
1

Scalable and Efficient Multipath Routing via
Redundant Trees

János Tapolcai, Gábor Rétvári, Péter Babarczi, Erika R. Bérczi-Kovács

Abstract—Nowadays, a majority of the Internet Service
Providers are either piloting or migrating to Software-Defined
Networking (SDN) in their networks. In an SDN architecture a
central network controller has a top-down view of the network
and can directly configure each of their physical switches. It opens
up several fundamental unsolved challenges, such as deploying
efficient multipath routing that can provide disjoint end-to-
end paths, each one satisfying specific operational goals (e.g.,
shortest possible), without overwhelming the data plane with a
prohibitive amount of forwarding state. In this paper, we study
the problem of finding a pair of shortest (node- or edge-) disjoint
paths that can be represented by only two forwarding table
entries per destination. Building on prior work on minimum
length redundant trees, we show that the complexity of the
underlying mathematical problem is NP-complete and we present
fast heuristic algorithms. By extensive simulations we find that
it is possible to very closely attain the absolute optimal path
length with our algorithms (the gap is just 1–5%), eventually
opening the door for wide-scale multipath routing deployments.
Finally, we show that even if a primary tree is already given it
remains NP-complete to find a minimum length secondary tree
concerning this primary tree.

Index Terms—redundant trees, independent spanning trees,
not-all-equal 3SAT, minimum length disjoint paths

I. INTRODUCTION

In traditional hop-by-hop routing, packets are forwarded
along a single path, such that each router associates a default
next hop with each destination address in its forwarding
table. In multipath routing, however, routers maintain multiple
next hops for each destination, each one corresponding to a
different path towards the destination, and packets are mapped
to one of these paths using header hashing, packet tagging,
etc. There are many practical motivations towards multipath
routing, such as to improve end-to-end reliability, security, and

A preliminary version of this article appeared in the IEEE International
Conference on Network Protocols (ICNP) ’15, San Francisco, CA, November
2015. János Tapolcai, Gábor Rétvári, and Péter Babarczi are with the MTA-
BME Future Internet Research Group and MTA-BME Information Sys-
tems Research Group, Dept. of Telecommunications and Media Informatics,
Budapest University of Technology and Economics (BME), Hungary (e-
mail: {tapolcai, retvari, babarczi}@tmit.bme.hu). Erika R. Bérczi-Kovács is
with the Department of Operations Research, Eötvös University, Budapest,
Hungary and with the MTA-ELTE Egerváry Research Group on Combinatorial
Optimization (e-mail: koverika@cs.elte.hu).

The authors would like to thank Panna Kristóf for her constructive com-
ments. The research leading to these results was partially supported by the
High Speed Networks Laboratory (HSNLab). Project no. 123957, 129589,
124171, 128062 and 124171 has been implemented with the support provided
from the National Research, Development and Innovation Fund of Hungary,
financed under the FK 17, KH 18, K 17, K 18 and K 17 funding schemes
respectively. The research report in this paper was also supported by the BME-
Artificial Intelligence FIKP grant of EMMI (BME FIKP-MI/SC). The work of
P. Babarczi was supported in part by the Post-Doctoral Research Fellowship
of the Alexander von Humboldt Foundation.

latency, allow users to avoid congested links, and provide some
control to applications to meet their performance requirements
[1]–[5]. The most common implementation is equal-cost multi-
path routing (ECMP) where multipath routing is performed
among some specific node pairs to improve load balancing.
In this paper our goal is to make a step forward and enable
multipath routing among every node pair.

We argue that the major ingredients of a multipath rout-
ing are, by and large, in place, like a flexible data plane
(OpenFlow, SDN, network function virtualization) [6], [7],
multipath rate-control protocols (MPTCP) [4], sufficient path-
diversity [1], [8], with some even having reached large-scale
test phase [9], [10]. One important blocker is the scalability
barrier; provisioning multiple custom end-to-end paths would
cause forwarding state to grow quadratically with the number
of endpoints [11], while the data plane is already struggling
to scale with a much slower growth rate in the first place [12],
[13].

A recent study by Verizon [14] estimated that 57% of the
enterprises will deploy SDN in their networks within two
years. In contrast to traditional IP where the user cannot
influence the routing of the packets, SDN makes multi-path
routing mechanisms easily deployable. The SDN controller has
an exact view of the network topology and for each physical
switch it computes two next-hops towards each destination:
one is called the red next-hop, the other is the blue next-hop.
Fig. 1d shows an example of red and blue next-hops at each
switch towards destination node r. The hosts (or the egress
switches) include the destination address and set a single bit
in the header to mark whether the packet should be forwarded
along the red or the blue next-hops. Packets then travel hop-by-
hop to the destination along one of the two paths assigned by
the single bit, according to the red and blue next-hops stored
at the intermediate nodes. We will refer to them as red and
blue paths, see Fig. 1c for the route of packets from v5 towards
r along the red and blue next-hops. Note that this scheme is
fully compatible with all SDN standards (P4 [15], OpenFlow
[6], PoF [16]); for instance, it would be easy to implement
this behavior in a couple of lines of P4 [15]. Furthermore,
hosts can use this scheme to adopt a multipath rate control
algorithm to actively balance their load along their paths in an
end-to-end fashion [4].

In this paper, we propose a multipath routing scheme with
the following design objectives, based on the above SDN
implementation model:
Scalable: the paths are such that nodes need at most two
forwarding table entries per destination. Users will be able to
select between these two (red and blue) next-hops by tagging

2

their packets appropriately.
Disjoint: the red and blue paths from any source node towards
the common node in the network are maximally disjoint (i.e.,
do not share common edges or nodes if possible [17]). Note
that the red and blue next hops of Fig. 1d meet this objective
for destination node r. This contributes to better availability
and resilience against single failures [1], [3] and eliminates
adverse interference between the subflows carried by those
paths [4].
Fast: the algorithm for computing the next hops has the same
computational complexity as traditional shortest path routing
(i.e., Dijkstra’s algorithm), in order to amortize the cost of
multipath routing in comparison to standard control plane
operations.
Short paths: the length of the paths are close to the absolute
theoretical minimum. An adequately small average path length
would improve forwarding delay and reduce the performance
gap as compared to traditional single-path routing to a tolera-
ble level [9], [10], [18].

This paper is dedicated to find algorithmic techniques for
disjoint multipath routing. We demonstrate that the Suurballe-
Tarjan algorithm [19] – which was originally proposed to find
minimum length disjoint path-pairs – can be effectively used
to provide efficient solutions with the above requirements.
In particular, we concentrate on the following fundamental
question:
What is the price for the simplest possible forwarding scheme
implementable both in SDN and destination based hop-by-hop
forwarding, in terms of (i) computational complexity and (ii)
the gap between the length of the disjoint paths representable
by two next hops per destination compared to the minimum
for two disjoint paths?

This question essentially boils down to find a pair of rooted
trees under the constraint that the paths in the trees must be
disjoint. Such trees are called redundant trees (or colored trees
or independent trees) in the literature and enjoy wide-scale
use, ranging from reliable forwarding in wireless [20] and
wired networks [21], [22], robust multicasting [23], general
multipath routing [11], [24] and load-balancing [25], to Fast
ReRoute (FRR) protection [17], [26], [27]. In contrast to
these works, however, our main concern is the length of the
paths within the redundant trees, as this is crucial for disjoint
multipath routing.

Building on our own [28] and independent [11], [21], [24],
[29], [30] prior work on this subject, in this paper we carry out
the first systematic study of the performance penalty related
to scalable multipath routing. In particular, we make the
following main contributions.
• We settle the computational complexity of the mathe-

matical problems related to minimum length redundant
trees, including a problem variant where a primary (e.g.,
shortest path) tree is given.

• We classify the heuristic techniques to solve the problem,
we point out the limitations of each, and we propose a
new design concept yielding several new heuristics.

• We improve the best-known heuristic complexity from
cubic to the same as that of Dijkstra’s algorithm with-
out major performance hit, and we exercise the time–

efficiency trade-off to gain considerable performance im-
provements at the cost of a slight running time overhead.

• In numerical evaluations, we show that our algorithms
find near-optimal solutions even for large networks that
cannot be solved by integer linear programs [11], and they
provide shorter paths [17] with less computation time [24]
than their existing heuristic counterparts.

The rest of this paper is structured as follows. In Section II,
we present some background on redundant trees and we pose
the minimum length redundant tree problem. In Section III
we show that the problem is NP-complete. In Section IV
we present the algorithmic framework of redundant trees and
discuss its relation to the related work. In Section V we present
our new heuristics for the node-redundant tree problem for
a root node with degree two. The necessary modifications
to solve the general node- or edge-redundant case are sum-
marized in Section VI along with some discussion on the
problem when the primary tree is fixed. In Section VII we
present an extensive numerical study, extending to hundreds
of network topologies and edge length settings to evaluate the
performance gap between the optimal and the obtained path
lengths. Finally, in Section VIII we draw the conclusions.

II. BACKGROUND AND PROBLEM FORMULATION

Suppose we are given a 2-connected1, undirected graph
G = (V,E), where V denotes the set of nodes (|V | = n)
and E denotes the set of edges (|E| = m), with an edge
length function l : E→R+ set according to some traffic
engineering considerations. A path P in G is then an ordered
set of nodes and edges P = s v1 v2 . . . vk−1 r, where
(s, v1), (v1, v2), . . . , (vk−1, r) ∈ E. Nodes s and r are called
terminal nodes. For easier presentation we often assign a
direction to the path P = s→v1→ . . .→r and call s the source
and r the destination node. We call two paths (node-)disjoint if
they do not have any common nodes except the terminal nodes.
Two paths are edge-disjoint when they have no common edges.
This is a weaker property.

A. Minimum Length Disjoint Paths

Suppose we want to find two short disjoint paths between
each pair of nodes. Easily, the problem can be decomposed
into independent sub-problems for each destination node r as
follows: given a root node r, find a pair of disjoint paths from
each s 6= r to r of minimum total length over all s.

Consider the example graph topology Fig. 1a, let r be the
root and let M be some arbitrary positive length. Then, a pair
of disjoint paths with minimum aggregate (total) length from
node v7 is given in Fig. 1b and from node v5 in Fig. 1c. Such a
pair of paths from each source to a given root can be computed
by a single pass of the Suurballe-Tarjan algorithm, with two
iterations of the Dijkstra shortest path algorithm (yielding a
complexity of O(n log n+m) for all nodes to r) [19]. Hence,
it seems this algorithm would then readily lend itself as a
multipath routing algorithm.

