
purely in terms of navigation optimality. The surprising finding
that the structure of these ideal networks is similar to the
structure of real networks should not be misinterpreted as if these
idealizations are generative models for real navigable networks.
Instead the former are skeletons or subgraphs of the latter. Since
these skeletons consist of the minimum number edges required
for 100% navigability, there is not even a parameter to control the
most basic structural network property—the average degree,
which is always controllable in generative models. On the
contrary, as follows from Equation 5, the average degree in
these skeletons is uncontrollable and lies between 1 and 4.

We find that, if network geometry is hyperbolic, then our
navigation skeletons have power-law degree distributions and
strong clustering. The values of power-law exponent g close to 2,
observed in many real networks57,58, appear as the best possible
choice. In this case not only reachability is 100%, but also the
network cost and stretch are minimized and navigability
robustness is maximized, compared with other values of g in
Fig. 3.

These results apply to sets of points in hyperbolic space, but the
navigation skeleton construction itself is by no means limited to
these hyperbolic settings. It is very general, and applies to any set
of points in any geometric space, as illustrated by the brain and
road networks where we have used the Euclidean 2d and 3d
physical coordinates of nodes to construct the navigation skeleton
of the network. Our finding that the brain contains almost fully
its navigation skeleton appears as a mathematically clear and
conclusive evidence that the spatial organization of the brain is
nearly optimal for communication and information transfer,
corroborating existing work on the subject46–49.

We note that the connection between the structure and
function of networks is often studied in the logically reverse
direction: structure-function. That is, first some data about the
structure of real networks is obtained, and then questions
concerning how optimal this structure is with respect to a given
network function are investigated. This logic does provide some
evidence that the network might have evolved optimizing this
function, but this evidence is quite indirect and unreliable
compared with the direct demonstration that functionally optimal
networks have the structure observed in reality: function-
structure. The common sense suggests that this causal direction
must reflect reality more adequately as networks, either designed
or naturally evolving, do not have a completely random structure
but the structure (effectively) optimizing some functions. Yet
studying networks in this direction is much more challenging
primarily because of difficulties in formalizing the constraints that
a given function imposes and deriving the resulting optimal
network structure. Here, with the help of game theory, we have
done so for the navigation function that many real networks
(implicitly) perform.

As one would logically expect, the function-structure
approach provides a deeper insight into specific details of
network’s structural organization that are critical for its

functional efficiency. We have confirmed this expectation by
demonstrating that our approach can identify links in real
networks that are most critical for navigation. A targeted attack
on these critical links degrades navigability rapidly, while if a real
network is not 100% navigable, our approach finds the minimal
number of not-yet-existing links whose addition to the network
boosts up its navigability to 100%. Therefore, our approach
can be used to identify real network links that should be
protected most in a critical network infrastructure. In contrast,
this approach can also help network designers to prioritize
possible link placement options, that is, pairs of not directly
connected nodes, that, if connected, would maximize navigability
improvement.

Finally, all the real networks considered here are expected to be
navigable. Indeed, the primary functions of the Internet, brain,
metabolic or airport and road networks are to transport
information, energy or people. Semantic and syntactic navig-
ability of word networks is an established fact in cognitive
science59–61. However, one cannot expect all real networks to be
highly navigable as navigation is not an important function of
every network in the world. In Supplementary Note 13 and
Supplementary Table 2 we consider one example, a technosocial
web of trust, in which nodes are public keys of users of a
distributed cryptosystem, linked by users’ certifications of key-
user bindings. There is no reason why this network should be
navigable. In agreement with this observation, we then find that
this network does not contain a large percentage of edges from its
NNG equilibrium, suggesting that the introduced methodology
can be also used as a litmus test to investigate whether navigation
is an important function of a given real network, and if so, then to
what degree.

Methods
The real network data. The Internet data set representing the global internet
structure at the autonomous system (AS) level is from ref. 62. The metabolic
network is the post-processed network of metabolic reactions in E. coli from ref. 39,
Snapshot S1 there. The post-processing details can be found in ref. 39. The word
network is the largest connected component of the network of adjacent words in
Charles Darwin’s ‘The Origin of Species’ from ref. 63. The airport network was
downloaded from the Bureau of Transportation Statistics http://transtats.bts.gov/
on 5 November 2011. The structural human brain network and physical
coordinates of nodes (regions of interest (ROIs)) in it are the diffusion spectrum
imaging (DSI) data from ref. 64.

