
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 12, DECEMBER 2018 2621

The Price for Programmability in the Software
Data Plane: The Vendor Perspective
Tamás Lévai , Gergely Pongrácz, Péter Megyesi, Péter Vörös, Sándor Laki ,

Felicián Németh , and Gábor Rétvári , Member, IEEE

Abstract— The killer features of the next-generation 5G mobile
standard, including mobile edge computing and network slicing,
will be very difficult to support with traditional fixed-function
network appliances. Rather, the 5G core will depend on program-
mable switches, which allow packet processing functionality to
be reconfigured on the fly in order to deploy virtualized network
functions and service chains instantaneously. With 5G on the
close horizon, it has become crucial to identify the price for
programmability in the software data plane, considering the
expected complexity and scale of the next-generation mobile core.
In this paper, we report on a multi-year data-plane scalability
study we have conducted for a large mobile vendor. Our results
paint a rather pessimistic picture on the current landscape of the
programmable software data plane. We find that the prominent
programmable switches either do not provide all the features
necessary to implement 5G telco pipelines efficiently or struggle
to meet the scale, and the performance operators have come
to expect from conventional fixed-function appliances. The only
exception, ESwitch, remains proprietary. We call for further work
on data-plane scalability and sketch some directions for future
research.

Index Terms— 5G, software-defined networks, programmable
data plane, software switch, scalability, universal scalability law.

I. INTRODUCTION

MAJOR telcos and operators are working hard to final-
ize 5G, the upcoming fifth generation mobile wireless

standard. Slated to become commercially available by 2020,
5G will bring orders of magnitude improvement in system
capacity, access speed, latency, and energy efficiency, in order
to support a broad variety of vertical industries. 5G introduces
a completely new service architecture, including mobile edge
computing, which provides cloud-computing capabilities in
close proximity to subscribers in order to accelerate access

Manuscript received March 14, 2018; revised July 20, 2018; accepted
August 20, 2018. Date of publication September 19, 2018; date of current
version December 11, 2018. (Corresponding author: Tamás Lévai.)

T. Lévai and F. Németh are with the Department of Telecommunications
and Media Informatics, Budapest University of Technology and Economics,
H-1111 Budapest, Hungary (e-mail: levai@tmit.bme.hu; nemethf@
tmit.bme.hu).

G. Pongrácz is with Ericsson Research, H-1117 Budapest, Hungary (e-mail:
gergely.pongracz@ericsson.com).

P. Megyesi is with LeanNet, H-1174 Budapest, Hungary (e-mail:
megyesi@leannet.eu).

P. Vörös and S. Laki are with the Faculty of Informatics, Eötvös
Loránd University, H-1117 Budapest, Hungary (e-mail: vpetya@mensa.hu;
lakis@elte.hu).

G. Rétvári is with the MTA-BME Information Systems Research Group,
Budapest University of Technology and Economics, H-1111 Budapest, Hun-
gary (e-mail: retvari@tmit.bme.hu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2018.2871307

to content, and network slicing, a virtualization mechanism
to dynamically initiate service overlays, improving the typical
network operator innovation cycle and time-to-market [1], [2].

The current mobile core architecture, provisioned using
appliance-based (black-box) network gear, fixed-function mid-
dleboxes, and proprietary hardware, no longer suites the
needs of 5G [3]–[5]. Consequently, network function virtu-
alization (NFV), which allows instantaneous deployment of
different network functions, such as firewalls or encryption,
on virtual machines (VMs) or white-box network gear, and
software-defined networking (SDN), permitting to re-program
the data plane on the fly to organize VNFs into arbitrary
service chains, are considered key architectural enablers to
realize 5G [4], [5]. NFV and SDN can address deployment
barriers by reducing equipment costs (CAPEX) and oper-
ational expenditures (OPEX) and may also alleviate rising
scalability concerns, thanks to the “limitless” elasticity of
cloud-like deployments.

A fundamental building block of the SDN/NFV stack is
the programmable software switch, a software-based packet
processing pipeline (with possible hardware-acceleration).
A programmable switch can manipulate flows based on essen-
tially any combination of L2/L3/L4 header fields and allows
the forwarding functionality to be dynamically reconfigured
via an open and standardized control-plane interface [6], [7].
In the simple case the software switch merely passes packets
between isolated VMs that run VNFs [8]–[13], whereas in
integrated pipelines the switch may also run some or all the
VNFs embedded into the data plane [14]–[16].

With the available data rates, service diversity, and the sheer
scale, 5G is going to push the limits of what is achievable
with the current programmable data plane [9]–[17]. Conse-
quently, vendors are facing the question which programmable
switch to base the next 5G product line onto, whether the
chosen technology will support the massive 5G workloads, and
whether it will facilitate economic growth of the product line
into the future. The main goal of this paper is to summarize the
experiences of a major telco vendor gained in the scalability
analysis of current programmable data-plane technologies and
to evaluate the price 5G operators will pay, in terms of
performance, latency, CAPEX/OPEX, and energy consump-
tion, for the improved flexibility provided by programmable
switches compared to fixed-function appliances. The present
paper fully takes the stance of a telco vendor: we focus more
on presenting the results and less on analyzing the reasons
behind the scalability traits particular switches exhibit.