1A graph is 2-connected (2-edge-connected) if the removal of any single
node (edge) does not disconnect the graph, which is a necessary condition
for the second (Disjoint) design objective.

3

r

v1

v2

v3

v4

v5

v6

v7

v8 v9

v10 v11

MM

M M

(a) Topology graph G1

r

v1

v2

v3

v4

v5

v6

v7

v8 v9

v10 v11

(b) Optimal paths for v7

r

v1

v2

v3

v4

v5

v6

v7

v8 v9

v10 v11

(c) Optimal paths for v5

r

v1

v2

v3

v4

v5

v6

v7

v8 v9

v10 v11

(d) Shortest redundant trees

Fig. 1: An illustrative example, with root r and a large enough positive edge length M . All unmarked edges are of unit length.

Unfortunately, it does not. The reason is that this algorithm
would not satisfy all the requirements for deployability set
out above, as the resultant forwarding tables would scale
superlinearly with the number of nodes. This is demonstrated
in Fig. 1: as the red path starting at v5 diverges from the red
path starting at v7, node v5 would need to allocate a separate
forwarding table entry corresponding to v7 and for itself to
correctly route to r. Swapping the red and the blue paths
for, say, v5, would not help either, as now a similar extra
forwarding table entry would arise at node v6. Unfortunately,
there does not seem to be a simple way out of this trap [19].

Henceforth, we shall use the Suurballe-Tarjan algorithm to
produce an optimal pair of minimum length disjoint paths
(ones we could use if forwarding state were not of concern)
and we shall compare our heuristic paths (now representable
by just 2 forwarding table entries per destination) to these
ideal paths. Notation-wise, given some root r let the optimal
v → . . . → r paths (as computed by the Suurballe-Tarjan
algorithm) be denoted by P ∗1 (G, v, r) and P ∗2 (G, v, r) for each
v 6= r. We shall denote the length of this “ideal” path-pair as

L2
v,r(G) =

∑
e∈P∗

1 (G,v,r)

le +
∑

e∈P∗
2 (G,v,r)

le .

Easily L2
v,r(G) ≥ 2L1

v,r(G), where L1
v,r(G) denotes the

length of the shortest path P ∗(G, v, r) from v to r:

L1
v,r(G) =

∑
e∈P∗(G,v,r)

le .

B. Redundant Trees

An (undirected) rooted spanning tree Tr in graph G =
(V,E) for some root r is a tree rooted at r in which from
any node v ∈ V, v 6= r there is exactly one path from v
to r. For easier presentation, often a direction is assigned to
the edges of Tr and directed towards the root [11], [21], i.e.,
from any node v ∈ V, v 6= r there is exactly one directed
path from v to r. For a tree Tr rooted at r and any v 6= r,
denote by P (Tr, v) the unique path in Tr from v to r. Then,
redundant trees are a pair of spanning rooted trees with certain
disjointness requirements on their paths towards the root [11].

Definition 1: A pair of (spanning) trees T 1
r , T 2

r with com-
mon root r is called (a pair of) node-redundant trees for r if for
each v ∈ V paths P (T 1

r , v) and P (T 2
r , v) are node-disjoint.

We also define a weaker form as follows.

Definition 2: A pair of (spanning) trees T 1
r , T 2

r with com-
mon root r is called (a pair of) edge-redundant trees for r if for
each v ∈ V paths P (T 1

r , v) and P (T 2
r , v) are edge-disjoint.

Consider the red tree T 1
r and the blue tree T 2

r in Fig. 1d
with directions assigned to their edges. Even though the edge
(v3, v6) is used in both trees, the paths themselves from each
node to the root are edge-disjoint (node-disjoint) and hence
T 1
r and T 2

r qualify as edge-redundant (node-redundant) trees.
The graph theoretical problem related to redundant trees was

widely investigated in the last decades. For 2-edge-connected
undirected graphs, a pair of edge-redundant trees for any root
is guaranteed to exist, and it can be found in polynomial
time [21], [23]. This was later reduced to linear time [31] and
linear time algorithms for finding maximally edge-redundant
trees were also given for other than 2-connected case [32].

C. Implementing Multipath SDN Packet Forwarding
We have seen that a trivial implementation of packet for-

warding along minimum length disjoint paths might require
a next hop for each source per destination. This would
violate the stringent scalability requirements of multipath SDN
forwarding: in SDN switches flow-table entries are a scarce
resource due to the limited amount of TCAM/SRAM space
programmable switch ASICs provide (RMT [33], dRMT [34],
FlexPipe [35], Cavium [36], etc), and software-based SDN
switches seem to have similar operational limitations (see a
recent study in [37]). The routing algorithms are running on
the SDN controller; if necessary, distributed versions can then
be bolted on the centralized algorithms [11], [20], [26]. Below,
we sketch a centralized scheme that requires only two next
hops per destination, this way greatly enhancing the scalability
of SDN multipath routing.

First, the SDN controller computes a pair of redundant
trees concerning each destination node as a root r, and
sets two forwarding table entries in each physical switch v
corresponding to every pair of such trees. One entry gives
the next-hop for destination r along the red tree T 1

r and the
other along the blue tree T 2

r (for instance, node v5 in Fig.
1d would set v9 as the next-hop for destination r along T 1

r

and v6 as next-hop along T 2
r). Packets then travel hop-by-hop

to the destination along the tree assigned by the single bit,
according to the next-hops stored in the SDN flow tables at
the intermediate nodes. This scheme is easy to implement in
a couple of lines of P4 [15]. As the forwarding paths are lined
up into trees, at every node a “single” outgoing edge per tree is

4

assigned as a next-hop for each destination, which was not the
case with the minimum length disjoint paths. Next, for packet
forwarding, either the hosts or the egress switch include the
destination address and set a single bit in the header to mark
whether the packet should be forwarded along T 1

r or T 2
r . In

the former, hosts can use this scheme to adopt a multipath
rate control algorithm to actively balance their load along their
paths in an end-to-end fashion [4].

The delivery of packets to their respective destination should
be guaranteed even if the topology changes. Hence, we need
to avoid generating incorrect network updates, caused by
the asynchrony of the communication channels between the
controller(s) and the switches. In our proposed multi-path
routing scheme the packets are forwarded along two trees
to every destination node. Therefore, the forwarding rules
along each tree can be updated independently, where each
tree is a spanning tree with a single destination node. Here
we are facing a well-studied version of the so-called loop-free
flow migration problem in SDN networks [38]. For example,
the O(n)-round scheduler by [39] ensures strong loop-free
network updates, when at any point in time, the forwarding
rules stored at the switches should be loop-free. Another
option is to use the deterministic update scheduling algorithm
by [40], [41], which completes in O(log n)-round in the worst
case for relaxed loop-freedom. In this case a small number of
“old packets” may temporarily be forwarded along loops.

D. Minimum Length Redundant Trees
The length of the (unique) path in a tree Tr from source

node v towards tree root r is calculated as Lv,r(Tr) =∑
e∈P (Tr,v,r) le, while the length of a tree can be obtained

as Lr(Tr) =
∑
v 6=r Lv,r(Tr). What we are concerned with

in this paper is finding a pair of redundant trees T 1
r , T 2

r of
“minimum length” for a given root r. This metric implicitly
corresponds to the case where all nodes are equally likely to
send packets to the root. The (total) length of the redundant
tree pair is denoted by

Lr(T 1
r , T 2

r) = Lr(T 1
r) + Lr(T 2

r).

Our task is now to find a pair of trees that minimize the
total path length. It turns out that the trees in Fig. 1d are such
minimum length redundant trees for the running example of
Fig. 1a. Observe that each node maintains only two forwarding
table entries (one for the red tree and one for the blue), which
gives excellent scalability. Formally, the problem is stated as
follows.

Definition 3: Minimum Length Redundant Trees problem
(MLRT): given an undirected graph G, lengths l, root node
r ∈ V , and positive integer k, determine whether there exists
a pair of redundant trees T 1

r and T 2
r so that Lr(T 1

r , T 2
r) ≤ k.

Our main concern here is the optimization version of this
problem, where the task is to minimize Lr(T 1

r , T 2
r). For this

version, an optimal Integer Linear Program (ILP) with expo-
nential worst-case solution time along with a heuristic with
O(n3) running time were given in [11], [24]. In Section IV,
we shall improve the running time to the same as Dijkstra’s
algorithm and the Suurballe-Tarjan algorithm, O(n log n+m).

E. Performance Metric for Redundant Trees

Regrettably, the coupling between the paths brought about
by the requirement that we need these paths to make up two
trees yields that the total length will increase somewhat. In
general, it holds that the path-lengths for any pair of redundant
trees T 1

r , T 2
r will be higher than the optimum:

Lr(T 1
r , T 2

r) ≥
∑
v 6=r

L2
v,r(G) . (1)

This is the price we pay for scalability.
For a graph G with edge lengths l and root node r,

the path length gap of node v is defined as Lv,r(T 1
r) +

Lv,r(T 2
r)−L2

v,r(G). We say that a node v is perfectly covered
by the redundant trees T 1

r and T 2
r if Lv,r(T 1

r) + Lv,r(T 2
r)−

L2
v,r(G) = 0. Hence, the path length ratio of a redundant tree

pair provided by an arbitrary heuristic algorithm for root node
r is defined as:

η(G, r) =
1

n− 1

∑
v∈V :v 6=r

(
Lv,r(T 1

r) + Lv,r(T 2
r)

L2
v,r(G)

− 1

)
,

(2)
where n is the number of nodes in the network. Hence,
η(G, r) = 0 means all nodes are perfectly covered for root
node r, while positive values of η(G, r) represents the penalty
we pay for scalability.

Besides the length ratio of a single root node r, when
pairs of redundant trees are given for each node we are also
interested in the average path length ratio of graph G, that
describes the possible performance hit of scalable multipath
routing using redundant trees for network operators:

η(G) =
1

n
·
∑
r∈V

η(G, r). (3)

Our aim in this paper is to analyze the price we pay for
scalability, as measured by the (average) path length ratio.

