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Abstract—A centralized rate-adaptive routing algorithm is
presented that, in contrast to the distributed ones available in
the literature, achieves provablestability, optimalilty with respect
to optional linear or quadratic objective functions, and feasibility
in that it can accommodate any admissible traffic matrix in the
network without violating link capacities. We recast the routing
problem in the framework of constrained optimal control theory
to obtain optimal state feedback routing controllers, and we
present simulations confirming that our routing controllers are
viable in small- and middle-sized networks.

Index Terms—traffic engineering, optimal control theory,
model predictive control

I. I NTRODUCTION

A major challenge of Internet Traffic Engineering [1] is to
provision forwarding paths in a network, so that the required
Quality of Service is guaranteed to the users while the expen-
sive network infrastructure is utilized cost-efficiently.Histor-
ically, forwarding paths were either not optimized at all, or
they were optimized statically with respect to some measured
and/or expected traffic matrix [2], [3]. Static routing, however,
has become more and more counterproductive recently, as
networks are beginning to face more dynamically changing
traffic [4]. In response, various proposals have surfaced to
reduce the significance of traffic matrices in intra-domain
traffic engineering [5]–[9]. The most attractive approach is
multipath rate-adaptive routing: distributed algorithmshave
been designed that can adapt dynamically to momentary traffic
matrices and maximize users’ aggregate utility, while also
avoiding link oversubscription [10]–[16].

In many commercially operated networks, like transit,
provider or enterprise networks, the task of traffic engineering
is posed somewhat more sharply [9], [13], [15], [16]. Today’s
operational networks are beginning to see more and more
inelastic multimedia traffic, and a growing share of customers
requires the network to provide guaranteed flat rate, to abide
to strict SLAs, and to deliver hard QoS. Unfortunately, satisfy-
ing these requirements is difficult with traditionaldistributed
multipath rate-adaptive routing algorithms [17]. In this paper,
therefore, we propose an alternative,centralizedapproach to
intra-domain traffic engineering for ISP networks. Leveraging
on the rich path diversity [18] and the broad range of routing
information available in central network management software
widely used for operating ISP networks, our scheme ensures
provable stability, optimality with respect arbitrary linear or
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quadratic objective functions and adaptability to arbitrary user
demands with strict QoS guarantees.

The main contribution of the paper is a formulation of the
optimal rate adaptive routing problem in a control theoretic
framework, which facilitates for building on firm theoretical
foundations and a well-established numerical toolset. In Sec-
tion II, we present a system model to describe the dynamic
properties of networks and we design respective constrained
optimal controllers. We evaluate our controllers in Section III
and finally, Section IV concludes the paper.

II. OPTIMAL ROUTING CONTROL

The basic problem of rate-adaptive multipath routing can
be formulated as follows. Given a network topologyG(V,E)
consisting ofn nodes andm edges; edge capacitiesc = [cij :
(i, j) ∈ E]; and a set of source-destination pairs (or users)
(sk, dk) ∈ K, each one provisioned a set of pathsPk and each
one presenting its momentary traffic demandθk to the network,
the task is to adjust sending ratesuP along each pathp ∈ Pk

of each userk ∈ K, so that no link becomes overloaded, that is,
the aggregate flow sent to a link does not exceed its capacity.
(See Table I for a list of notations.) Additionally, one may pose
additional constraints on the routing algorithm, like complexity
bounds, fairness in allocating network resources, or optimality
with respect to some objective function that expresses the
performance preferences of the network operator. In this paper,
we deal with the latter case.

Consider the simple network depicted in Fig. 1. We give two
routing controllers for this network in Fig. 1d and Fig. 1e. Our
routing controllers are remarkably simple: they consist ofa set
of regionsRi and affine routing functionsSi(θ), so that the
sending rate of users is set tou = Si(θ) whenever the traffic
matrix θ is in Ri, i.e.,θ ∈ Ri. (Note that affine functions take
the form f(x) = Ax + b, wherex is the vector of variables,
A is a matrix of appropriate size andb is a constant column
vector.) For instance, consider the controller in Fig. 1e and
suppose that both user1 and user2 inserts1 unit of traffic
into the network. Then, since the traffic matrixθ = [1, 1]T is
in R2, we apply routing functionS2(θ) corresponding toR2

to obtain the ratesu1 = 1, u2 = 0 andu3 = 1. Forθ = [2, 0]T

in the same region we getu = [1, 1, 0]T .
This controller possesses some appealing properties. First,

it is feasiblein that the sending rate of the users is assigned
so that no one link gets overprovisioned no matter what
traffic matrix the users present to the network, as long as that
traffic matrix is routable withsomestatic routing (such traffic
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(d) optimal routing controller (p1 is cheaper thanp2)
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(e) optimal routing controller (p2 is cheaper thanp1)

