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Abstract—A centralized rate-adaptive routing algorithm is quadratic objective functions and adaptability to arlojtraser
presented that, in contrast to the distributed ones available in demands with strict QoS guarantees.
the literature, achieves provablestability, optimalilty with respect  Tha main contribution of the paper is a formulation of the
to optional linear or quadratic objective functions, and feasibility timal rate adaoti i bl . trol th i
in that it can accommodate any admissible traffic matrix in the opumal rate a_ap 'Ve_ _rou Ing pro _er_n in a C_0n rol theared
network without violating link capacities. We recast the routing framework, which facilitates for building on firm theoredic
problem in the framework of constrained optimal control theory ~foundations and a well-established numerical toolset.do-S
to obtain optimal state feedback routing controllers, and we tjon Il, we present a system model to describe the dynamic
present simulations confirming that our routing controllers are  5herties of networks and we design respective constiaine
viable in small- and middle-sized networks. h - 3

optimal controllers. We evaluate our controllers in Settilb

Index Terms—traffic engineering, optimal control theory, . .
model predictive control and finally, Section IV concludes the paper.

II. OPTIMAL ROUTING CONTROL
I. INTRODUCTION

. . . . : The basic problem of rate-adaptive multipath routing can
A major challenge of Internet Traffic Engineering [1] is tqbe formulated as follows. Given a network topologyV, )
provision forwarding paths in a network, so that the require : P ’

; L . consisting ofn nodes andn edges; edge capacities= [c;; :
Quality of Service is guaranteed to the users while the expe<r21 ) e g]_ and a set of sou?ce-des?inatiorr)\ pairs (c[>r‘7users)
sive network infrastructure is utilized cost-efficienthistor- (sdd ) e IC each one provisioned a set of pafisand each
ically, forwarding paths were either not optimized at all, 0 % Lo P . P

.S . . ane presenting its momentary traffic demapdo the network,
they were optimized statically with respect to some meaﬂsur{:ﬁe task is to adjust sending rates along each path € P
and/or expected traffic matrix [2], [3]. Static routing, hewer, . ko
has become more and more counterproductive recentl oféaach usek € KC, so that no link becomes overloaded, that is,
o P . Y: A aggregate flow sent to a link does not exceed its capacity.
netvyorks are beginning to face more dynamically changlrztgee Table | for a list of notations.) Additionally, one maysp
traffic [4]. In response, various proposals have surfaced Additional constraints on the routing algorithm, like coexty

reduce the significance of traffic matrices in intra-domalgOunds faimess in allocating network resources, or o
traffic engineering [5]-[9]. The most attractive approash | ' 9 ' m

multipath rate-adaptive routing: distributed algorithinave with respect to some objective function that expresses the

been designed that can adapt dynamically to momentar)ctraﬁfarformanpe preferences of the network operator. In tpepa
we deal with the latter case.

malrices and maxinize users’ aggregae ullty, while &0 Congiger the simple network depicted n Fig. 1. We give two
g b ) {outing controllers for this network in Fig. 1d and Fig. 1euirO

In many commercially operated networks, like transi . . . :
rovider or enterprise networks, the task of traffic engimeg routing controllers are remarkably simple: they consist skt
b ' of regions R; and affine routing functionsS;(6), so that the

'S posgd somewhat more sharply .[9]’ [13], [15], [16] TOd;aysending rate of users is set #o= S;(¢) whenever the traffic
operational networks are beginning to see more and madré

inelastic multimedia traffic, and a growing share of custu;’nematrixe IS in t;, i.e.,0 € It;. (Note that affine functions take
' g 9 the form f(x) = Ax + b, wherex is the vector of variables,

requi_res the network to p rovide guaranteed flat rate, toegbiﬂ is a matrix of appropriate size artdis a constant column
to strict SLAs, gnd to del_lver.h.ard QO.S' U”f‘?ft“”?‘te'.)’*w' vector.) For instance, consider the controller in Fig. 1d an
ing these requirements is difficult with traditiondistributed suppose that both usdrand user2 inserts1 unit of traffic
multipath rate-adaptive routing algorithms [17]. In thisper, into the network. Then, since the traffic matfbe [1,1)7 is

berlore, we propose n aemateenialcasp i 0 el g i) coesponing
d g ) 99 10 obtain the rates; = 1, us = 0 andus = 1. Forg = 2,017

on the rich path diversity [18] and the broad range of routin% ; T
information available in central network management safev ' the same region we get— [1, 1, 0"