III. COMPUTATIONAL COMPLEXITY OF THE MINIMUM
LENGTH REDUNDANT TREES PROBLEM

There is a substantial body of literature on various forms
of length-minimization for redundant trees, yet, as far as we
are aware of, for the exact formulation above no complexity
characterization is available. The authors in [29], [30] study
the task to find two edge-disjoint spanning trees of a minimum
stretch, but for the all-pairs case (i.e., when the trees are not
rooted). Another version where the total length of the edges
in the redundant trees (in contrast to the length of the paths)
is to be minimized is examined in [22], [31]. Although such
trees are optimal in total link length, some paths towards the
root might be sub-optimal. The exact problem formulation
for MLRT appears in [11], [24], but no complexity analysis
ensued. Next, we settle this long-standing question.

Theorem 1: MLRT is NP-complete.
Refer to the Appendix for the full proof [28]. The ar-

gument is based on a Karp-reduction from a special form
of the Boolean Satisfiability problem called “not-all-equal”
3SAT (NAE-3SAT). Given a Boolean expression in conjunctive
normal form with 3 literals per clause, NAE-3SAT asks for an

5

v4

v3

v1

r

v5
v9v8

v6

v7

v2

(a) A sample graph

9

5

1

100

8
74

6

3

2

(b) st-numbering

v4

v3

v1

rRrL

v5
v9v8

v6

v7

v2

P1

P3

P4

P2

(c) st-orientation

rRrL

v5
v9v8

v6

v7

v2

v4

v3

v1

(d) Redundant trees

Fig. 2: A simple undirected graph demonstrating the different techniques used in the MLRT algorithms.

assignment of variables so that in every clause at least one
literal is set to true and at least one literal is set to false [42].

IV. ALGORITHMIC FRAMEWORK FOR CONSTRUCTING
NODE-REDUNDANT TREES

As most of the redundant tree algorithms revolve around the
concepts of ear-decompositions and st-numberings [11], [17],
[21]–[26], [31], [32], we will introduce them in the following
sub-sections. For simpler presentation, we often split r into
two nodes rL and rR and the red tree terminates in rL, and
the blue tree in rR (see Fig. 2).

For the sake of explanation, we describe the design concepts
and introduce our heuristic algorithms in Section V on a spe-
cial version of the node-redundant tree problem, where the root
node has exactly two adjacent links. Later (in Section VI-A)
we will explain how to extend these algorithms for the general
node-redundant and edge-redundant problems.

A. Ear-Decomposition

Ear-decomposition is a graph reduction technique to de-
compose any 2-connected graph G into a sequence of 2-
connected subgraphs G0 ⊂ G1 ⊂ · · · ⊂ Gk. G0 = (V0, E0)
is composed of a single root r and Gk has all nodes of G,
i.e., Vk = V . For each i = 1, . . . , k : Gi := Gi−1 ∪ Pi,
where Pi = xi . . . v . . . yi is a path between nodes
xi, yi ∈ Vi−1, where Pi∩Vi−1 = {xi, yi}. Such a Pi is called
an ear.

In the node-redundant tree design, ear Pi is either a simple
path between two distinct nodes xi 6= yi, or a simple cycle
traversing the root node if xi = yi = r. For the graph in
Fig. 2a, a possible ear-decomposition would consist of the fol-
lowing ears: P1 = r v1 v3 v6 v4 r, P2 = v1 v2 v8 v3,
P3 = v6 v9 v5 v4, and P4 = v2 v7 v5 (shown in
Fig. 2c). In order to obtain node-redundant trees from the
ear-decomposition, the “forward” directed path (visiting the
nodes from left to right) of an ear P fi excluding xi is added
to T 2

r (or T 1
r) and the “backward” directed path (traversing

nodes from right to left) P bi excluding yi is added to T 1
r

(or T 2
r), respectively. In our running example, tree T 1

r in
Fig. 2d is constructed from P b1 = v4→v6→v3→v1→r, P b2 =
v8→v2→v1, P b3 = v5→v9→v6, and P b4 = v7→v2, while tree
T 2
r contains P f1 = v1→v3→v6→v4→r, P f2 = v2→v8→v3,
P f3 = v9→v5→v4, and P f4 = v7→v5.

Although ears can be selected basically arbitrarily [21] in a
redundant tree design, constructing the redundant trees from
the ears should be done carefully, because a wrong decision
influences the length of every path connected to these ears
later on. What is even worse, we may end up in a situation
where none of the directions of an ear can be selected to
provide node-redundant trees. For example, in Fig. 3 an ear
Pi is selected which traverses the node with smallest ID in
V \Vi, while P fi and P bi are randomly added to the two trees.
In the first iteration ear P1 = r v8 v1 v2 v9 r is selected
(traverses v1) and P f1 is added to T 2

r and P b1 is added to
T 1
r . In the next steps, ear P2 = v8 v4 v3 v9 traversing v3

is selected between v8, v9 ∈ V1, and P f2 is added to T 2
r and

P b2 is added to T 1
r ; ear P3 = v3 v5 v1 is selected between

v3, v1 ∈ V2 traversing v5 and T 2
r is extended with P b3 and

T 1
r with P f3 ; and P4 = v2 v6 v4 is selected traversing v6

between v2, v4 ∈ V3 while T 2
r is extended with P f4 and T 1

r

with P b4 . Until this point, T 1
r and T 2

r are a pair of node-
redundant trees for the nodes in V4. However, when the ear
P5 = v5 v7 v6 is selected traversing v7 between v5, v6 ∈ V4,
either adding P f5 to T 2

r and P b5 to T 1
r or vice versa would

result in a solution where the paths from v7 in T 1
r and T 2

r are
not node-disjoint (either having nodes v3, v4 or v1, v2 and the
edge between them in common). Note that if P f3 would have
been added to T 2

r and P b3 to T 1
r , adding either direction of P5

to the trees will end up in two node-redundant trees for the
nodes V5 = V .

To avoid the above situation, the concept of st-numbering
can be applied, which provides a sufficient condition to
construct redundant trees from an ear-decomposition.

B. Sufficient Conditions for Redundant-Trees

An st-numbering is a complete order (a.k.a. linear, or strict
total order) defined on the nodes in G, where rL is the smallest
and rR is the largest element and each remaining node v is
adjacent to two nodes x and y such that x < v < y (see
Fig. 2b). For the sake of simplicity, we assume that an st-
numbering assigns a real number for each node v denoted by
πv , and two nodes u and v are in relation < if and only if
πu < πv .

Lemma 1: Given an st-numbering of G, two redundant trees
in G always exist.

Proof: We orient the edges of G such that each edge
(u, v) is directed u→v if πu < πv , and u←v otherwise. Let

6

rv8 v9

v3 v4

v1 v2

v5 v6

v7

P2

P1

P3 P4

P5

(a) The ear decomposition

rv8 v9

v3 v4

v1 v2

v5 v6

v7

P5

(b) Redundant trees in G4

Fig. 3: An example where wrong selection of ear direction
results an invalid solution. Every edge has a unit length.

T 1
r be an out-tree from rL and T 2

r be an in-tree towards rR.
Clearly, every node can be reached from rL and every node
can reach rR. The path P (T 1

r , v, r) will traverse nodes with
label at most πv , while P (T 2

r , v, r) will traverse nodes with
label at least πv; therefore they are disjoint paths.

As a consequence of Lemma 1 an st-numbering is sufficient
to find redundant trees. Hence, the question is how to find an
st-numbering efficiently. One possibility is to obtain it from
an ear-decomposition by maintaining a complete order of the
nodes through the graph sequence G0 ⊂ G1 ⊂ · · · ⊂ Gk
when ear Pi = xi . . . v . . . yi is added to Gi−1. As we
are dealing with node-redundant trees and we split the root
node into rL and rR, ears are simple paths (i.e., ∀i : xi 6=
yi). Hence, if πxi

> πyi we can label the nodes as πxi
>

· · · > πv > · · · > πyi by arbitrarily assigning values to them
from the range (πyi , πxi), otherwise we label them as πxi <
· · · < πv < · · · < πyi . The pseudocode is summarized in
Algorithm 1.

Algorithm 1: Compute st-numbering (complete order)

Procedure earDirection(Pi = xi . . . v . . . yi)
1 if πxi > πyi then
2 Set πv for all internal nodes v such that

πxi > · · · > πv > · · · > πyi ; return true
else

3 Set πv for all internal nodes v such that
πxi < · · · < πv < · · · < πyi ; return false

A st-orientation (or bipolar orientation) is a different tech-
nique to maintain the order of nodes, which assigns an
orientation to each edge of G. The resultant graph GD is a
directed acyclic graph, rL is the only node with zero in-degree,
and rR is the only node with zero out-degree (see Fig. 2c).

Lemma 2: Given an st-orientation of G, two redundant trees
in G always exist.

Proof: Use a topological order of G as an st-numbering
for Lemma 1.

When an ear is added, we need to add it as a directed path
to GD as described in Algorithm 2.

After every ear is processed (i.e., Vk = V), the directed
paths in GD define a partial order between the nodes. Finally,
any topological order of GD provides an st-numbering (i.e.,
complete order) of the nodes, which is sufficient to compute
two redundant trees by Lemma 1, as one path will traverse only

Algorithm 2: Compute st-orientation (partial order)

Procedure earDirection(Pi = xi . . . v . . . yi)
1 if Lxi,r(T 1

r) + Lyi,r(T 2
r) < Lxi,r(T 2

r) + Lyi,r(T 1
r) then

2 if no path yi→xi in GD then
3 Set xi→ . . .→v→ . . .→yi; return true

else
4 Set xi← . . .←v← . . .←yi; return false

else
5 if no path xi→yi in GD then
6 Set xi← . . .←v← . . .←yi; return false

else
7 Set xi→ . . .→v→ . . .→yi; return true

nodes with a label at least πv , while the other will traverse
nodes only with labels at most πv .

In the implementations instead of an st-numbering of-
ten the complete order is represented using a simple node-
potential [31] (see also [17]), while V \ Vi−1 is maintained
with simple node marking (observe that each node is visited
at most once). In contrast with the complete order used in st-
numbering, in st-orientation we might be able to choose the
direction of the ear Pi, e.g., based on the current path lengths
in the sub-trees in Gi−1, checked in Step (1). Hence, using
an st-orientation the path lengths can be improved. However,
it has a higher computational complexity owing to check the
existence of paths between the node pairs in Step (2) and
Step (5).

C. Related Work

Essentially all existing heuristic algorithms use (some
variant of) the above algorithmic framework: build an ear-
decomposition and maintain an st-orientation thereof to obtain
a feasible redundant tree-pair. However, neither of these works
are based on the Suurballe-Tarjan algorithm, which will drive
the heuristics introduced in this paper.