0733-8716 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1338-8668
https://orcid.org/0000-0002-8875-5330
https://orcid.org/0000-0001-7903-5406
https://orcid.org/0000-0002-5958-7817

2622 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 12, DECEMBER 2018

The contributions of the paper are five-fold.
A taxonomy for data-plane scalability. We give an overview
on the critical aspects concerning data-plane scalability.
We describe the most important problem dimensions, we iden-
tify crucial performance descriptors, and we also point out
some common traps. This is the main topic in Section II.
TIPSY, a data-plane scalability benchmarking tool. Contrary to
earlier tools and benchmarks [18]–[28], TIPSY was designed
from the ground up for the black-box scalability analysis
of networked software: it allows to fire up a standard telco
pipeline and set scaling parameters in only a couple of easy
configuration steps, supports multiple scaling modes and plug-
gable backends, permits turn-key measurements, and provides
automated visualization. TIPSY is described in Section III.
A suite of standard 5g telco pipelines. We define 10 standard
telco pipelines, identifying the typical 5G VNFs as standalone
micro-benchmarks and then synthetizing these basic building
blocks into meaningful macro-benchmarks to allow experi-
mentation at scale. The pipelines are described in Section IV.
A scalability study for the programmable software data plane.
We provide the performance baseline for 8 prominent pro-
grammable switches and then, concentrating on the most effi-
cient four products, we present a detailed scalability analysis
on complex 5G pipelines. See Section V.
Scalability is of concern in software switches. Our analysis
reveals that scalability, considering the expected size and
load of the future 5G mobile core, remains a challenge for
most programmable software switches. Consequently, deploy-
ing the programmable data plane would require unreason-
able capital and operational expenditures compared to tradi-
tional black-box designs. Our experiences are summarized in
Section VI and we conclude the paper in Section VII.

II. DATA-PLANE SCALABILITY: A TAXONOMY

Operating an SDN/NFV stack at the 5G scale requires the
underlying software switches to handle enormous static work-
load, tracking packets through a hierarchy of match-action
tables, each containing possibly thousands of entries, at a
rate of millions of packets per second. Moreover, switches
must also support a massive dynamic workload, since the
match-action pipeline may be modified multiple thousand
times per second [2]. The main goal in a scalability analysis is
to decide whether a particular switch tolerates growing static
and dynamic load economically and efficiently.

A scalability benchmark takes as input a critical system
parameter, like the size of the workload or the number of CPU
threads participating in packet processing, and the output is
one or more performance metrics (packet rate, latency, jitter)
characterizing the efficiency of the system along the input
trajectory. The final result is a benchmark report, e.g., a chart
with the input parameter on the x axis and the measured
change in the output metric on the y axis.

On the traces of [29], we distinguish three fundamen-
tal “metric of size” descriptors, or scalability dimensions,
which can be scaled separately or jointly in order to obtain
scalability characterizations in different operational domains
(see Fig. 1).

Fig. 1. Scalability dimensions.

Fig. 2. Universal scalability law.

• Concurrency. The amount of computing resources,
in terms of the number of CPU cores, dedicated to parallel
packet processing. Of course, the more cores a switch
may use the higher the throughput.

• Pipeline size. The spatial complexity (e.g., the number of
VNFs and service chains) and the temporal complexity
(i.e., the rate and type of updates applied during run-time)
of the workload running on a switch. Higher pipeline
complexity usually induces worsening performance.

• Active flow count. The number of individual transport
protocol sessions injected into the switch, which typically
represent the fundamental units of unsplittable traffic that
must be scheduled to the same CPU thread (see later).

The output is a performance descriptor that will repre-
sent the “goodness” of the switch at a particular scale,
like packet rate and transmission speed, latency and jitter,
drop rate, etc. Sometimes, these quantities are interpreted
side-by-side, e.g., the maximum packet rate achievable
with at most 10−4 drop probability (an “RFC2544-style”
measurement [30]).

A. Modeling Scalability

The Universal Scalability Law (USL, [29], [31]) is often
used to reason about benchmark results in the CPU-resources
input domain. This law characterizes the maximum parallel
execution gain X(n) achievable with a system running on n
CPU cores, as the function of the contention σ, the fraction
of serialized (non-parallelizable) portion of the work, and the
crosstalk κ, which may happen due to the interference between
each pair of worker threads in the system:

X(n) =
λn

1 + σ(n − 1) + κn(n − 1)
. (1)

For σ > 0 and κ = 0 the parallel speedup asymptotically
approaches the scalability limit 1/σ (Amdahl’s Law), while for

κ > 0 we get a speedup peak at nmax =
√

1−σ
κ and retrograde

scalability trend afterwards (see Fig. 2). Note that TIPSY, our
benchmarking system, supports automatic fitting of the USL
for multi-core measurement results.

LÉVAI et al.: PRICE FOR PROGRAMMABILITY IN THE SOFTWARE DATA PLANE: VENDOR PERSPECTIVE 2623

Fig. 3. Scaling modes: outer and joint scaling.

B. Common Pitfalls

Software switches typically run in polling mode, whereby
working threads are bound to a port’s receive packet queue
permanently and drain the queue in tight loop to process packet
batches in a run-to-completion manner. The NIC will, in turn,
dispatch packets to CPU cores by the IP 5-tuple (RSS). It is
important to understand how this architecture interacts with
each scalability dimension to obtain correct benchmarks.

1) Scaling Modes: In order to visualize multi-dimensional
scalability benchmarks usually some forms of scaling-
dimension reduction is used. For instance, reducing the num-
ber of relevant input dimensions to 2 and leaving the rest
unchanged produces a two-dimensional plot for the outer
product of the input regimes. Conversely, growing multiple
input parameters simultaneously will yield a single joint input
dimension on the x axis. TIPSY supports both the “joint” and
the “outer” scaling modes out of the box (see Fig. 3).

2) Interactions Between Scalability Dimensions: Although
representing orthogonal operational domains, scalability
dimensions are not independent. For instance, measuring with
a single active flow injected into a software switch will not
result correct multi-core scalability readings, since the single
active flow will always be scheduled by the NIC to the same
CPU core. To obtain correct results one must increase the
active flow count, the pipeline size (to handle the additional
flows) and the CPU core count jointly, taking care to fix
the scaling unit for the single-core baseline and keeping
the transaction count per worker thread constant afterwards.
TIPSY was designed to easily support such complex scalability
benchmarks.

3) Pipeline and Platform Tuning: The performance of a
programmable switch drastically depends on certain minute
implementation and platform details [10], [18]–[26], [32].
It is our belief, however, that a vendor, and especially an
operator, should not need to master a data-plane technology
to extract reasonable performance; correspondingly we delib-
erately avoided fine-grained backend-specific tuning. Rather,
we created “best-intention”, but admittedly naive, implemen-
tations for the telco pipelines and we made some minimal
effort to configure the System-Under-Test (SUT) for best
overall performance; e.g., all backends use the Intel DPDK
user space networking kit running on isolated CPUs for
maximum throughput [26], [33]. TIPSY, thanks to the modular
architecture, allows to easily swap inefficient implementations
for more efficient ones or do comparison studies in the future.