) : 9 This controller possesses some appealing propertieg, Firs
widely used for operating ISP networks, our scheme ensures

rovable stability. optimality with respect arbitrary diar or ' 'S feasiblein that the sending rate of the users is assigned
P Y, op y P y so that no one link gets overprovisioned no matter what

The first author was supported by the Janos Bolyai Fellowstfiphe traﬁ?c matr?x Fhe users present to th? netWQrk’ as long as tha
Hungarian Academy of Sciences. traffic matrix is routable withsomestatic routing (such traffic



(a) topology

(s1,d1) = (3,4)
(s2,d2) = (1,4)
(b) users
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us 0 1 2
uq 0
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(c) paths
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(d) optimal routing controllery; is cheaper thams)

0
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1
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u1
if 1+ 602 <1then| usz
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U1 1
if 01 + 02 > 1 then| us 0
us 0

(e) optimal routing controllerg, is cheaper thamp)

Figure 1: A sample network topology, source-destinatioinspa set of routes and two optimal routing controllers foe tases
when pathp; is preferred ovep, and the other way around. Edge capacities all equal 1 unit.

matrices are calleddmissiblg. Second, it isstable that is,

Table I: Notations

to diminishing input it orders diminishing output. Third,i$
optimal The controllers in Fig. 1d and 1e were provisione
specifically to minimize the overall cost of the routing. In
Fig. 1d, the cost per unit flow of path; was smaller than
that of po (so this controller computes minimum hop-coun
paths), while in Fig.1e the cost was set the other way aroun
More complex objective criteria can be expressed as well.

In the rest of this section, we show that such stable, feasik
and optimal routing controllers always exist, and each of
takes the above form: a set of regions and the correspond
affine routing functions. First, we give a short introduatim
optimal routing theory, then we discuss our network mod
and then we turn to controller design.

A. Optimal control theory
Suppose we are given a system characterized bysttite

x, input « and outputy, whose evolution in time is governed
by the linear system [19]:

z(t + 1) =Axz(t) + Bu(t)
y(t) =Cxz(t) + Du(t)
x(0) =x¢

(S)

where A, B, C and D are constant matrices of proper siz& Nally,

and output(s), respectively, at time Additionally, a set of

and the input must obey at every time instance.

a directed graph, with the set of nod&s(|V| = n)
and the set of directed edgés (|E| = m)

the columnm-vector of edge capacities

the set of source-destination pairs (or users)kfar
K={1,...,K}

the set ofsi, — dj, paths assigned to sonkec IC

anm x |Px| matrix. The column corresponding to
of

pathp € P, holds the path-arc incidence vector
p

scalar, describing the traffic routed at path

a column-vector, whose components age p € P
for somek € K (whether we mean, or u, will
always be clear from the context)

a column vector representing a particular choice|
upS (a “routing”)

the demand/throughput of some ugee K

a columnK-vector representing a particular comh
nation of throughputs (a “traffic matrix”)

of

whereN is thecontrol horizonandg} , 7" andg™ (all constant
row-vectors of proper size) are therminal costandrunning
payoffs respectively. For completeness, we note that the theory
allows for linear [20], [21] as well as quadratic payoffs [22
assume we are giverterminal setl” which we would

andz(t), u(t) andy(t) are the values of the state(s), input(sjk& Our system to eventually settle down in.