The heuristic in [21] selects the ears basically randomly,
which was later improved to a greedy strategy to minimize
some intuitive path-length metrics in [25] and [24]. In partic-
ular, the BR algorithm [24] selects an ear so as to minimize
the path length after the ear is added, which requires an all-
pairs shortest path calculation each time an ear is added, in
worst case O(n3) steps overall. However, it yields the best
performance in the investigated performance metrics. Another
common approach is to use Depth First Search (DFS) tree to
construct the ears [31], which is also used in the IETF RFC
7811 Maximally Redundant Trees (MRT) [17].

As for redundant tree construction st-numbering (or com-
plete order) is used in [17], [22], [31], while st-orientations
(partial orders) in [24]–[26]. The trade-off between the two is
the usual time vs. performance type; complete orders yield
somewhat longer paths but can be computed in O(1) per
node in a path (although correct implementation is far from
trivial [17]); while partial orders allow more liberty for the
st-orientation and deliver shorter paths, but can be maintained
only in O(n) [11], [24].

7

Algorithm 3: MLRT Algorithmic Framework
Input: Undirected graph G = (V,E), root node r, edge lengths l
begin

1 Run Suurballe-Tarjan algorithm from root r
2 i := 1; V0 := {r} // Ear decomposition
3 while v← selectNode(V \ Vi−1) do
4 P ∗1 (G, v, r), P

∗
2 (G, v, r) := min length disjoint path-pair from

node v
5 Segment {v a1 . . . ak xi} ⊆ P ∗1 (G, v, r) :

a1, . . . , ak /∈ Vi−1, xi ∈ Vi−1

6 Segment {v b1 . . . bl yi} ⊆ P ∗2 (G, v, r) : b1, . . . , bl /∈ Vi−1,
yi ∈ Vi−1

7 if earDirection(Pi = xi ak . . . a1 v b1 . . . bl yi)
then

8 add xi←ak← . . .←bl to T 1
r and ak→ . . .→bl→yi to T 2

r
else

9 add xi←ak← . . .←bl to T 2
r and ak→ . . .→bl→yi to T 1

r

10 Gi := Gi−1 ∪ Pi; i := i+ 1

V. MINIMUM LENGTH REDUNDANT TREE ALGORITHMS

In this section we propose the design concept of the
heuristics that take the minimum length disjoint paths obtained
by Suurballe-Tarjan algorithm [19] and convert them into re-
dundant trees after a series of modifications. The approach was
inspired by the following observation, a direct consequence of
the data structure used in the Suurballe-Tarjan algorithm [19].

Observation 1: Let A be the union of the directed edges
in the minimum length disjoint paths from every node to a
single root. These paths can be chosen in a way that every
node other than the root has out-degree 2 in A.

Proof: It is a consequence of the explicit construction
to obtain the pair of paths from any given node described in
[19]. The explicit construction contains two steps: in the first,
some nodes are marked in the graph, while in the second a
“traversal step” is defined to construct the path edge-by-edge
from any given node. In the traversal step either the link of
the shortest path towards the destination node is selected, or
(if the node is marked) a specific link, denote by p(x) in [19].
As a result any obtained pair of paths is composed of edges
of the shortest path tree towards the destination node, denote
by T in [19], or the edges of p(x) for ∀x ∈ V , where each
p(x) is an edge with a source node x by definition.

This intuitively means A determined by the Suurballe-Tarjan
algorithm is a subgraph of G with very few edges and so there
is a hope that it can be partitioned into two redundant trees
with low η(G, r) value.

A. MLRT Algorithmic Framework

The main idea of our approach is to let the Suurballe-Tarjan
algorithm drive the augmentation of the ear-decomposition.
Algorithm 3 describes the pseudocode of the general frame-
work we built our MLRT heuristics on. Each of our
heuristics differs in two functions selectNode() and
earDirection(), discussed in Section V-B.

Suppose we are given a weighted undirected graph G and
a root r. First, for each node v 6= r we compute the minimum
length disjoint path-pair P ∗1 (G, v, r), P

∗
2 (G, v, r) from r using

a single run of the (node-disjoint) Suurballe-Tarjan algorithm
in Line 1. This can be done in O(n log n + m) steps [19].

Next, we generate an ear-decomposition G0 ⊂ G1 ⊂ · · · ⊂ Gk
based on the data available after the run of the Suurballe-Tarjan
algorithm (see Section V-B). The first subgraph consists of the
root V0 = {r}, and i denotes the number of ears processed
(Line 2). We will select the next ear Pi as segments of the
disjoint path-pair towards a node v ∈ V \ Vi−1 defined by
the selectNode() function in Line 3. As we add an ear
Pi traversing v ∈ V \ Vi−1, it has at least two edges. Let
xi be the first node along P ∗1 (G, v, r) that is already part
of Vi−1 and likewise let yi be the first node of Vi−1 along
P ∗2 (G, v, r) (Lines 5 and 6). Construct the ear Pi as the
concatenation of path segments xi → . . .→ v of P ∗1 (G, v, r)
and v → . . . → yi of P ∗2 (G, v, r) and denote this ear by
Pi = xi . . . v . . . yi.

At this point the function earDirection(Pi) will de-
cide the orientation for the new ear (Line 7) and either adds
P bi to T 1

r and P fi to T 2
r (Line 8), or vice versa (Line 9).

Finally, we add Pi to Gi−1 to obtain Gi (Line 10) and the
process is repeated until every node is covered by Vi.

B. MLRT Heuristic Algorithms

Here we summarize the different selectNode() and
earDirection() functions which might be of interest.

As for earDirection() first we compute the length
of selecting the ear in each direction, which is Lxi,r(T 1

r) +
Lyi,r(T 2

r) for the true branch of the condition of Line (7),
and Lxi,r(T 2

r) + Lyi,r(T 1
r) for the false branch. Then we

return the smallest length direction that is a valid solution
validated by one of the following two options:
STstn st-numbering (complete order), see Algorithm 1, and
STpo st-orientation (partial order), see Algorithm 2.
The function selectNode() is implemented by selecting

the nodes from a list sorted in the ascending order of the
following lengths available after a single run of the Suurballe-
Tarjan algorithm:
ST 0 minimal total length of the disjoint path-pair

L2
v,r(G),

STα minimal L2
v,r(G) − αL1

v,r(G) length, where 0 ≤
α ≤ 2. Note that with α = 0 we get ST 0, while
α = 2 corresponds to the order the Suurbale-Tarjan
algorithm labels the nodes (i.e., reduced edge lengths
L2
v,r(G)−2L1

v,r(G)). Hence, α represents a trade-off
between the two orders.

Based on the above classification we focus on the following
four heuristics:
ST 0

stn which runs in O(n log n+m) steps. One could hardly
expect to go beyond that point, as at least one shortest
path calculation is needed to direct the algorithm
towards short paths.

STαstn which solves the problem with 10 different α =
0, 0.2, 0.4, . . . 2 values and the solution with smaller
η(G, r) is selected. Asymptotically it has the same
running time O(n log n+m).

ST 0
po has slightly shorter paths by maintaining an st-

orientation (partial order) at the price of increasing
the running time to O(n2).

8

STαpo which solves the problem with 10 different α =
0, 0.2, 0.4, . . . 2 values and the solution with smaller
η(G, r) is selected. Asymptotically it has the same
running time O(n2).

If the lengths of the paths in the redundant trees equal the
minimum length disjoint path pairs (i.e., η(G, r) = 0), BR
algorithm [24] produces similar results as ST 0. Note that our
methods restricted to ears generated by the Suurballe-Tarjan
algorithm improve the running time of BR from O(n3) to
O(n2) with STpo or even to O(n log n + m) with STstn
without major performance hit, shown in Section VII.

Claim 1: The worst case running time of the heuristic STpo
is O(n2) and STstn is O(n log n+m).

VI. DISCUSSION ON REDUNDANT TREE ALGORITHMS

This section is devoted to summarizing the generaliza-
tions, strengths, and limitations of redundant tree algorithms.
Section VI-A shows the necessary modifications of the al-
gorithmic framework of Section IV to handle the general
node- and edge-redundant tree problems. In Section VI-B we
provide our conjecture on the theoretical upper bound for
η(G, r). Although redundant tree approaches revolve around
the concept of st-numbering, we give an example that optimal
redundant trees are not always obtainable with this approach
(Section VI-C). Finally, in Section VI-D we show that even
if a primary tree is already given it is NP-complete to find a
minimum length secondary tree concerning this primary tree.

A. General Edge- and Node-Redundant Trees

Now we show how the previously presented methods Al-
gorithm 1 and Algorithm 2 can be modified to find two edge-
redundant trees in 2-edge-connected graphs or to find node-
redundant trees when the root degree is more than two. The
common characteristic of these cases is the appearance of
closed ears, which can be tackled by representing a node
v ∈ V by two copies vL and vR in the auxiliary graph GD.

Lemma 3: Let GD = (V ′, E′) be a directed auxiliary
graph of G with the following properties. Node set V ′ =
{vL, vR|v ∈ V }. Edges of the form vL → vR are in E′ and
each edge (u, v) ∈ E has at most one corresponding edge in
GD with endpoints uL or uR and vL or vR. If for each node
v ∈ V − r there is an edge entering vL and there is an edge
leaving vR such that GD is a Directed Acyclic Graph (DAG),
then there are two edge-redundant spanning trees in G.

Proof: Note that rL is the only source node in GD and
similarly rR is the only sink. For each node v ∈ V −r we pick
an arbitrary edge entering vL. Together with edges vL → vR

these edges form a spanning out-tree in GD rooted at rL.
Similarly, can we define an in-tree rooted at rR by fixing an
outgoing edge for each node vR.

Note that by contracting edges vL → vR we get two
r-rooted spanning trees T 1

r and T 2
r in G which are edge-

redundant, since each edge in G has at most one corresponding
pair in GD.