III. TIPSY: AN AUTOMATED BENCHMARK TOOL

TIPSY, the Telco pIPeline benchmarking SYstem, is specifi-
cally designed to facilitate scalability testing programmable

Fig. 4. TIPSY: architecture.

data-plane technologies and network-function virtualization
frameworks over standard telco scenarios.1 TIPSY features

• a flexible and concise configuration subsystem that allows
to set the pipeline-size scaling dimension easily,

• a configurable trace generator to produce deterministic
traffic traces at the required active flow count,

• a set of reference telco pipeline implementations for
different backends with configurable CPU core count for
scaling along the concurrency dimension,

• and a simple evaluation framework to visualize results.
The target audience for TIPSY is network vendors and

operators who want to evaluate the scalability of a program-
mable switch in increasingly complex configurations, DevOps
teams that want to integrate a VNF pipeline into a continuous
integration framework, operators certificating a 5G product
against standard benchmarks, and researchers validating new
algorithms/data-structures. A unique feature of TIPSY is that
it allows reproducible and dynamic benchmarks; TIPSY is
designed from the bottom up to ensure that repeating an exper-
iment on the same system would always generate the same
result (e.g., a fake-drop mode for controlling packet drops,
deterministic packet trace generation, etc.) and it can trigger a
controller to periodically modify and reconfigure some aspect
of the static pipeline, like initiating a configurable number of
user handover events in a 5G gateway, to obtain data-plane
benchmarks under controller churn.

The TIPSY reference architecture is given in Fig. 4. A typ-
ical setup contains a SUT that is to be evaluated and a Tester
that drives the measurements. The two systems are connected
back to back with a pair of high-speed links, the uplink and
the downlink, used by the Tester to feed the SUT with test
traffic and measure the output, plus a management link that is
used by the Tester to configure the SUT.

The TIPSY workflow is as follows (see Fig. 5). First,
the user chooses a reference 5G pipeline and issues tipsy
init <pipeline> to create a main configuration file
(Fig. 6). This sample configuration may then be modified to
set the scaling mode (in the benchmark section), the pipeline
size as exposed by the specific pipeline (pipeline section),
the active flow count and packet size (traffic section), and
the layout of the required result charts (visualize section).

Scaling parameters may be specified as lists in brackets; in
“joint” scaling mode subsequent values for each list will be
selected at once (the first elements from each list, then the sec-
ond elements, etc.) while in “outer” mode separate benchmarks
are made for the Cartesian product of the lists. Benchmarks
can be decomposed into multiple configuration files, which
allows to factor site-specific settings into a platform-default
configuration for easy reuse. Issuing tipsy make (or simply
make) will perform the requested benchmarks; under the

1Code and documentation are available at https://github.com/hsnlab/tipsy.

2624 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 12, DECEMBER 2018

Fig. 5. TIPSY workflow.

Fig. 6. Sample TIPSY configuration.

hood TIPSY will create a separate configuration for each
input data point, generate a traffic mix for each measurement,
configure the SUT with the static pipeline, fire up a controller
to apply dynamic load, execute the measurements and collect
the results, and then create all the requested visualizations and
generate a report. TIPSY implements a subset of the MongoDB
query language and backend, which permits filtering results
and generating charts for select aspects of the benchmark.

IV. STANDARD 5G TELCO PIPELINES

One of the stated goals of TIPSY is to fix representative
telco pipelines that may serve as a reference for future
benchmarking efforts. Currently, the benchmark suite contains
10 5G pipelines defined and 6 fully and 2 partially imple-
mented (see Table I). The PORTfwd scenario represents a
simple L2 repeater used to obtain the baseline performance,
the L2fwd pipeline models an Ethernet switch, L3fwd imple-
ments an IP router with group-table processing, and Encap/
Decap, RateLimit, Firewall, and NAT specify basic stand-
alone VNF micro-benchmarks. The remaining 3 pipelines are
complex 5G reference service chains built from the previous
blocks.

A. The Mobile Gateway Pipeline
Due to space constraints we detail only the 5G mobile

gateway reference pipeline (mgw); for a discussion of the
data-center gateway and the broadband network gateway con-
sult the TIPSY repository or [10], [34]. This pipeline connects
5G user equipment (or users), located behind base stations,
to the public Internet (see Fig. 7).

Telco pipelines usually have a separate uplink (user-to-
Internet) and downlink direction (Internet-to-user); TIPSY

enforces this distinction in all pipelines. In the uplink direction
the gateway receives GTP-encapsulated packets from the base
stations, identified by the source IP address in the GTP header,
and forwards the decapsulated packets to a set of destination
hosts representing the Internet services accessed by the users.
After decapsulation, the source IP address identifies the user
and the GTP TEID identifies the bearer, and the destination
IP address designates the public service. After various checks,
the uplink pipeline decapsulates the packet from the GTP
tunnel, identifies user equipment, applies policing, and finally
routes the decapsulated packet to the Internet based on an
L3 forwarding table. The downlink pipeline is basically the
reverse; the gateway receives normal packets from the Inter-
net, identifies the user equipment/bearer based on the packet
destination IP address, rate-limits users’ flow, and encapsulates
and sends the packet to the appropriate base station.

The static pipeline size, both in the uplink and the downlink
direction, can be scaled through multiple configuration knobs:

• user: the number of users generating uplink traffic;
• bst: the number of base stations;
• server: the number of public IP destinations;
• nhop: L3 group table size.
In addition, the following dynamic events can be applied to

the static pipeline, with the parameter specifying the rate by
which the respective event is initiated marked in parenthesis.

• User update: user arrival/departure event, which involves
updating the user selector table and adding a new queue
to the rate limiter (fluct-user).

• Handover: a user’s attachment point changes, involving
an update to the user selector table (handover).