Now, the basic problem of optimal control theory is to
constraints (C) can also be specified to which the systera stdgsign a controller, which adjusts the inputso that the

system (S), starting from some initial stat€0), is regulated

Suppose, in addition, that we are given an objective fun@lONg an optimal trajectory t@ obeying the constraints (C),

tion, the payoff function, which prizes the evolution of the

system in time as the function of the input and the initigi2!léd anoptimal control

State:

N

P(u(.),2(0)) = qf o(N) + i (r"u(t) + ¢ a(t))
t=0

—

(P)

B. The Zero-buffer path-flow model

as measured by the payoff function (P). In this settings

In our model, system state is the amount of traffic waiting to
be served at the source nodes, output is simply this sanee stat



(which therefore we shall omit henceforth), and the conisol exists a controller that, starting frofy regulates the ZBPF

the flow placed at individual paths of the users. Formally, lsystem to the origin inV steps, according to the dynamics
z(t) be a columnk-vector, whosekth component describes(D) and satisfying conditions (C1-3), while optimizing (P)
the amount of data to be delivered fram and letu,, describe The control actionu(.) is a continuous and piece-wise affine
the flow routed at patlp € Pr, k € K. Then, theZero-buffer (PWA) function of6:

path-flow (ZBPF) modek characterized by the dynamics: w(®) = B0+ g; it 0eR iz1 .1

wr(t+ 1) =oi(t) =7 3 up(t) Vkek (B with R;s being closed polyhedral sets ®¥. Additionally,
PEPe the set of initial states for which the controller converges
1 (0) =6k Vke K 0~ step (theN-step feasible set) is convex.

This model does not allow for buffering at intermediate ~ Proof: Consider the linear program:

nodes (hence the name). The staig) integrates the data N-1

fed by the users at the source nodes into the network in time, max qj?:c(N) + Z rlu(t) + q"x(t) (P)
minus the sum of flows carried away along the individual paths t=0

of the user within the discrete time step In other words, S.t. 24 (0) = 6, Vk e K ()]
x(t) models the amount of traffic accumulated in the input 2t +1) = ap(t) — Z U (t)

buffer of source-destination pak at time ¢, and the initial pEPs (D)
state z;(0) is simply the demand of user represented by VEeK,vte{0,...,N—1}

the data in the input buffer at the zeroth time instance. For

the sake of simplicity, we shall assume henceforth that the T(N) =0 vk ek M

discrete time step is 1 sec afids scaled accordingly, and so > Paug(t)<e Vte{o,...,N—1} (C1)

we shall omitr in the equations. Additionally, we assume that kek

no further traffic arrives within the time frameN. u(t) >0 Vte{0,...,.N—1} (C2)

The control must respect certain operational constramts i z(t) > 0 vte{l,...,N} (C3)

assigning rates to the users. First, edge capacities malyenot ) ] o

violated: and solve it as a multi-parametric linear program as the
Z Poui(t) < c, (c1) function of 6. The claims of the theorem can then be proved
Py based on the results in [23]. n

This controller is called theV-step Zero-buffer path-flow
routing controller (V-RC). The above is an application of
ug(t) >0 vk e K, (C2) model predictive controlwe prognosticate the evolution of
the network using the ZBPF dynamics (D) within the control
and the controller can not remove more data from the SOUNgErizon N, starting from the initial state (I) and arriving in

nodes than it is available there: the Nth step into the terminal set (T), and we compute a

rates are non-negative:

2 (t) >0 vk e K . (c3) sequence of control actions(0), u(1), ..., u(N — 1) that
) ) ensures constraint satisfaction (C1-3) and optimizes éyefp
C. Optimal controller design P).

Next, we design an optimal controller for the network model One way to obtain the control is to solve the above linear
described above. The controller’s job will be to remove gwogram on-site in each time step feeding the meas@ras
much data from the input buffers as possible. In other wordaput, but this would amount to online linear programming.
the controller regulates the states towards the origin.fifee Instead, we solve it as a multi-parametric linear program-(m
step of controller design is to convince ourselves that ouP), which requires the solution of an LP as the function of
system is well-behaved and so a suitable controller exfgés. some parameter. Here, the variables of the LP are the optimal
say that a system isontrollable if there exists a control that evolution of the system and the control and the parameter
drives it from any optional initial state into the origin imfie is the initial state). The resultant series of control actions can
time. then be stored in the controller and applied sequentiall§)