Based on the above a pair of edge-redundant trees can be
obtained from ear-decompositions as follows. First, we need to
run the edge-disjoint version of Suurballe-Tarjan algorithm and

obtain the ears as shown in Algorithm 3. The key difference
compared to the node redundant case is that besides simple
paths we may have “closed ears”, i.e., simple cycles owing
to xi = yi. It can be handled in the same way as the graph
transformation used in Lemma 3. In case of st-orientation for
each node v we need to assign two nodes vL, vR, in GD,
and add directed edges vL → vR for ∀v ∈ V . Before an
ear Pi = xi ak . . . bl yi is added in Line 2 of Alg. 2 we
search for a path xLi → . . .→yRi in GD. If such path exists (the
return value is true in Lines 3 and 7) we add directed edges
xLi → aLk , aRk → aLk−1, . . . , bRl−1 → bLl , bRl → yRi . When the
return value is false (Lines 4 and 5), we add directed edges
yLi → bLl , bRl → bLl−1, . . . , aRk−1 → aLk , aRk → xRi . It is easy
to check that the resulting graph GD fulfills the properties of
the one described in Lemma 3, and the spanning trees built in
the analog of Algorithm 3 are like the ones constructed in the
proof, thus giving two edge-redundant trees.

For general node redundant trees the only closed ears we
may face is in the root node r, for which we assign two nodes
rL and rR in GD, and follow the same approach.

In the case of st-numbering, we assign two numbers for
each node with similar logic as we did above for the partial
order and in Lemma 3.

B. Conjecture on the Average Path Length Ratio

For the case of our sample graph G1, the redundant trees
on Fig. 1d yield the total length of Lr(T 1

r , T 2
r) = 16M +62,

while
∑
v 6=r L

2
v,r(G1) = 10M +68 and so η(G1, r) ' 0.6. A

simple calculation will lead to the following observation.
Observation 2: Let graph GM be a 4M+8 node graph that

is constructed from Fig. 1a by replacing each of v8, v10, v11,
and v9 by a chain of M new nodes. Then, lim

M→∞
η(GM , r) =

2/3 for root node r.
See the proof in the Appendix. Curiously, so far we have

not been able to find any graph for which the path length ratio
was larger. In all our theoretical investigations, evaluations on
famous difficult graph instances, and all our simulations on
hundreds of graphs with widely varying length functions (see
Section VII), we have not found even a single example and
root node where the ratio was above 2/3.

Conjecture 1: For an undirected graph G, lengths l and root
node r, there is a pair of redundant trees with average path
length ratio at most η(G, r) ≤ 2/3.

It is highly unexpected as, at first sight, the restriction that
paths must reside in two trees looks daunting. It seems that
in reality, the penalty for scalable multipath routing might not
be that large.

C. Minimum Length Redundant Trees with st-Numbering

In Lemma 1 we proved that an st-numbering is sufficient to
find redundant trees. Hence, previous approaches [11], [17],
[22], [24]–[26], [31] and our proposed algorithms are built on
ear-decomposition and st-numbering to tackle the redundant
tree problem.

Observation 3: Not every minimum-length redundant tree
pair can be obtained by an st-numbering (or st-orientation).

9

v13v11

v2

v1

v10

v12

v14

v5

r

v7

v6

v3 v4

v9

v8

1010
10

10 10 100

10

100

10

10

(a) Optimal redundant trees. Unlabeled edges are of zero length. Every
node is perfectly covered. There is no equivalent st-numbering because of
the cycle v7, v8, v10, v4, v3 and v6.

1311

2

1

10

12

14

5

r

7

6

3 4

9

8

(b) Optimal solution over st-orientations. Nodes are labeled as of the st-
numbering. Observe that at nodes v9 and v5 the path length gap is 10.

Fig. 4: An example network where the optimal redundant trees cannot be obtained by an st-numbering.

See Fig. 4 for a counter-example. However, in Section VII
we show that ears based on the Suurballe-Tarjan algorithm are
efficient in practice and can approximate the minimum length
redundant trees by a factor of 1.01− 1.05.

D. Secondary Tree for a Fixed Spanning Tree

We show that the redundant tree problem remains NP-
complete when a spanning tree, without loss of generality T 1

r

(e.g., the shortest path tree) is already given, and the task is
to find a redundant tree-pair T 2

r for it. Note that if we do not
require the secondary next-hops to line up into a spanning tree,
then a linear algorithm exists to compute the secondary next-
hops, i.e., backup forwarding table [43]. However, the backup
paths contain huge detours in this case, which questions their
practical applicability. Furthermore, as the primary and backup
paths are not fully disjoint, this method guarantees only that
the failed link can be bypassed, and can not be used for e.g.,
load-balancing or multipath routing purposes. Next, we show
that even deciding the existence of a secondary node-redundant
tree for a fixed tree is already a complex problem.

Definition 4: Minimum Length Secondary Tree problem
(MLST): given an undirected graph G = (V,E) with fixed root
node r ∈ V and spanning tree T 1

r in G, determine whether
there is a spanning tree T 2

r in G that is node-redundant with
T 1
r .
Theorem 2: MLST is NP-complete.
Refer to the Appendix for the full proof. The argument is

based on a Karp-reduction from a special form of the Boolean
satisfiability problem called “SAT with non-mixed clauses”
(NM-SAT). Given a Boolean expression in conjunctive normal
form, NM-SAT asks for an assignment of variables so that
all clauses have a type “unnegated” (contain only unnegated
literals) or “negated” (contain only negated literals).

VII. NUMERICAL EVALUATION

We carried out an extensive numerical evaluation to inves-
tigate the following questions:

Q1 How much penalty do we pay for scalability in
disjoint multipath routing?

Q2 What is the performance of the prosed heuristics
compared to their existing counterparts?

In order to give high statistical significance to our experi-
mental results, we have examined a broad family of graphs,
from real ISP network topologies from [44] (Table I) and
small-world random graphs [45] to random planar graphs,
over widely varying edge length settings including inferred
lengths [46] and uniform random lengths. We examined both
the node- and the edge-disjoint case. All in all, we evaluated
more than 20, 000 individual problem instances, including
4, 000 small-world and 11, 000 random planar problem in-
stances. Note that a problem instance is composed of a
network topology, a root node, a cost function, and whether we
consider the edge- or node-disjoint case. We used 75 random
planar graphs with 50–400 nodes and random edge costs, and
14 small world graph with 50–300 nodes and uniform edge
costs.

A. Q1: We Observe η(G) ≈ 0.043

Eq. (3) defines the measure of the penalty of the scalability
in disjoint multipath routing, which is the average path length
ratio metric η(G). In other words, we evaluate how close
redundant trees can approximate the length of the shortest
possible disjoint paths. For the sake of easier comparison, the
results are shown in percentages on some charts. Note that an
η(G) of 1% also means that the measured average path length
is at most 1.01-times larger than the optimal value because of
Eq. (1).

We evaluated all versions of our novel MLRT heuristics
of Algorithm 3 for both the edge- and node-disjoint cases,
with complete and partial order and with different distance
functions for selectNode(). In particular, we had the two
linear time algorithms ST 0

stn and STαstn, and the versions ST 0
po

and STαpo producing shorter paths for the price of increased
computational complexity.

Strikingly, amongst the 20, 000 instances examined by STαpo
not in a single case we found the average path length ratio to
grow beyond 32% (with a mean of 4.3%), which is still less
than half of the hypothesized maximum 66% as of Lemma 2.

1) Performance on Real-World Topologies: Table I shows
the results obtained on several real world topologies, and
Table II shows the averages over all investigated real-world
topologies and instances (avg. η(G)). The average path lengths

10

TABLE I: Results on real-world network topologies. Edge costs are taken from [44]. The presented values are averages over
every root node in the network. The columns mark the parameters of the input graphs (name, number of nodes and edges);
the average path length ratio for both the edge- and node-disjoint case and for different algorithms; the average length of the
shortest path, and the average length of the shorter path among the edge-disjoint path-pair for Surrballe’s algorithm and the
proposed heuristics. Note that the ratios are in percentages! For instance, a result of 1% means that the measured parameter
is 1.01-times larger than the base parameter.

Network The average path length ratio η(G) The average path length
topology Edge-disjoint Node-disjoint Shortest Shorter the edge-disjoint path

Name |V | |E| STαpo STαstn ST 0
po ST 0

stn STαpo STαstn ST 0
po ST 0

stn path Suurballe STαpo STαstn ST 0
po ST 0

stn

Germany 17 25 0.46% 3.97% 2.55% 5.53% 0.86% 0.99% 2.10% 2.10% 2.60 2.62 2.74 2.71 2.76 2.78
BtEurope 17 30 0.02% 3.53% 0.02% 3.57% 0.00% 0.00% 0.00% 0.00% 40.53 49.14 55.68 60.18 55.68 59.74
InternetMCI 18 32 0.70% 1.53% 0.75% 1.65% 0.70% 0.88% 0.70% 0.95% 27.46 27.93 28.30 28.36 28.38 28.41
AS1755 18 33 1.46% 3.31% 2.58% 6.73% 0.76% 1.83% 1.61% 4.01% 67.99 69.20 70.68 70.52 70.06 73.12
ChinaTelc 20 44 0.10% 0.18% 0.23% 0.27% 0.09% 0.14% 0.22% 0.23% 48.34 56.13 57.16 57.80 56.65 58.18
AS3967 21 36 0.75% 3.50% 1.15% 4.76% 0.48% 2.76% 0.51% 3.60% 137.51 139.24 142.40 143.76 143.66 147.98
NSF 26 43 2.21% 4.63% 2.98% 5.44% 3.04% 3.56% 3.33% 4.17% 3.16 3.19 3.31 3.31 3.31 3.36
BICS 27 42 1.43% 5.69% 2.63% 14.58% 0.21% 1.10% 1.99% 5.41% 102.36 110.46 114.92 119.57 114.24 134.57
AS1239 30 69 0.93% 2.29% 2.51% 4.29% 0.72% 2.12% 2.14% 4.22% 123.68 126.74 128.79 129.83 130.78 131.37
BtNAmerica 36 76 0.50% 8.45% 0.73% 10.27% 2.30% 3.25% 3.07% 4.76% 44.88 48.38 51.34 59.98 51.36 61.19
Germany 50 88 2.44% 6.66% 3.34% 9.46% 4.09% 5.99% 5.24% 8.55% 3690 3762 3846 3934 3878 4049
Deltacom 103 151 1.97% 7.39% 4.08% 10.17% 4.67% 6.15% 6.96% 9.32% 1986 2449 2626 2754 2714 2863

in the redundant trees are on average 1–7% longer than the
optimal minimum length disjoint paths. We have also added
the largest η(G) among these topologies (max. η(G)) to
Table II, which shows that even in the worst topology the
average path length gap is below 20%.