• Server update: addition/removal of a server, updating the
L3 FIB and the group table (fluct-server).

B. Backends
TIPSY adopts a modular architecture, which allows to

freely add new pipelines, new packet generators, and new
software switch backends. This design lets TIPSY to easily
integrate general purpose tools to drive the measurements, like
the moongen packet generator which implements a flexible
scripting interface on top of LuaJIT, achieves line-rate packet
rate for 10G and 40G NICs, and features nanosecond-precision
latency measurements in a loopback measurement configu-
ration using hardware timestamping [35], as well as special
purpose tools like the classbench-ng framework to gen-
erate realistic ACLs and matching traffic traces for the Firewall
micro-benchmark [36] and the trex traffic generator which
features dynamic translation learning for the NAT benchmark
(see Table I). The switch backends with most complete TIPSY

support at the moment are as follows.

LÉVAI et al.: PRICE FOR PROGRAMMABILITY IN THE SOFTWARE DATA PLANE: VENDOR PERSPECTIVE 2625

TABLE I

TIPSY REFERENCE PIPELINES, WITH AVAILABLE BACKENDS. COLUMN ENCAP/DECAP SPECIFIES THE TYPE OF TUNNELING SUPPORTED

BY THE PIPELINE, PARSEFIELD GIVES THE TYPES OF HEADER FIELDS PARSED AND SETFIELD GIVES THE FIELDS MODIFIED

BY THE PIPELINE, RATELIMIT, FIREWALL, AND NAT SPECIFY WHETHER THE PIPELINE CONTAINS THE

RESPECTIVE VNF, BACKEND GIVES THE AVAILABLE IMPLEMENTATIONS

Fig. 7. The mobile gateway (mgw) pipeline.

• Open vSwitch (OVS, [9]): OVS is undoubtedly the
most popular programmable software switch in use
today. OVS can be configured via OpenFlow [7] or
the OVSDB protocol [6] and it supports basically all
popular L2/L3/L4 protocols and tunnel schemes. The
OVS fast datapath is built on a sophisticated flow-cache
hierarchy [9].

• Lagopus [37]: a high-performance software OpenFlow
switch built with DPDK [33].

• The Berkeley Extensible Software Switch (BESS, [14]):
an integrated SDN/NFV data plane that can be pro-
grammed through connecting simple functional modules
into a VNF graph via a Python interface and/ or gRPC.

• ESwitch [10]: The Ericsson reference OpenFlow software
switch specialized for telco use cases, featuring on-the-fly
pipeline compilation for extremely fast performance.

The rest of the backends, OF–DPA (the OpenFlow–Data
Plane Abstraction layer for the Broadcom Silicon SDK [17]),
P4 (we used the t4p4s retargetable P4 compiler from
the P4@ELTE project [12]), Vpp (the fd.io universal
dataplane [16]), and NetBricks [15] are only partially sup-
ported, either because they do not provide all features nec-
essary to implement every 5G pipeline or because they do not
allow easy dynamic configuration from the TIPSY controller.
Note that even the fully supported pipelines (Lagopus, OVS,
BESS, and ESwitch) require backend-specific workarounds;
e.g., only ESwitch supports GTP, BESS does not contain a
rate-limiter so policing is applied through the scheduler and
t4p4s does not provide data-plane rate-limiting functionality
at all, etc. Additionally, some switch features were unused

TABLE II

SUT HARDWARE & SOFTWARE SPECIFICATIONS

for reproducibility; e.g., even though both OVS and BESS
contain a NAT we still used a “statically populated” NAT in
order to maintain control over the NAT mappings, which we
need in order to generate valid and reproducible downstream
traffic.

V. SCALABILITY STUDIES

Below we highlight some important findings from the
scalability study we have conducted in order to evaluate
the applicability of different programmable software switch
suites for the next-generation 5G mobile core. The SUT
configurations are given in Table II. All benchmarks were
conducted with minimum-size (64-byte) packets using the
RFC2544 evaluation methodology (maximum throughput and
latency attainable with at 0.2 mpps drop rate and hardware
packet timestamps); the configuration supports a maximum
of 22.4 million packets per second (mpps) rate in this setup.
TIPSY configurations are available in the github repository.

A. Switch Architecture Matters
First, we evaluated the single-core baseline performance of

6 programmable software switches, BESS [14], ESwitch [10],
Lagopus [37], OVS [9], t4p4s [12], and Vpp [16]; see Fig. 8
for the raw packet rate and latency results. Since our testbed
did not have SmartNICs available, we added two OF–DPA
compatible hardware switches (a Quanta and an Edge-core
device, see Table II) that represent the hardware offload
option in the benchmarks. Note that these switches have
10 Gbps ports only whereas the software switches are evalu-
ated at 40 Gbps; still, the results are on the same scale. The
baselines were obtained in the L3fwd pipeline, as the number

2626 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 12, DECEMBER 2018

Fig. 8. Single-core baseline: raw packet rate in million packets per second (mpps) and 75th percentile latency in the L3fwd micro-benchmark at 64-byte
packet size with BESS (bess), ESwitch (e-sw), Lagopus, OVS (ovs), P4 (t4p4s), Vpp (vpp), and the Quanta and the Edge-Core OF–DPA switches.

Fig. 9. Single-core throughput as the function of the active flow count (mgw
pipeline: bst=40, user=300, server=400).

of entries in the L3 table (the static pipeline-size dimension)
and the number of distinct destination IPs in the input trace
(the active-flows dimension) were scaled jointly. Latency was
measured at the RFC2544 packet rate, which likely contributes
to the huge latency seen with ESwitch and OVS that produce
by far the highest throughput.

Even in this micro-benchmark it stands out that datapath
architecture greatly affects scalability. Hardware switches are
essentially insensitive to workload size as long as the pipeline
fits into the TCAM but show poor performance afterwards
when forwarding falls back to the slow path; we expect
similar behavior from SmartNICs. The software switches that
wrap a high-performance longest-prefix-matching algorithm
(ESwitch, BESS, t4p4s, Vpp) show similar scaling traits,
producing consistently high throughput independently from
table size. (The small decrease at higher workloads is due
to CPU cache contention.) OVS, however, seems considerably
sensitive to the workload size, with almost ten-fold throughput
drop due to deteriorating flow-cache hit rate when the active
flow count grows beyond a couple of thousands [9], [10].