Figure 1: A sample network topology, source-destination pairs, a set of routes and two optimal routing controllers for the cases
when pathp1 is preferred overp2 and the other way around. Edge capacities all equal 1 unit.

matrices are calledadmissible). Second, it isstable, that is,
to diminishing input it orders diminishing output. Third, it is
optimal. The controllers in Fig. 1d and 1e were provisioned
specifically to minimize the overall cost of the routing. In
Fig. 1d, the cost per unit flow of pathp1 was smaller than
that of p2 (so this controller computes minimum hop-count
paths), while in Fig.1e the cost was set the other way around.
More complex objective criteria can be expressed as well.

In the rest of this section, we show that such stable, feasible
and optimal routing controllers always exist, and each one
takes the above form: a set of regions and the corresponding
affine routing functions. First, we give a short introduction to
optimal routing theory, then we discuss our network model
and then we turn to controller design.

A. Optimal control theory

Suppose we are given a system characterized by thestate
x, input u andoutputy, whose evolution in time is governed
by the linear system [19]:

x(t + 1) =Ax(t) + Bu(t)

y(t) =Cx(t) + Du(t) (S)

x(0) =x0

whereA, B, C and D are constant matrices of proper size
andx(t), u(t) andy(t) are the values of the state(s), input(s)
and output(s), respectively, at timet. Additionally, a set of
constraints (C) can also be specified to which the system state
and the input must obey at every time instance.

Suppose, in addition, that we are given an objective func-
tion, the payoff function, which prizes the evolution of the
system in time as the function of the input and the initial
state:

P (u(.), x(0)) = qT
f x(N) +

N−1∑

t=0

(rT u(t) + qT x(t)) (P)

Table I: Notations
G(V, E) a directed graph, with the set of nodesV (|V | = n)

and the set of directed edgesE (|E| = m)
c the columnm-vector of edge capacities
(sk, dk) the set of source-destination pairs (or users) fork ∈

K = {1, . . . , K}

Pk the set ofsk → dk paths assigned to somek ∈ K

Pk an m × |Pk| matrix. The column corresponding to
pathp ∈ Pk holds the path-arc incidence vector of
p

up scalar, describing the traffic routed at pathp

uk a column-vector, whose components areup : p ∈ Pk

for somek ∈ K (whether we meanuk or up will
always be clear from the context)

u a column vector representing a particular choice of
ups (a “routing”)

θk the demand/throughput of some userk ∈ K

θ a columnK-vector representing a particular combi-
nation of throughputs (a “traffic matrix”)

whereN is thecontrol horizonandqT
f , rT andqT (all constant

row-vectors of proper size) are theterminal costand running
payoffs, respectively. For completeness, we note that the theory
allows for linear [20], [21] as well as quadratic payoffs [22].
Finally, assume we are given aterminal setT which we would
like our system to eventually settle down in.

Now, the basic problem of optimal control theory is to
design a controller, which adjusts the inputu so that the
system (S), starting from some initial statex(0), is regulated
along an optimal trajectory toT obeying the constraints (C),
as measured by the payoff function (P). In this setting,u is
called anoptimal control.

B. The Zero-buffer path-flow model

In our model, system state is the amount of traffic waiting to
be served at the source nodes, output is simply this same state



(which therefore we shall omit henceforth), and the controlis
the flow placed at individual paths of the users. Formally, let
x(t) be a columnK-vector, whosekth component describes
the amount of data to be delivered fromsk, and letup describe
the flow routed at pathp ∈ Pk, k ∈ K. Then, theZero-buffer
path-flow (ZBPF) modelis characterized by the dynamics:

xk(t + 1) =xk(t) − τ
∑

p∈Pk

up(t) ∀k ∈ K (D)

xk(0) =θk ∀k ∈ K (I)

This model does not allow for buffering at intermediate
nodes (hence the name). The statex(t) integrates the data
fed by the users at the source nodes into the network in time,
minus the sum of flows carried away along the individual paths
of the user within the discrete time stepτ . In other words,
xk(t) models the amount of traffic accumulated in the input
buffer of source-destination pairk at time t, and the initial
statexk(0) is simply the demand of userk represented by
the data in the input buffer at the zeroth time instance. For
the sake of simplicity, we shall assume henceforth that the
discrete time step is 1 sec andθ is scaled accordingly, and so
we shall omitτ in the equations. Additionally, we assume that
no further traffic arrives within the time frameτN .