Besides the most important metric η(G), we plotted the
maximum penalty (i.e., largest path length increase) a partic-
ular node suffers towards an arbitrary root node r in graph G,
called the maximum path length gap:

λ(G) =
1

n
·
∑
r∈V

(
max

∀v∈V :v 6=r

Lv,r(T 1
r) + Lv,r(T 2

r)

L2
v,r(G)

− 1

)
.

The λ(G) values shown in Table II are averaged over
all investigated real-world topologies, which show that the
maximum path length gap λ(G) suffered by any node for
different algorithms is on average 11.6% for the edge- and
15% for the node-disjoint case. Finally, to demonstrate that
longer paths along the redundant trees result in moderate-
length detours [17], [47], we measured their length compared
to the shortest path (computed with Dijsktra’s algorithm),
formally:

µmax(G) =
1

n

∑
r∈V

 1

n− 1

∑
∀v∈V :v 6=r

(
max{Lv,r(T 1

r), Lv,r(T 2
r)}

L1
v,r(G)

− 1

).
Similarly, the average path length µmin(G) can be defined

for the shorter path along T 1
r , T 2

r . The average of µmin(G)
among all investigated real-world topologies shows that the
shorter paths along the redundant trees provided by the MLRT
algorithms are 18.8% longer than the possible shortest paths,
while the longer paths in the redundant trees are typically twice
as long as the shortest paths (134%).

Fig. 5 shows the cumulative distribution function of the
maximum path length gap for both the edge- and node-
redundant trees. One can observe that in more than 50% of
the problem instances the redundant paths in the trees were
equal to the minimum length disjoint path-pair, which means

TABLE II: MLRT performance metrics averaged (maximized)
over all investigated real-world topologies. Columns mark the
average path length ratio η(G); the maximum path length
gap λ(G) suffered by any node; and the average length of
the shorter µmin(G) and the longer path µmax(G) in the
redundant trees.

Heuristic avg.
η(G)

max.
η(G)

avg.
λ(G)

avg.
µmin(G)

avg.
µmax(G)

E
dg

e

STαpo (≈ ILP) 1.34% 13.50% 11.55% 18.47% 134.89%
STαstn 4.98% 28.72% 30.83% 23.89% 142.54%
ST 0

po (≈ BR) 2.34% 21.04% 11.18% 19.81% 136.75%
ST 0

stn 7.30% 71.15% 28.69% 28.54% 145.73%

N
od

e

STαpo (≈ ILP) 2.32% 16.11% 14.47% 27.32% 145.89%
STαstn 3.29% 24.84% 24.02% 28.60% 147.71%
ST 0

po (≈ BR) 3.34% 29.80% 13.09% 29.69% 147.12%
ST 0

stn 5.17% 33.87% 21.07% 32.34% 150.35%

that the path length increase caused by redundant trees does
not have any effect on more than half of the node-pairs.

2) Performance on Random Topologies: For small world
and for random planar graphs the average path length ratio and
running time for the different algorithms are given in Fig. 6
and Fig. 7, respectively.

The MLRT algorithm ST 0
po produced almost the same

results as BR but proved to be much faster in practice (theoret-
ically too, by, recall, a factor of O(n log n)) and both produce
incredibly high quality paths with about 1–8% length ratio (0–
3% in real networks). Even the very fast (linear average time)
ST 0

stn heuristic was within 10–25% of the absolute optimum
regarding the average path length ratio η(G), suggesting that
this algorithm is very well suited for performance-oriented
applications. Finally, we found that the results are robust
against parameter settings, as the ratio does not seem to vary
with, say, the average nodal degree or the edge lengths.

The maximum path length gap of a single node was 100%,
which means that there was a node whose two paths along
the redundant trees were twice as long as the shortest disjoint
path-pair. Furthermore, the optimal disjoint paths (L2

v,r(G))

11

0 20 40 60 80 100

0.6

0.8

1

λ(G) in [%]

C
um

m
ul

at
iv

e
fr

ac
tio

n

STαpo
STαstn
ST 0

po

ST 0
stn

(a) Node-disjoint case

0 20 40 60 80 100

0.6

0.8

1

λ(G) in [%]

C
um

m
ul

at
iv

e
fr

ac
tio

n

STαpo
STαstn
ST 0

po

ST 0
stn

(b) Edge-disjoint case

Fig. 5: Cumulative distribution function (CDF) of the max-
imum path length gap λ(G) for node- and edge-redundant
trees.

were in turn only about one and a half times longer as
the absolute shortest paths (L1

v,r(G)) obtained by Dijkstra’s
algorithm, indicating that the penalty for disjoint multipath
routing itself is also small.

B. Q2: The Proposed Heuristic STαpo Outperforms the Exist-
ing Approaches

To compare with the prior art we have implemented the BR
algorithm [24], the ILP [11], and the MRT algorithm [17].

1) The MRT algorithm: It is currently under standardization
at the IETF to drive the MRT IP Fast ReRoute scheme. It is
proposed only for the node-redundant version of the problem,
and does not optimize for the path length. In our experience
it has a huge η(G) (the average was 58.1%); thus, it is not
shown on the charts.

2) The BR algorithm: It gave the exact same results as
ST 0

po, thus we omit BR from the charts, too. The most
significant difference between the two approaches is the com-
putational complexity, as the BR algorithm requires an all-
pairs shortest path computation, thus, much slower than ST 0

po.
In our experience BR algorithm is in average 1000 times
slower than ST 0

po; therefore, the running times are also omitted
(Fig. 7).

3) The ILP: For small problem instances the ILP always
produced the same result as STαpo. However, even for medium-
size problem instances (more than 50 nodes) the ILP could not
be solved to optimality. Correspondingly, we omit the results
for the ILP henceforth.

Note that STαpo (and STαstn) are launched with 10 different
α = 0, 0.2, 0.4, . . . 2 values. The average path length gaps
corresponding to different values of the α parameter are
shown in Fig. 8 (averaged for all the above real-world and

random topologies). We observe that the algorithms built on
partial order provide paths 5% shorter than for complete order.
Furthermore, the range [1.1−1.8] is the best range setting for
the parameter α to minimize η(G). Hence, exploring different
α values and selecting the best one in STαstn and STαpo result
in performance improvement compared to ST 0

stn and ST 0
po

methods, respectively, which fix α to 0.

VIII. CONCLUSIONS

With the spread of SDN, a transition to multipath routing
became feasible which would fix many long-standing issues
related to end-to-end reliability, security, and latency, and
might also bring unexpected benefits like solving network-
scale load-balancing or location-independent addressing [1]–
[5], [18]. In the paper we focused on a fundamental open
question [18] related to multipath routing: How to provide
path diversity with destination-based hop-by-hop forwarding
(like in the OpenFlow SDN standard)?

Our approach is inspired by Suurballe-Tarjan algorithm [19]
that delivers the shortest disjoint path pairs from a single
root within the same complexity as Dijkstra’s shortest path
algorithm. Can this algorithm be used for scalable disjoint
two-path routing, where only two next hops (associated with
red and blue trees) need to be stored in the forwarding table?
In this paper, we sought answers for this crucial question.

Complexity-wise, the immediate answer is negative: we
have shown that scalable disjoint multipath routing is in-
tractable, even when the shortest paths have to be included.
And performance-wise, the straightforward answer would also
be negative; why would minimum length disjoint paths align
into trees after all? Surprisingly, our results seem to refute
these expectations; we have shown both theoretical and experi-
mental evidence that disjoint multipath routing is viable within
the same complexity as standard control plane operations (like
Dijkstra’s shortest path algorithm). Furthermore, with a slight
increase in complexity the average path length ratio between
redundant trees and optimal disjoint paths can be reduced
below 8% in the vast majority of the cases. Hence, our results
suggest that scalable multipath routing might not cause a
significant performance hit for operators.

REFERENCES

[1] K. P. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M. Levy, and
D. Wetherall, “Improving the reliability of internet paths with one-hop
source routing,” in OSDI, 2004, pp. 13–13.

[2] D. Wischik, M. Handley, and M. B. Braun, “The resource pooling
principle,” SIGCOMM CCR, vol. 38, no. 5, pp. 47–52, Sep. 2008.

[3] M. Caesar, M. Casado, T. Koponen, J. Rexford, and S. Shenker,
“Dynamic route recomputation considered harmful,” SIGCOMM CCR,
vol. 40, no. 2, pp. 66–71, Apr. 2010.

[4] O. Bonaventure, M. Handley, and C. Raiciu, “An Overview of Multipath
TCP,” Usenix ;login: magazine, vol. 37, no. 5, Oct. 2012.

[5] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and
S. Shenker, “Low latency via redundancy,” in CoNEXT, December 2013.

[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling innovation
in campus networks,” ACM SIGCOMM CCR, vol. 38, no. 2, pp. 69–74,
3 2008.

[7] Q. Wang, G. Shou, Y. Liu, Y. Hu, Z. Guo, and W. Chang, “Implemen-
tation of multipath network virtualization with SDN and NFV,” IEEE
Access, 2018.

12

50 100 150 200 250 300
2

4

6

8

10

Number of nodes (n)

A
vg

.η
(G

)

(a) Edge-redundant trees in small-world graphs.

50 100 150 200 250 300
2

4

6

8

10

Number of nodes (n)

A
vg

.η
(G

)

(b) Node-redundant trees in small-world graphs.

100 200 300 400

10

20

30

Number of nodes (n)

A
vg

.η
(G

)

(c) Edge-redundant trees in random planar graphs.

100 200 300 400

10

20

Number of nodes (n)

A
vg

.η
(G

)

(d) Node-redundant trees in random planar graphs.

Fig. 6: Average path length ratio in random small-world and planar graphs for STαpo (◦),STαstn (O), ST 0
po (�), ST 0

stn (4).

100 200 300 400
0

5 · 10−2

0.1

0.15

0.2

Number of nodes (n)

R
un

ni
ng

tim
e

[m
s]

(a) Small-world graphs

100 200 300 400
0

5 · 10−2

0.1

Number of nodes (n)

R
un

ni
ng

tim
e

[m
s]

(b) Planar graphs

Fig. 7: Running time of MLRT algorithms STαpo (◦),STαstn (O), ST 0
po (�), ST 0

stn (4). The running time of BR algorithm was
way outside of the visible range of the figure thus it was omitted.

0

5

10

15

20

25

30

0 0.5 1 1.5 2

η
(G

)
in

[%
]

Parameter α

Edge-disjoint STαpo
Edge-disjoint STαstn
Node-disjoint STαpo

Node-disjoint STαstn

Fig. 8: Solutions depending on the parameter α.