We confirmed this finding in a complex macro-benchmark
as well. Fig. 9 shows the throughput of OVS, BESS, and
ESwtich on the mobile gateway pipeline (mgw) varying only
the active flow count dimension while leaving the rest of
the scalability parameters unchanged. The throughput of OVS
drops by some 65% due to increasing traffic diversity and
dropping flow-cache hit rate. This is particularly worrying:
since the active flow count is the only scalability dimension
that is usually not controlled by the mobile operator, even a
single misbehaving user, or a legitimate IP scan, may lead
to performance instability with OVS [9], [10]. Meanwhile,
ESwitch shows only 25% degradation in the same setup.

Fig. 10. Single-core performance in the Firewall (acl) micro-benchmark.

Fig. 10 shows the performance in the Firewall
(acl) micro-benchmark with increasingly complex
realistic ACL rules and traffic mixes generated with
classbench-ng [36]. Again, switch architecture largely
determines performance: backends that implement ACLs with
a specialized wildcard packet classifier (BESS and ESwitch)
are faster than general-purpose rule-matching engines (OVS
and Lagopus), but none of the switches scales beyond a
couple of hundred firewall rules.

B. Pipeline Size Scalability is of Concern
Fig. 11 gives the single-core pipeline-size scalability for

the mobile gateway (mgw) and the broadband network gate-
way (bng), in terms of downlink throughput measured for
Lagopus, OVS, BESS, and ESwitch (the uplink charts were
similar). As an indicator of the complexity of the pipelines the
figures also specify the number of flow entries in the resultant
OpenFlow tables.

Our results indicate that, as long as the pipeline size remains
modest (below 100 OpenFlow table entries or the equivalent
scale with BESS), performance figures are appealing with
all throughput results ranging between 5–8 mpps (3–4 Gbps
with minimum sized packets or 30–40 Gbps with maxi-
mum sized ones). However, as the number of subscribers
scales into the range of a few thousands and pipeline com-
plexity skyrockets (observe the log scale on the pipeline
size axes), all examined programmable switches exhibit poor
pipeline scalability with performance dropping 5 to 10-fold.
ESwitch stands out though; thanks to the capability to dynam-
ically compile a specialized datapath for each pipeline, it pro-
vides a high baseline single-core throughput and even though
performance drops by 30% as the pipeline grows beyond

LÉVAI et al.: PRICE FOR PROGRAMMABILITY IN THE SOFTWARE DATA PLANE: VENDOR PERSPECTIVE 2627

Fig. 11. Pipeline-size scalability: (a) the mgw and (b) the bng pipeline, downlink direction. Static pipeline complexity grows as follows: for mgw we set the
unit scale at bst=10, server=100, and user=3 and then we proportionally scale all three parameters jointly, and similarly for the bng case. Pipeline
complexity is represented as the number of flow entries in the OVS OpenFlow pipeline.

Fig. 12. Multi-core throughput and fitted USL (mgw), scaling all input
dimensions jointly from bst=30, server=300, and user=100, plus
a BESS result (bess-30) scaled from 30 users.

10, 000 entries it still sustains roughly 4–6 mpps throughput
with negligible packet loss.

C. Multi-Core Scalability is Challenging

After measuring scalability in the active flow-count dimen-
sion (Fig. 9) and the pipeline-complexity dimension (Fig. 11),
we extend the analysis to the third scalability dimension:
concurrency (see Fig. 12). These measurements were con-
ducted by taking the settings bst=30, server=300, and
user=100 as the single-core unit scale and then increasing
all three input dimensions jointly at the same pace. Note
that omitting to scale the pipeline size and the active flow
count dimensions one gets a false close-to linear multi-core
scalability [29]. We added another measurement round for
Lagopus and BESS this time starting from the 30-user baseline
(lago-30 and bess-30), since the 100-user result gave
meaningless USL fitting.

Using the automatic USL-fitting feature of TIPSY, we get
the following approximate USL parameters (see Fig. 12):

Our results reveal fundamentally different multi-core scal-
ability trends for each switch. Thanks to the sophisticated
threading architecture [9], OVS attains very good multi-core
scaling with close-to-zero contention (σ = 0.002) and very

low crosstalk (κ = 0.008), reaching a maximum efficiency at
10 CPU cores. BESS, on the other hand, exhibits significant
contention (σ = 0.32) between execution threads so that OVS,
even executing consistently one order of magnitude larger
pipelines, provides higher throughput when concurrency goes
beyond 2 cores. Lagopus, furthermore, starts from the lowest
baseline and reaches a performance cap already with 2 cores.
For the first sight ESwitch parallel scaling looks the poorest;
however, this conclusion is wrong since the SUT supports
only 22.4 mpps maximum packet rate at 64-byte packets,
and so ESwitch in fact already attains the physical limit with
5 cores. This result suggests that fitted USL models must be
handled with extreme caution. In summary, most examined
switches fail to scale to more than 10 threads; in fact, BESS
performance starts to drop afterwards.

D. Dynamic and Static Load Evaluated Side-by-Side
So far, we have concentrated on static benchmarks, where

performance is measured in steady state once the pipeline
has been fully configured into the switch. In an 5G mobile
core setup, however, the pipeline constantly changes; for
instance as users enter and leave a cell, producing handover
events, the pipeline needs to be updated with the user’s new
base-station association. Such reconfiguration events, espe-
cially if being generated multiple hundreds or thousands of
times per second, may affect the packet processing perfor-
mance adversely. Below, we measure how fast programmable
switches can be reprogrammed and how performance scales
with intensifying controller churn.