The control must respect certain operational constraints in
assigning rates to the users. First, edge capacities may notbe
violated: ∑

k∈K

Pkuk(t) ≤ c , (C1)

rates are non-negative:

uk(t) ≥ 0 ∀k ∈ K , (C2)

and the controller can not remove more data from the source
nodes than it is available there:

xk(t) ≥ 0 ∀k ∈ K . (C3)

C. Optimal controller design

Next, we design an optimal controller for the network model
described above. The controller’s job will be to remove as
much data from the input buffers as possible. In other words,
the controller regulates the states towards the origin. Thefirst
step of controller design is to convince ourselves that our
system is well-behaved and so a suitable controller exists.We
say that a system iscontrollable, if there exists a control that
drives it from any optional initial state into the origin in finite
time.

Theorem 1:A capacitated network is controllable under the
ZBPF model, according to the dynamics (D) and satisfying
conditions (C1-3), if and only if the path setP contains at
least one path of nonzero capacity for each user.

A way to prove this statement would be to a design a trivial
controller, which puts some small, nonzero flow to the usable
paths in each step, gradually consuming all the initial dataat
the source node.

Theorem 2:For any controllable capacitated network, any
payoff (P), anyN > 0, and any admissible initial stateθ, there

exists a controller that, starting fromθ, regulates the ZBPF
system to the origin inN steps, according to the dynamics
(D) and satisfying conditions (C1-3), while optimizing (P).
The control actionu(.) is a continuous and piece-wise affine
(PWA) function ofθ:

u(θ) = Fiθ + gi if θ ∈ Ri, i = 1, . . . , r

with Ris being closed polyhedral sets inRK . Additionally,
the set of initial states for which the controller convergesin
N step (theN -step feasible set) is convex.

Proof: Consider the linear program:

max qT
f x(N) +

N−1∑

t=0

rT u(t) + qT x(t) (P)

s.t. xk(0) = θk ∀k ∈ K (I)

xk(t + 1) = xk(t) −
∑

p∈Pk

up(t)

∀k ∈ K,∀t ∈ {0, . . . , N − 1}

(D)

xk(N) = 0 ∀k ∈ K (T)
∑

k∈K

Pkuk(t) ≤ c ∀t ∈ {0, . . . , N − 1} (C1)

u(t) ≥ 0 ∀t ∈ {0, . . . , N − 1} (C2)

x(t) ≥ 0 ∀t ∈ {1, . . . , N} (C3)

and solve it as a multi-parametric linear program as the
function of θ. The claims of the theorem can then be proved
based on the results in [23].

This controller is called theN -step Zero-buffer path-flow
routing controller (N -RC). The above is an application of
model predictive control: we prognosticate the evolution of
the network using the ZBPF dynamics (D) within the control
horizon N , starting from the initial state (I) and arriving in
the N th step into the terminal set (T), and we compute a
sequence of control actions,u(0), u(1), . . ., u(N − 1) that
ensures constraint satisfaction (C1-3) and optimizes the payoff
(P).

One way to obtain the control is to solve the above linear
program on-site in each time step feeding the measuredθ as
input, but this would amount to online linear programming.
Instead, we solve it as a multi-parametric linear program (mp-
LP), which requires the solution of an LP as the function of
some parameter. Here, the variables of the LP are the optimal
evolution of the system and the controlu, and the parameter
is the initial stateθ. The resultant series of control actions can
then be stored in the controller and applied sequentially,u(0)
in the zeroth step,u(1) in the first and so on, to regulate the
system along the calculated trajectory. This scheme is called
open loop control.

Unfortunately, if the system is subject to noise or the model
is not perfectly precise, then the predicted state and the real
state can diverge with time, which might deteriorate efficiency
and even lead to instability. Therefore, it is a common practice
to take only the first controlu(0) and apply it repeatedly to
the system, yielding a closed-loop, state feedback controller.
This scheme is calledreceding horizon control. For arbitrary



N the receding horizon control might not be stable (let alone
optimal), but forN = 1 it is both stable and optimal.

Corollary 1: Given a controllable capacitated network, a
user defined payoff andany admissible traffic matrixθ, 1-
RC routesθ in the network without violating link capacities
and optimizing the payoff.

A direct proof for this claim also appears in an accompa-
nying paper of the authors [24].