The hyperbolic maps of real networks. The hyperbolic coordinates of ASes and
metabolites are from refs 39,62. The hyperbolic coordinates of words and airports
are inferred using the HyperMap algorithm65. This algorithm is deterministic and
is based on the growing network model in ref. 39 used to show that the latent
geometry of scale-free strongly clustered real networks is hyperbolic. Given an
adjacency matrix of a real network, the algorithm infers the hyperbolic coordinates
of its nodes by replaying its growth as the model in ref. 39 prescribes. Specifically,
the nodes are first sorted in the order of decreasing degrees, and then, starting with
the highest-degree node, nodes and their edges are added, one node at a time, to a
growing network. The probability, or the likelihood, with which model39 generates
this growing network, depends on the node coordinates. The coordinate of each
added node is set by the HyperMap algorithm to the coordinate corresponding to
the global maximum of this probability.

The Nash equilibrium networks of NNGs. The hyperbolic or physical, in the
airport and brain cases, coordinates are then supplied to the GNU Linear
Programming Kit (GLPK) http://www.gnu.org/software/glpk/ used to find a
solution to the corresponding minimum set cover problem. To yield acceptable
running times of the solver, the Internet and word networks are reduced in size by
extracting their high-degree cores of about 4,500 nodes. The Hungarian road data
are processed slightly differently. First the cities in Hungary are mapped to their
geographic coordinates using the database in http://www.kemitenpet.hu/letoltes/
tables.helyseg_hu.xls. Then these coordinates are used in the GLPK to find the
NNG equilibrium. Each edge in this equilibrium network is then checked
for existence in the real road network. To check that, the GoogleMaps API
https://pypi.python.org/pypi/googlemaps/ is used to find the shortest path between
the two cities connected by the edge. The edge is defined to also exist in the
real road network if this shortest path does not go via any other city.
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23. Boguñá, M., Krioukov, D. & Claffy, K. Navigability of complex networks. Nat.
Phys. 5, 74–80 (2009).

24. Caretta Cartozo, C. & De Los Rios, P. Extended navigability of small world
networks: exact results and new insights. Phys. Rev. Lett. 102, 238703 (2009).

25. Hu, Y., Wang, Y., Li, D., Havlin, S. & Di, Z. Possible origin of efficient
navigation in small worlds. Phys. Rev. Lett. 106, 108701 (2011).

26. Lee, S. H. & Holme, P. Exploring maps with greedy navigators. Phys. Rev. Lett.
108, 128701 (2012).

27. Lee, S. H. & Holme, P. Geometric properties of graph layouts optimized for
greedy navigation. Phys. Rev. E 86, 067103 (2012).

28. Capitán, J. A. et al. Local-based semantic navigation on a networked
representation of information. PLoS ONE 7, e43694 (2012).

29. Cornelius, S. P., Lee, J. S. & Motter, A. E. Dispensability of Escherichia coli’s
latent pathways. Proc. Natl Acad. Sci. USA 108, 3124–3129 (2011).

30. Nisan, N. Algorithmic Game Theory (Cambridge Universiy Press, 2007).
31. Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C. H. & Shenker, S. in

Podc’03 (Proceedings of the Twenty-Second Annual Symposium on Principles of
Distributed Computing) 347–351 (Boston, Massachusetts, 2003).

32. Anshelevich, E. et al. in Proc. of FOCS’04 295–304 (2004).
33. Corbo, J. & Parkes, D. in PODC’05 (Proceedings of the Twenty-Fourth Annual

ACM Symposium on Principles of Distributed Computing) 99–107 (ACM, New
York, 2005).

34. Albers, S., Eilts, S., Even-Dar, E., Mansour, Y. & Roditty, L. in SODA’06
(Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete
Algorithm) 89–98 (ACM, New York, 2006).

35. Demaine, E. D., Hajiaghayi, M., Mahini, H. & Zadimoghaddam, M. in PODC’07
(Proceedings of the 26th Annual ACM Symposium on Principles of Distributed
Computing (PODC)) 292-298 (Portland, Oregon, 2007).

36. Mihalák, M. & Schlegel, J. The price of anarchy in network creation games is
(mostly) constant. Alg. Game Theory. LNCS 6386, 276–287 (2010).

37. Lee, S. H. & Holme, P. A greedy-navigator approach to navigable city plans.
Eur. Phys. J. Spec. Top. 215, 135–144 (2013).

38. Papadimitriou, C. H. & Ratajczak, D. On a conjecture related to geometric
routing. Theor. Comput. Sci. 344, 3–14 (2005).

39. Papadopoulos, F., Kitsak, M., Serrano, M. A., Boguñá, M. & Krioukov, D.
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