[8] R. Teixeira, K. Marzullo, S. Savage, and G. M. Voelker, “In search of
path diversity in ISP networks,” in IMC, 2003, pp. 313–318.

[9] O. Bonaventure, “NorNet moving to Multipath TCP,” 2014,
http://blog.multipath-tcp.org/blog/html/2014/05/30/nornet.html.

[10] E. G. Gran, T. Dreibholz, and A. Kvalbein, “NorNet Core – a multi-
homed research testbed,” Computer Networks, vol. 61, pp. 75 – 87, 2014,
special issue on Future Internet Testbeds – Part I.

[11] S. Ramasubramanian, H. Krishnamoorthy, and M. Krunz, “Disjoint
multipath routing using colored trees,” Computer Networks, vol. 51,

no. 8, pp. 2163–2180, 2007.
[12] X. Zhao, D. J. Pacella, and J. Schiller, “Routing scalability: an operator’s

view,” IEEE JSAC, vol. 28, no. 8, pp. 1262–1270, 2010.
[13] G. Huston, “BGP in 2013,” http://www.potaroo.net/ispcol/2014-

01/bgp2013.html.
[14] V. Lonker, “Thinking beyond the box – how Software Defined Networks

are changing the future of connectivity,” blog post, Verizon, Tech. Rep.,
2018.

[15] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
CCR, vol. 44, no. 3, pp. 87–95, 2014.

[16] H. Song, “Protocol-oblivious forwarding: Unleash the power of SDN
through a future-proof forwarding plane,” in ACM HotSDN, 2013, pp.
127–132.

[17] G. Enyedi, A. Csaszar, A. Atlas, C. Bowers, and A. Gopalan, “An
algorithm for computing IP/LDP fast reroute using maximally redundant
trees (MRT-FRR),” Internet Requests for Comments, RFC Editor, RFC
7811, June 2016.

[18] J. He and J. Rexford, “Toward internet-wide multipath routing,” Net-
work, IEEE, vol. 22, no. 2, pp. 16–21, 2008.

[19] J. W. Suurballe and R. E. Tarjan, “A quick method for finding shortest
pairs of disjoint paths,” Networks, vol. 14, no. 2, pp. 325–336, 1984.

[20] P. Thulasiraman, S. Ramasubramanian, and M. Krunz, “Disjoint mul-
tipath routing in dual homing networks using colored trees,” in IEEE
GLOBECOM, Nov 2006, pp. 1–5.

13

[21] M. Médard, S. G. Finn, R. A. Barry, and R. G. Gallager, “Redundant
trees for preplanned recovery in arbitrary vertex-redundant or edge-
redundant graphs,” IEEE/ACM ToN, vol. 7, no. 5, pp. 641–652, Oct.
1999.

[22] G. Xue, L. Chen, and K. Thulasiraman, “Quality-of-Service and Quality-
of-Protection issues in preplanned recovery schemes using redundant
trees,” IEEE JSAC, vol. 21, no. 8, pp. 1332–1345, 2003.

[23] A. Itai and M. Rodeh, “The multi-tree approach to reliability in
distributed networks,” Inf. and Comput., vol. 79, no. 1, pp. 43–59, 1988.

[24] R. Balasubramanian and S. Ramasubramanian, “Minimizing average
path cost in colored trees for disjoint multipath routing,” in IEEE
ICCCN, 2006, pp. 185–190.

[25] S. Cho, T. Elhourani, and S. Ramasubramanian, “Independent directed
acyclic graphs for resilient multipath routing,” IEEE/ACM Transactions
on Networking (TON), vol. 20, no. 1, pp. 153–162, 2012.

[26] G. Enyedi, P. Szilágyi, G. Rétvári, and A. Császár, “IP fast reroute:
Lightweight Not-Via without additional addresses,” in INFOCOM’09
Mini-Conference, 2009, pp. 2771–2775.

[27] D. Merling, W. Braun, and M. Menth, “Efficient data plane protection
for SDN,” in 2018 4th IEEE Conference on Network Softwarization and
Workshops (NetSoft), 2018, pp. 10–18.

[28] J. Tapolcai, G. Rétvári, P. Babarczi, E. R. Bérczi-Kovács, P. Kristóf,
and G. Enyedi, “Scalable and efficient multipath routing: Complexity
and algorithms,” in Proc. IEEE ICNP, Nov 2015, pp. 376–385.

[29] F. Annexstein, K. Berman, and R. Swaminathan, “Independent spanning
trees with small stretch factors,” Center for Discrete Mathematics,
Theoretical Computer Science, Tech. Rep., 1996.

[30] T. Hasunuma, “On edge-disjoint spanning trees with small depths,”
Information Processing Letters, vol. 75, no. 1–2, pp. 71–74, 2000.

[31] W. Zhang, G. Xue, J. Tang, and K. Thulasiraman, “Faster algorithms
for construction of recovery trees enhancing QoP and QoS,” IEEE/ACM
Transactions on Networking, vol. 16, no. 3, pp. 642–655, 2008.

[32] G. Enyedi and G. Rétvári, “Finding multiple maximally redundant trees
in linear time,” Periodica Polytechnica, vol. 54, pp. 29–40, 2010.

[33] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for SDN,” in ACM
SIGCOMM, 2013, pp. 99–110.

[34] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik, A. Berger,
G. Mendelson, M. Alizadeh, S.-T. Chuang, I. Keslassy, A. Orda, and
T. Edsall, “dRMT: Disaggregated programmable switching,” in ACM
SIGCOMM, 2017, pp. 1–14.

[35] R. Ozdag, “Intel R© Ethernet switch FM6000 series - Software Defined
Networking,” Intel Corporation, 2012.

[36] Cavium, “Cavium’s XPliant Ethernet switch supports the emerging open
ecosystems.”

[37] T. Levai, G. Pongracz, P. Megyesi, P. Voros, S. Laki, F. Nemeth,
and G. Retvari, “The price for programmability in the software data
plane: The vendor perspective,” IEEE Journal on Selected Areas in
Communications, pp. 1–1, 2018.

[38] K.-T. Foerster, S. Schmid, and S. Vissicchio, “Survey of consistent
Software-Defined Network updates,” IEEE Communications Surveys &
Tutorials, 2018.

[39] R. Mahajan and R. Wattenhofer, “On consistent updates in Software
Defined Networks,” in ACM Workshop on Hot Topics in Networks, 2013,
p. 20.

[40] A. Ludwig, J. Marcinkowski, and S. Schmid, “Scheduling loop-free
network updates: It’s good to relax!” in ACM Symposium on Principles
of Distributed Computing, 2015, pp. 13–22.

[41] A. Basta, A. Blenk, S. Dudycz, A. Ludwig, and S. Schmid, “Efficient
loop-free rerouting of multiple SDN flows,” IEEE/ACM Transactions on
Networking, vol. 26, no. 2, pp. 948–961, April 2018.

[42] A. Avidor, I. Berkovitch, and U. Zwick, “Improved approximation
algorithms for Max NAE-SAT and Max SAT,” in Approximation and
Online Algorithms. Springer, 2006, pp. 27–40.

[43] H. Ito, K. Iwama, Y. Okabe, and T. Yoshihiro, “Polynomial-time
computable backup tables for shortest-path routing,” in SIROCCO, 2003,
pp. 163–177.

[44] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The Internet Topology Zoo,” http://www.topology-zoo.org.

[45] J. Kleinberg, “The small-world phenomenon: An algorithmic perspec-
tive,” in ACM STOC, 2000, pp. 163–170.

[46] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, “Inferring link
weights using end-to-end measurements,” in IMC, 2002, pp. 231–236.

[47] A. Atlas, R. Kebler, M. Konstantynowicz, G. Enyedi, A. Császár, and
M. Shand, “An architecture for IP/LDP fast-reroute using maximally

r

x1fx1t x2fx2t x3fx3t x4fx4t

c1 c2

Fig. 9: The polynomial-time transformation of the NAE-3SAT
instance (X = {x1, x2, x3, x4}, C = {c1 = {x1, x2, x4}, c2 =
{x1, x2, x3}}). A NAE truth assignment is x1 = 1, x2 =
0, x3 = 0, x4 = 1.

redundant trees,” IETF 81, Quebec, Canada, 2011, http://www.ietf.org/
proceedings/81/slides/rtgwg-2.pdf.

APPENDIX

A. Proof of Theorem 1

Proof: Let X,C denote an instance of a NAE-3SAT
problem with variables X = {x1, . . . , xn} and clauses C =
{c1, . . . , cm}. We build an undirected graph G = (V,E)
belonging to this instance as follows:

V :={r} ∪ {xit, xif |xi ∈ X} ∪ {cj |cj ∈ C},
E :={(r, xit), (r, xif), (xit, xif)|xi ∈ X} ∪ {(xit, cj)|cj ∈ C, xi ∈ X,xi ∈ cj}∪

∪ {(xif , cj)|cj ∈ C, xi ∈ X,xi ∈ cj},

where xit and xif correspond to the true and false assignment
of variable xi, respectively. The length le = 1,∀e ∈ E.
This polynomial-time transformation is shown in Fig. 9. The
minimal length of the two disjoint v→ . . .→r paths are
L2
v,r(G) = 3 for nodes v = xit or v = xif , and 4 for nodes

v = cj . Note that the shortest pair of disjoint paths is unique
for every xit and xif node.

Lemma 4: There is a not-all-equal truth assignment of the
NAE-3SAT instance (X,C) if and only if G has two minimum
length redundant trees with Lr(T 1

r , T 2
r) =

∑
v∈V L

2
v,r(G).

Proof: (→) Let a : X → {t, f} be a not-all-equal
truth assignment of the instance and let a denote the opposite
assignment. For a clause ci ∈ C let xt(i) be a variable that
gives true-valued literal in ci (that is, either xt(i) ∈ ci and
a(xt(i)) = t or xt(i) ∈ ci and a(xt(i)) = f). Similarly can we
pick a literal xf(i) which evaluates to false in ci. Now we are
ready to construct trees T 1

r and T 2
r :

T 1
r ={(xja(xj)

, r), (xja(xj)
, xja(xj)

)|xj ∈ X} ∪ {(ci, xt(i)a(xt(i))
)|ci ∈ C},

T 2
r ={(xja(xj)

, r), (xja(xj)
, xja(xj)

)|xj ∈ X} ∪ {(ci, xf(i)a(xf(i))
)|ci ∈ C}.