In practice, routing control works as follows. One first needs
to model the network using the ZBPF dynamics and solve the
mp-LP of Theorem 2. For moderate sized networks, this is
clearly viable thanks to recent advances in geometric multi-
parametric programming algorithms [23], [22]. The result is
a set of regionsRi and the corresponding(Fi, gi) parameters
that define the controller. These steps, while computationally
rather involving due to the need to solve the mp-LP, can all be
performed offline. Then,Ri and (Fi, gi) are all downloaded
to the on-site controller. This controller periodically scans
the network, identifies the actual user demandsθ, searches
for a control regionRi containing θ and readjusts routing
according tou = Fiθ+gi. This way, online activity reduces to
solving a series of polyhedron inclusion problems and matrix
multiplication.

Invoking an1-RC for traffic engineering brings numerous
benefits. First, it eliminates service disruptions due to link
overprovisioning. Second, it is provably stable. Third, itis
provably optimal, overany user defined payoff function. Note
that these are hard guarantees that fulfill at any point in time.
What is more, the control action is continuous, both inside
and on the boundary of the control regions, which ensures
that routing does not exhibit huge spikes and the controller
transitions smoothly from one region to the other.

The applicability and complexity of our routing controllers
fundamentally depends on the number of control regionsI

the controller comprises. This is because in every step the
controller needs to solveO(I) polyhedron inclusion problems
in order to find Ri : θ ∈ Ri. Additionally, the storage
requirement also scales withO(I). Unfortunately, constrained
optimal control theory does not set a strict polynomial upper-
bound on this number. Therefore, below we turn our attention
to heuristic methods for reducing the online complexity of
routing control.

A straightforward way to reduce controller complexity
would be to increase the control horizonN . Recall thatN
connotes the time the controller is allowed to spend drivingthe
system into the origin. Thus, the larger the control horizonthe
slower the controller. This is expected to yield larger control
regions and hence to decrease complexity. It must be noted,
however, that the ZBPF model, in its current form, assumes
that no further traffic arrives into the input buffers within
the time frameτN . When this assumption is violated, the
system state as predicted by the controller and the real system
state diverge1. This usually does not pose enormous problems

1This problem only emerges forN -step controllers whereN > 1. For
N = 1, no prediction is needed as the system is cleared out in a single step.

in receding horizon control, since we consider only the first
control action that is based on exact system state (the initial
state).

Setting the control horizon not only affects controller com-
plexity, but it also has profound impact on the set of states to
which the controller orders control action. In general, theset
of states from which a system can be controlled into the origin
in N steps is called theN -step feasible set, it monotonically
increases with increasingN and it precisely coincides with
the set of states to which anN -RC orders control action.
An 1-RC covers only the set of admissible traffic matrices,
and increasing the control horizon has the useful consequence
of broadening the range of traffic matrices our controller can
handle.

Another way to exploit the performance-complexity trade-
off is to weaken the terminal set constraints. Our controllers,
defined in Theorem 2, explicitly require that the system settles
in the origin. In practice, however, usually it is enough
to merely move the system closer to the origin, and this
can be achieved by dropping constraints (T) and penalizing
divergence from the origin by setting a nonzero terminal cost
qT
f in the objective function. Note that a controller with weak

terminal set conditions orders control to any non-zero traffic
matrix.

III. PERFORMANCE EVALUATION

In order to see how useful these ideas prove in practice,
we implemented routing control and we conducted several
rounds of performance evaluation. The controller complexity
was measured by the number of control regions. To avoid
the bias caused by the different feasible sets, we explicitly
constrained the state space of the controllers to the set of
admissible traffic matrices.

Evaluating the performance, however, is slightly more diffi-
cult than measuring complexity. In theory, the largest state set
into which the controller is guaranteed to drive the system
from any admissible initial state inN steps (theN -step
reachable set) would be a perfect measure of performance:
the smaller the reachable set around the origin the better the
performance. However, the reachable set is usually a convex
polyhedron, whose size is hard to characterize with a single
scalar. Using the polyhedron’s volume would be straightfor-
ward, but that would make it impossible to rightfully compare
controllers defined over different dimensions. Therefore,we
estimate the size of a polyhedron by the edge length of its
bounding hyper-cube, and we measure the performance of
a controller by the ratio of the initial state-space size and
the reachable-set size in terms of this quantity. Consider the
following N -step goodnessdefinition:

gN = 1 −
b(RN )

b(T )
, (1)

where RN is the N -step reachable set,T is the set of
admissible traffic matrices andb(X) denotes the edge length
of the bounding hyper-cube of polytopeX. This goodness
definition connotes the ratio of demand a routing controlleris
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Figure 2: Average number of control regions for (a) the NSF topology and (b) the AS 3257 (Tiscali, Europe) Rocketfuel
topology as the function of the number of usersK and the number of paths per userp. Table (c) gives routing controller
performance in terms of (1) for the NSF topology.

guaranteedto clear out from the source nodes inN steps.
Correspondingly, the goodness of an1-RC equals1, the
goodness of the zero controller (which does not route any
traffic at all) is0, and the closer to1 the goodness the better
the performance.