Fig. 13 gives the results for the mgw pipeline. In particular,
the figures show the isolines for the measured throughput
with OVS, BESS, and ESwitch, as the static complexity (the
pipeline size in terms of the number of users) and the dynamic
complexity (the intensity of handover events) change. The
results for OVS (Fig. 13a) and ESwitch (Fig. 13b) indicate
that these programmable software switches exhibit extremely
good dynamic scalability, with both switches producing robust
packet rate regardless of the frequency of handover events
(vertical isolines). This indicates that OVS and ESwitch tol-
erate thousands of pipeline updates per second without major
performance impact, although ESwitch provides consistently
4-times better throughput than OVS at equivalent scales.
BESS results, on the other hand, seem less stable; for handover

2628 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 12, DECEMBER 2018

Fig. 13. Static vs. dynamic scaling: the uplink throughput (in mpps) mgw pipeline (user=300, server=400) as the function of the static pipeline
size (number of users) and the dynamic workload (number of handover events per second) for (a) OVS, (b) ESwitch, and (c) BESS; and (d) BESS
throughput as the function of the static L3 table size metric (server) and the intensity of the dynamic server-update events.

events (Fig. 13c) it shows roughly 1:1 rate between static and
dynamic complexity (skewed isolines), while in the case of
L3 update events (Fig. 13d) performance seems completely
determined by the dynamic complexity (horizontal isolines)
regardless of the static workload size.

We believe that again switch architecture is at play here:
while ESwitch by design provides incremental and atomic
pipeline updates with minimal data-plane impact [10], [38],
BESS currently halts packet processing completely for the
time match-action table modifications are accomplished.

VI. THE PRICE FOR DATA-PLANE PROGRAMMABILITY

As mobile vendors increasingly migrate 5G pipelines from
fixed-function hardware offerings to virtual network functions,
it has become essential to estimate the 5G workload scale a
programmable software switch can handle economically and
assess how many CPU cores/blades are needed to achieve
performance parity with a current fixed-function middlebox.
Below, we synthesize our results to answer these questions.

We chose the Broadband Network Gateway
(BNG, [10], [34]) from the reference pipelines since it
is relatively unchanged from 4G to 5G and thereby allows a
comparison with a commercial fixed-function middlebox. The
Ericsson SSR 8000 family of Smart Services Routers (SSR)
supports 768, 000 users in the BNG configuration, each user
receiving at least 3 Mbps access even with minimum-sized
packets. The SSR-based BNG in full configuration is deployed
on 12 2U-form-factor dual-socket blades in a single rack,
consuming 14 kW of electricity, or 18 mW/user.

What is the scale of the deployment that could support
the same load using OVS configured with the bng reference
pipeline? First, suppose optimistically that OVS scales linearly
in the concurrency dimension (which we know is not the
case, cf. Fig. 12) and therefore we can extrapolate from the
single-core measurements (Fig. 11b) to the full deployment.
When configured with 300 users in the downlink direction
of the bng pipeline (uplink results are similar), OVS runs
at roughly 2 mpps packet rate on a single core, or about
1Gbps at 64-byte packets. This yields 3 Mbps/user, the same
as the fixed-function BNG. At this scale, we would need
2,560 CPU cores to support 768k users with OVS, or roughly
100 blades (assuming 24 core/blade) in 7 racks (assuming
16 blades/rack). This is 8 times the deployment size of an
equivalent SSR-based BNG, with an energy consumption

TABLE III

DEPLOYMENT SCALE NEEDED TO HANDLE THE LOAD EQUIVALENT

TO AN ERICSSON SSR (12 2U BLADES IN A SINGLE
RACK) BROADBAND NETWORK GATEWAY (BNG,

768K USERS, 3Mbps/USER) AND MOBILE

GATEWAY (MGW, 1 MILLION USERS)
WITH PROGRAMMABLE SWITCHES

of ∼ 50 kW (70 mW/user) assuming a conservative esti-
mate of 500 W/blade. And this is an optimistic assumption,
since OVS multi-core scaling is not linear in general (recall
again Fig. 11b); using the fitted USL predictions we get per-
formance parity at roughly 10-times the scale of the SSR-based
BNG. With BESS as the software switch the scale would be
almost twice as large. ESwitch on the other hand needs only
2 racks to run the same load as the SSR, thanks to that it can
handle more users per core (Fig. 11b) with better multi-core
scalability (Fig. 12).

Table III gives the results for the BNG and the MGW
pipelines; note that for all results we used the optimistic
linear-scaling assumption. For the MGW we took the Eric-
sson SSR Evolved Packet Gateway (EPG) as the baseline,
supporting beyond 1 million users in the same form factor
as the BNG. The EPG packet-processing pipeline, although
functionally similar, is much more complex than our mgw
pipeline (e.g., the EPG performs full-rate deep-packet inspec-
tion); still we believe that it serves as a useful comparison for
the MGW use case. Again, we see that with OVS and BESS we
need 3–12 times as many blades as the EPG to support the
same load, with only ESwitch reaching performance parity
at roughly the same scale and with much smaller energy
consumption.

VII. CONCLUSIONS AND FUTURE RESEARCH

In this paper we report on a multi-year effort to analyze
the applicability of current programmable software data-plane
technology to implement the next-generation mobile core.
We presented a taxonomy for data-plane scalability analysis

LÉVAI et al.: PRICE FOR PROGRAMMABILITY IN THE SOFTWARE DATA PLANE: VENDOR PERSPECTIVE 2629

and we introduced TIPSY, a purpose-built benchmark-
ing framework that provides simple declarative bench-
mark descriptions, automatic static and dynamic pipeline
configuration, unassisted measurements, and configurable
visualizations.

Out results indicate that current programmable software
switches struggle to scale to the same load as commercial
fixed-function appliances, which suggests that one pays dearly
for the added configurability, elasticity, flexibility, manage-
ability, and deployment speed, of the programmable data
plane. The only exception seems to be ESwitch, which can
handle roughly the same load as a fixed-function middle-
box but with all the added benefits of programmability. For
the moment, however, ESwitch remains a proprietary proof-
of-concept prototype, with little hope to become available
soon as an open source software or as a boxed commercial
product.