These are minimum length redundant trees,
as (ci, x

t(i)
a(xt(i))

), (x
t(i)
a(xt(i))

, r) ∈ T 1
r and

(ci, x
f(i)
a(xf(i))

), (x
f(i)
a(xf(i))

, r) ∈ T 2
r , hence nodes ci have

Lci,r(T 1
r) + Lci,r(T 2

r) = 2 + 2 = 4, which is minimal. The
trees T 1

r and T 2
r are clearly minimum length for nodes xit

and xif , too.
(←) To prove the other direction let T 1

r and T 2
r be two

minimum length redundant trees. Hence, for every variable
xi ∈ X , (directed) paths (xit, x

i
f), (x

i
f , r) and (xif , x

i
t), (x

i
t, r)

14

are part of different trees, so we can define the following
evaluation of X:

a(xi) :=

{
t , if (xit, r) ∈ T 1

r

f , if (xif , r) ∈ T 1
r

From the assumption on minimum length, we get that ci

have Lci,r(T 1
r) = Lci,r(T 2

r) = 2, that is there exists a variable
xj with either xj ∈ ci and (xjt , r) ∈ T 1

r or xj ∈ ci and
(xjf , r) ∈ T 1

r . Both are equivalent to that there is a literal that
is evaluated to true in clause ci. Similarly we can derive from
Lci,r(T 2

r) = 2 that there is also a literal which is evaluated to
false in ci.
Since NAE-3SAT is NP-complete, the lemma proves the
theorem. We note here that this proof applies both for the
node-redundant and for the edge-redundant problem.

B. Proof of Observation 2

Proof: First, let G1 denote the graph in Fig. 1a and we
show that η(G1, r)→ 0.6 if M grows large enough. Then, for
the modified graph GM of Observation 2 (where v8, v10, v11,
and v9 are replaced by a chain of M new nodes) the same
argument will result η(GM , r) = 20M2+26M+32

12M2+30M+36 − 1 and so
η(GM , r)→ 2

3 as M tends to ∞. The details are omitted for
brevity.

Consider the graph G1 in Fig. 1a, let edge lengths be 1
except on edges (v2, v8), (v10, v2), (v11, v5), (v5, v9) that have
length M . We show that for any ε > 0 there exists a value
Mε such that if M > Mε, the length ratio of G1 is greater
than 0.6− ε. It is easy to check that the sum of shortest pair
of paths is 5 for nodes v1, v3, v6, v4 and M + 6 for nodes
v8, v2, v5, v9, finally 2M + 8 for nodes v10, v7, v11, giving a
total sum of 10M + 68.

Fig. 1d shows the pair of optimal redundant trees T 1
r and

T 2
r . Assume indirectly that there exist shorter redundant trees
F1
r (blue) and F2

r (red). Without loss of generality we can
assume that arc r → v1 is blue. Note that then the blue tree
can only reach nodes v10, v7, v11 through node v2, otherwise
path r → v1 → v3 → v6 → v5 → v11 should be all blue,
cutting nodes v10, v7, v11 from the red tree. Also, since in T 1

r

and T 2
r only nodes v10, v7, v11 have longer paths from r than

in G1, the sum of the length of their corresponding path must
be shorter in F1

r and F2
r . Assume that the blue path is shorter

in F1
r than in T 1

r . It can be checked that the only alternative
is path r → v1 → v3 → v2 → v10, decreasing at most 3M−3
on the total sum. However, the red paths to nodes v8 and v2
must go through v5 → v11 → v7 → v10 → v2, increasing
the total sum with at least 4M , which is bigger than 3M − 3,
giving a contradiction.

C. Proof of Theorem 2

Proof: First, we show that NM-SAT is NP-complete.
Lemma 5: NM-SAT is NP-complete.

Proof: We prove the lemma by reducing any SAT instance
to a NM-SAT problem. Let X,C denote an instance of a
SAT problem with variables X = {x1, . . . , xn} and clauses
C = {c1, . . . , cm}. If a clause ci contains literals xk and
xl, we consider the following, equivalent problem: we add a

r

t f

x1 x2 x3 x4

c1 c2

Fig. 10: The polynomial-time transformation of the NM-SAT
instance with T 1

r fixed. (X = {x1, x2, x3, x4}, C = {c1 =
{x1, x2, x4}, c2 = {x1, x2, x3}}, g(c1) = U, g(c2) = N). A
truth assignment is x1 = 1, x2 = 0, x3 = 0, x4 = 1.

new variable zi,l and instead of clause ci we add two clauses
c′i := ci − xl + zi,l and ci,l := zi,l ∨ xl. If the original SAT
instance has a solution, setting zi,l = xl gives a solution of the
corresponding problem and the other way round, deleting zi,l
from a true evaluation of the second problem gives a solution
of the original SAT problem.

Now let X,C denote an instance of a NM-SAT prob-
lem with variables X = {x1, . . . , xn} and clauses C =
{c1, . . . , cm} and let g : C → {U,N} be the function defining
the type of the clauses (i.e., unnegated clauses have type U
while negated clauses have N). We build an undirected graph
G corresponding to this instance:

V :={r} ∪ {t, f} ∪ {xi|xi ∈ X} ∪ {cj |cj ∈ C},
T 1
r :={(t, r)1, (f, r)1} ∪ {(xi, r)|xi ∈ X}∪

{(cj , f)|cj ∈ C, g(cj) = U}∪
{(cj , t)|cj ∈ C, g(cj) = N},

E \ T 1
r :={(t, r)2, (f, r)2} ∪ {(xi, t), (xi, f)|xi ∈ X}∪

{(cj , xi)|cj ∈ C, xi or xi ∈ cj}.

The polynomial-time transformation is shown in Fig. 10,
where the edges in T 1

r are directed towards r. Note that
(t, r), (f, r) are multi-edges.

Lemma 6: There is a good evaluation of the instance (X,C)
if and only if there is a spanning tree T 2

r in G which is node-
redundant with T 1

r .
Proof: (→) Let a : X → {t, f} be a good evaluation

of the NM-SAT instance. For a clause ci ∈ C let xt(i) be
a variable that gives true-valued literal in ci (that is, either
xt(i) ∈ ci and a(xt(i)) = t or xt(i) ∈ ci and a(xt(i)) = f).
Now, we are ready to construct T 2

r :

T 2
r :={(t, r)2, (f, r)2} ∪ {(xj , a(xj))|xj ∈ X}∪

{(ci, xt(i))|ci ∈ C}.

To show that T 1
r and T 2

r are node-redundant, only nodes cj

have to be checked because all other nodes have a one-edge
path in T 1

r to r. Let cj ∈ C be a clause with g(cj) = U . The
path P (T 2

r , c
j) is cj-xt(j)-t-r, which is indeed internally node-

disjoint from the P (T 1
r , c

j) path cj-f -r. The negated case can
be shown similarly.

15

(←) To prove the other direction, let T 2
r be a spanning tree

in E node-redundant with T 1
r . Since only edges (t, r)2 and

(f, r)2 are incident to r in E \ T 1
r , each path in T 2

r to any
node passes exactly one of them, defining a straightforward
evaluation of X . All is left to prove is that this is a good
evaluation of the clauses, that is, every clause contains a
variable evaluating to true. Indeed, the first variable on path
P (T 2

r , c
j) from a clause cj to root r is such a variable.

Since NM-SAT is NP-complete from Lemma 5, Lemma 6
proves the theorem.

The multi-edges (t, r), (f, r) can be removed by adding
an intermediate node to one of the parallel edges in the
transformation in Fig. 10. Thus, the same reasoning works for
simple graphs as well. Furthermore, NP-completeness can be
proved similarly to the edge-redundant MLST problem with a
slightly modified polynomial-time transformation to the NM-
SAT problem.

János Tapolcai received the M.Sc. degree in tech-
nical informatics and the Ph.D. degree in computer
science from the Budapest University of Technology
and Economics (BME), Budapest, in 2000 and 2005,
respectively, and the D.Sc. degree in engineering
science from the Hungarian Academy of Sciences
(MTA) in 2013. He is currently a Full Professor
with the High-Speed Networks Laboratory, Depart-
ment of Telecommunications and Media Informatics,
BME. He has authored over 150 scientific publica-
tions. His current research interests include applied

mathematics, combinatorial optimization, optical networks and IP routing,
addressing, and survivability. He was a recipient of several Best Paper Awards,
including ICC’06, DRCN’11, HPSR’15, and NaNa’16. He is a winner of the
MTA Lendölet Program and the Google Faculty Award in 2012, Microsoft
Azure Research Award in 2018. He is a TPC member of leading conferences,
e.g. IEEE INFOCOM 2012-2017, and the general chair of ACM SIGCOMM
2018.

Gábor Rétvári received the M.Sc. and Ph.D. de-
grees in electrical engineering from the Budapest
University of Technology and Economics in 1999
and 2007. He is now a Senior Research Fellow at
the Department of Telecommunications and Media
Informatics. His research interests include all aspects
of network routing and switching, the programmable
data plane, and the networking applications of com-
putational geometry and information theory. He
maintains several open source scientific tools written
in Perl, C, and Haskell.

Péter Babarczi (M’11) received the M.Sc. and
Ph.D. (summa cum laude) degrees in computer sci-
ence from the Budapest University of Technology
and Economics (BME), Hungary, in 2008 and 2012,
respectively. He is an Assistant Professor with the
Department of Telecommunications and Media In-
formatics at BME and currently also an Alexander
von Humboldt Post-Doctoral Research Fellow with
the Chair of Communication Networks at the Tech-
nical University of Munich, Germany. His current
research interests include multi-path Internet routing,

network coding in transport networks, and combinatorial optimization in
softwarized networks. He received the János Bolyai Research Scholarship
of the Hungarian Academy of Sciences and the Post-Doctoral Research
Fellowship of the Alexander von Humboldt Foundation.

Erika Bérczi-Kovács received the M.Sc. Degree in
Mathematics and the Ph.D. degree in Applied Math-
ematics from the Eötvös Loránd University (ELTE),
Budapest, in 2007 and 2015, respectively. She is
currently an assistant professor at the Department of
Operations Research, ELTE, and she is a member
of the MTA-ELTE Egerváry Research Group on
Combinatorial Optimization. Her research interests
are discrete mathematics, combinatorial optimization
and network coding. She was a recipient of NaNA
2016 Best Paper Award.