The controllers we evaluated were ZBPF routing controllers
with control horizon set to1 (1-RC), 2 (2-RC), and the1-step
controller over weak terminal set conditions (1-RC-W). The
objective function was set to minimize the cost of routing in
terms of statically assigned path costs. We implemented the
ZBPF model and the corresponding routing controllers in the
excellent Multi-Parametric Toolbox (MPT, [25]) for Matlab2.

In the first round of our evaluations, we used the NSFNET
Phase II topology [26] and we observed how routing control’s
performance and complexity changes in increasingly complex
scenarios. The number of usersK was varied between1 and9,
source-destination pairs were chosen according to the random
bimodal distribution similarly to [27], and maximally node-
disjoint paths were computed for the users. The complexity of
the resultant controllers is given in Fig. 2a for2 and3 paths
per user, and the goodness is indicated in Fig. 2c. Note that we
omitted the column corresponding to1-RC, as the goodness
is always1.

In the second round of the numerical studies, we conducted
extensive evaluations on ISP data maps from the Rocketfuel
dataset [28]. We used the same method as in [27] to obtain ap-
proximate POP-level topologies: we collapsed the topologies
so that nodes correspond to cities, we eliminated leaf-nodes
and we set link capacities inversely proportional to the link
weights. Again, the number of users was increased from1
to 9, source-destination pairs were chosen according to the
bimodal distribution and paths were provisioned maximally
node-disjoint. Six evaluation runs were conducted on different
randomly chosen network samples and the results were aver-

2The code of the routing controllers, the network topologiesand the
path sets used throughout the paper are available at http://qosip.tmit.bme.hu/
~retvari.

aged. Here, we only include the results for AS 3257 (Tiscali,
Europe): Fig. 2b gives the complexity for2 and 3 paths per
user, respectively. The goodness was 65-75% in the first period
and 85-90% in the second (results are not included here due to
space limits). We obtained similar results on other Rocketfuel
topologies.

The main observations are as follows: First, for networks
serving only a couple of users, optimal routing control (1-
RC) is clearly a viable option. However, complexity seems
to increase exponentially with the number of users, and it
becomes intractable when the total number of paths in the
system surpasses about30. Increasing the control horizon, i.e.,
2-RC, looks more promising in this regard as it can clear out
about 65-75% of any admissible traffic matrix in a single step,
and more than 90% in the second, with complexity growing
significantly slower. Finally, we found that weakening the
terminal set conditions seems to be the most effective way
of complexity reduction. Though, the performance penalty is
larger due to the additive term in the objective function. A
potential reason for this might be an inadequate setting of the
terminal payoff in our evaluations.

Of course, we could not give a complete coverage on the
extensive topic of controller complexity reduction in thispaper.
Many solutions exist that offer optimal control but signifi-
cantly fewer control regions, at the price of increased offline
computational cost [29]–[31]. Further complexity reduction
could be achieved by weakening the capacity constraints (C1).
For the sake of brevity, we completely ignored stability of
reduced complexity routing controllers (although, in practice,
we found that they are always stable). Stability is, however,
easy to guarantee using additive, Lyapunov-type penalty inthe
objective function [32], [33].

IV. CONCLUSIONS

“One major challenge of Internet traffic engineering is the
realization of automated control capabilities that adapt quickly
and cost effectively to significant changes in a network’s state,



while still maintaining stability” (Overview and Principles of
Internet Traffic Engineering, RFC 3272, page 6, [1]). This
challenge has been open for a couple of years now. This paper
is aimed at demonstrating that quick but stable adaptation
of routing to changing operational conditions is certainly
possible.

The majority of existing work on traffic engineering is based
on a distributed scheme that tends to scale well with the
increase of the user population. The present work explores the
“centralized end” of the distributed-centralized spectrum. On
this centralized end we find optimizability, strict feasibility and
hard QoS guarantees, essential ingredients in commercially op-
erated provider networks a distributed scheme hardly provides.
On the other hand, centralized routing control seems to scale
poorly. We demonstrated that the judicious increase of the
control horizon and the weakening of terminal set constraints
are effective ways to reduce the number of control regions
without sacrificing performance, thus positioning routingcon-
trol higher up scalability-wise. The solution to the complexity
issues might be a hybrid centralized-distributed algorithm, as
we demonstrate in an accompanying paper [24]
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