We conclude that scalability in the programmable software
data plane is of concern. This calls for further research; we
believe that progress on the below topics would be particularly
important to change the current state-of-affairs [39].

• Software packet classification. Our benchmarks revealed
that packet classification remains by-far the most taxing
operation in the programmable data plane [9], [10], [21].
This is because programmable switches generally
support more complex classifier rules than conven-
tional fixed-function appliances, which raises substantial
theoretical and practical challenges.

• Pipeline embedding. Most nontrivial pipelines have sev-
eral functionally equivalent forms and finding the best
representation for a given software switch is a painful
process at the moment. BESS, for instance, allows to
decompose a complex pipeline into smaller chunks that
can be effectively scheduled to a single CPU core, yet
our current, admittedly naive, approach is to implement
the whole pipeline as a single functional block and
simply repeat this large block to all CPU cores. A sound
theoretical framework to optimally compile a pipeline to
the underlying software data-plane would be very useful
here; see a similar approach for HW switches in [40].

• Black-box switch tuning. One of the most tedious steps in
data-plane benchmarking is fixing a base SUT configu-
ration for maximal efficiency; even a single Linux-kernel
sysctl or a DPDK configuration knob can have dra-
matic effects on the performance of the pipeline that runs
on top [26]. Using a black-box optimization tool, like
Google Vizier, for unassisted switch fine-tuning promises
itself a compelling research topic.

ACKNOWLEDGMENT

The authors would like to thank Justine Sherry and
Barath Raghavan for the discussions that motivated the paper.

REFERENCES

[1] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz,
J. Lorca, and J. Folgueira, “Network slicing for 5G with SDN/NFV:
Concepts, architectures, and challenges,” IEEE Commun. Mag., vol. 55,
no. 5, pp. 80–87, May 2017.

[2] K. Obraczka, C. Rothenberg, and A. Rostami, “SDN, NFV and their
role in 5G,” in Proc. ACM SIGCOMM Tuts., 2016. [Online]. Available:
http://conferences.sigcomm.org/sigcomm/2016/tutorial-sdnnfv5g.php

[3] Z. A. Qazi, M. Walls, A. Panda, V. Sekar, S. Ratnasamy, and S. Shenker,
“A high performance packet core for next generation cellular networks,”
in Proc. ACM SIGCOMM, 2017, pp. 348–361.

[4] C. E. Rothenberg et al., “When open source meets network control
planes,” Computer, vol. 47, no. 11, pp. 46–54, Nov. 2014.

[5] A. Manzalini, “Towards 5G software-defined ecosystems,” IEEE
Softw. Defined Netw., White Paper, 2016. [Online]. Available:
https://sdn.ieee.org/publications/towards-5g-software-defined-
ecosystems

[6] B. Pfaff and B. Davie, The Open vSwitch Database Management
Protocol, document RFC 7044, 2013.

[7] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Apr. 2008.

[8] C. Zhang, S. Vasudevan, and S. Wong, “Extensible Neutron service
function chaining—Here it comes,” in Proc. OpenStack Summit, 2015.
[Online]. Available: https://www.youtube.com/watch?v=sndi0QGAYUc

[9] B. Pfaff et al., “The design and implementation of open vSwitch,”
in Proc. USENIX NSDI, 2015, pp. 117–130.

[10] L. Molnár et al., “Dataplane specialization for high-performance
OpenFlow software switching,” in Proc. ACM SIGCOMM, 2016,
pp. 539–552.

[11] P. Bosshart et al., “P4: Programming protocol-independent packet
processors,” SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87–95,
Jul. 2014.

[12] S. Laki, D. Horpácsi, P. Vörös, R. Kitlei, D. Leskó, and M. Tejfel,
“High speed packet forwarding compiled from protocol independent
data plane specifications,” in Proc. ACM SIGCOMM Demo, 2016,
pp. 629–630.

[13] J. Hwang, K. K. Ramakrishnan, and T. Wood, “NetVM: High per-
formance and flexible networking using virtualization on commodity
platforms,” in Proc. USENIX NSDI, 2014, pp. 445–458.

[14] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy,
“SoftNIC: A software NIC to augment hardware,” Dept. EECS, Univ.
California Berkeley, Berkeley, CA, USA, Tech. Rep. UCB/EECS-2015-
155, 2015.

[15] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,
“NetBricks: Taking the V out of NFV,” in Proc. USENIX OSDI, 2016,
pp. 203–216.

[16] The FD.io Project. Accessed: Mar. 12, 2018. [Online]. Available:
https://fd.io

[17] The OF-DPA Project. Accessed: Mar. 11, 2018. [Online]. Available:
https://github.com/Broadcom-Switch/of-dpa

[18] M. Holdorf, “How-to compare performance of data plane devices,”
in Proc. Netw. Archit. Services, 2016, pp. 33–40.

[19] R. V. Rosa and C. E. Rothenberg, “Taking open vSwitch to the Gym:
An automated benchmarking approach,” in Proc. IETF/IRTF Workshop,
2017, pp. 1–14.

[20] L. Csikor, M. Szalay, B. Sonkoly, and L. Toka, “NFPA: Network
function performance analyzer,” in Proc. IEEE NFV-SDN, Nov. 2015,
pp. 17–19.

[21] A. Bianco, R. Birke, L. Giraudo, and M. Palacin, “OpenFlow switching:
Data plane performance,” in Proc. IEEE ICC, May 2010, pp. 1–5.

[22] M. Kuźniar, P. Perešíni, and D. Kostić, “What you need to know about
SDN flow tables,” in Proc. PAM, 2015, pp. 347–359.

[23] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore,
“OFLOPS: An open framework for OpenFlow switch evaluation,”
in Proc. PAM, 2012, pp. 85–95.

[24] S. Gallenmüller, P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle,
“Comparison of frameworks for high-performance packet IO,” in Proc.
ANCS, 2015, pp. 29–38.

[25] J. Blendin, Y. Babenko, D. Kusidlo, G. Schyguda, and D. Hausheer,
“Towards a structured approach to developing benchmarks for virtual
network functions,” in Proc. EWSDN, 2016, pp. 1–6.

[26] P. Zhang, “Configuring and benchmarking open vSwitch, DPDK and
vhost-user,” in Proc. KVM Forum, 2017.

[27] IxNetwork Overview: L2/3 Network Infrastructure Performance Testing,
IXIA, Calabasas, CA, USA, 2017.

[28] R. Durner, A. Blenk, and W. Kellerer, “Performance study of dynamic
QoS management for OpenFlow-enabled SDN switches,” in Proc. IEEE
23rd Int. Symp. Qual. Service (IWQoS), Jun. 2015, pp. 177–182.

[29] B. Schwartz, Practical Scalability Analysis With the Universal Scalabil-
ity Law. Charlottesville, VA, USA: VividCortex, 2015.

2630 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 12, DECEMBER 2018

[30] S. Bradner and J. McQuaid, Benchmarking Methodology for Network
Interconnect Devices, document RFC 2544, 1999.

[31] N. J. Gunther, Guerrilla Capacity Planning: A Tactical Approach to
Planning for Highly Scalable Applications and Services, 1st ed.
Berlin, Germany: Springer-Verlag, 2010. [Online]. Available:
https://www.springer.com/gp/book/9783540261384

[32] P. Shinde, A. Kaufmann, T. Roscoe, and S. Kaestle, “We need to talk
about NICs,” in Proc. USENIX HotOS, 2013, p. 1.

[33] Intel. Data Plane Development Kit. Accessed: Mar. 12, 2018. [Online].
Available: http://dpdk.org

[34] Intel. Network Function Virtualization: Quality of Service in Broadband
Remote Access Servers With Linux and Intel Architecture. Accessed:
Feb. 16, 2014. [Online]. Available: https://networkbuilders.intel.com/
docs/Network_Builders_RA_NFV_QoS_Aug2014.pdf

[35] P. Emmerich, S. GallenmÃ¼ller, D. Raumer, F. Wohlfart, and G. Carle.
(2014). “MoonGen: A scriptable high-speed packet generator.” [Online].
Available: https://arxiv.org/abs/1410.3322

[36] J. Matoušek, G. Antichi, A. Lučanský, A. Moore, and J. Kořenek,
“ClassBench-ng: Recasting classbench after a decade of network evolu-
tion,” in Proc. ANCS, 2017, pp. 204–216.

[37] Y. Nakajima, T. Hibi, H. Takahashi, H. Masutani, K. Shimano, and
M. Fukui, “Scalable high-performance elastic software OpenFlow switch
in userspace for wide-area network,” in Proc. Open Netw. Summit (ONS),
Santa Clara, CA, USA, 2014, pp. 1–2.

[38] J. Han et al., “Blueswitch: Enabling provably consistent configuration
of network switches,” in Proc. ACM/IEEE ANCS, 2015, pp. 17–27.

[39] R. Bifulco and G. Rétvári, “A survey on the programmable data plane:
Abstractions, architectures, and open problems,” in Proc. IEEE HPSR,
Jun. 2018.

[40] L. Jose, L. Yan, G. Varghese, and N. McKeown, “Compiling packet
programs to reconfigurable switches,” in Proc. USENIX NSDI, 2015,
pp. 103–115.

Tamás Lévai received the M.Sc. degree in com-
puter engineering from the Budapest University of
Technology and Economics in 2016, where he is
currently pursuing the Ph.D. degree. His research
interest focuses on software-defined networking and
high-performance packet processing.

Gergely Pongrácz graduated from the Technical
University of Budapest in 2000. In 2004, he became
a Research Engineer at Ericsson Research, where he
is an expert in researching programmable data plane.
He is involved in NFV and SDN topics, especially in
the programmable networking area. These projects
resulted in well received papers and demos, such as
a paper on the IEEE SigComm in 2016 or demos at
the Mobile World Congress in 2015 and 2017.

Péter Megyesi received the Ph.D. degree in
computer science from the Budapest University
of Technology and Economics and the Doctoral
School on Innovation and Entrepreneurship orga-
nized by the EIT Digital. He co-founded LeanNet,
a Hungary based start-up focused on integrat-
ing software-defined networking into leading cloud
native solutions, where he currently serves as a Chief
Technology Officer.

Péter Vörös received the M.Sc. degree from
the Doctoral School of Computer Science,
Eötvös Loránd University, Budapest, Hungary,
in 2014, and graduated from the Doctoral School
of Computer Science, Eötvös Loránd University,
in 2017. He is currently pursuing the Ph.D. degree
with the Department of Information Systems, Eötvös
Loránd University. He is also an Assistant Lecturer
with the Department of Information Systems,
Eötvös Loránd University. He is currently working
on the projects in network security, traffic analytics,
and programmable data planes.

Sándor Laki received the M.Sc. and Ph.D. degrees
in computer science from Eötvös Loránd University
in 2007 and 2015, respectively. He is currently an
Assistant Professor with the Department of Infor-
mation Systems, Eötvös Loránd University. He has
authored over 20 peer-reviewed papers and demo
papers, including publications at JSAC, INFOCOM,
ICC, and SIGCOMM. His research interests include
active and passive network measurement, traffic
analytics, programmable data planes, and their
application for new networking solutions.

Felicián Németh received the M.Sc. degree in
computer science from the Budapest University of
Technology and Economics (BME) in 2000. He is
currently a Research Fellow with the Department of
Telecommunications and Media Informatics, BME.
He was a member of national research projects
and the EFIPSANS, OPENLAB, and UNIFY EU
projects. His current research interests include dif-
ferent aspects of software-defined networking and
network function virtualization.

Gábor Rétvári received the M.Sc. and Ph.D.
degrees in electrical engineering from the
Budapest University of Technology and Economics
in 1999 and 2007, respectively. He is currently
a Senior Research Fellow with the Department
of Telecommunications and Media Informatics,
Budapest University of Technology and Economics.
His research interests include all aspects of network
routing and switching, the programmable data plane,
and the networking applications of computational
geometry and information theory. He maintains

several open-source scientific tools written in Perl, C, and Haskell.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