Theorem 1:A capacitated network is controllable under thén the zeroth stepy(1) in the first and so on, to regulate the
ZBPF model, according to the dynamics (D) and satisfyirgystem along the calculated trajectory. This scheme igdall
conditions (C1-3), if and only if the path s contains at open loop contral
least one path of nonzero capacity for each user. Unfortunately, if the system is subject to noise or the model

A way to prove this statement would be to a design a trivigd not perfectly precise, then the predicted state and tak re
controller, which puts some small, nonzero flow to the usabiate can diverge with time, which might deteriorate efficie
paths in each step, gradually consuming all the initial data and even lead to instability. Therefore, it is a common ficact
the source node. to take only the first control(0) and apply it repeatedly to

Theorem 2:For any controllable capacitated network, anyhe system, yielding a closed-loop, state feedback cdetrol
payoff (P), anyN > 0, and any admissible initial staée there This scheme is callececeding horizon controlFor arbitrary



N the receding horizon control might not be stable (let alonie receding horizon control, since we consider only the first

optimal), but forV = 1 it is both stable and optimal. control action that is based on exact system state (thaliniti
Corollary 1: Given a controllable capacitated network, s&tate).
user defined payoff andny admissible traffic matrixg, 1- Setting the control horizon not only affects controller com
RC routesf in the network without violating link capacities plexity, but it also has profound impact on the set of stabes t
and optimizing the payoff. which the controller orders control action. In general, sie¢
A direct proof for this claim also appears in an accompa®f states from which a system can be controlled into the lrigi
nying paper of the authors [24]. in N steps is called thév-step feasible seit monotonically

In practice, routing control works as follows. One first needncreases with increasing/ and it precisely coincides with
to model the network using the ZBPF dynamics and solve tHee set of states to which aiy-RC orders control action.
mp-LP of Theorem 2. For moderate sized networks, this A1 1-RC covers only the set of admissible traffic matrices,
clearly viable thanks to recent advances in geometric mul@ind increasing the control horizon has the useful conseguen
parametric programming algorithms [23], [22]. The resslt iof broadening the range of traffic matrices our controller ca
a set of regionsk; and the correspondin@¥;, g;) parameters handle.
that define the controller. These steps, while computalipna Another way to exploit the performance-complexity trade-
rather involving due to the need to solve the mp-LP, can all I9é is to weaken the terminal set constraints. Our contrs]le
performed offline. ThenR; and (F;, g;) are all downloaded defined in Theorem 2, explicitly require that the systermeett
to the on-site controller. This controller periodicallyass in the origin. In practice, however, usually it is enough
the network, identifies the actual user demandsearches to merely move the system closer to the origin, and this
for a control regionR; containingd and readjusts routing can be achieved by dropping constraints (T) and penalizing
according tou = F;0+ g;. This way, online activity reduces todivergence from the origin by setting a nonzero terminat cos
solving a series of polyhedron inclusion problems and matrqu in the objective function. Note that a controller with weak
multiplication. terminal set conditions orders control to any non-zerditraf

Invoking an 1-RC for traffic engineering brings numerougnatrix.
benefits. First, it eliminates service disruptions due t li
overprovisioning. Second, it is provably stable. Third,ist
provably optimal, oveany user defined payoff function. Note In order to see how useful these ideas prove in practice,
that these are hard guarantees that fulfill at any point i timve implemented routing control and we conducted several
What is more, the control action is continuous, both insid@unds of performance evaluation. The controller compjexi
and on the boundary of the control regions, which ensur@@s measured by the number of control regions. To avoid
that routing does not exhibit huge spikes and the controlléte bias caused by the different feasible sets, we explicitl
transitions smoothly from one region to the other. constrained the state space of the controllers to the set of

The applicability and complexity of our routing controller @dmissible traffic matrices.
fundamentally depends on the number of control regibns Evaluating the performance, however, is slightly more diffi
the controller comprises. This is because in every step tidlt than measuring complexity. In theory, the largestestat
controller needs to solvé@(I) polyhedron inclusion problemsinto which the controller is guaranteed to drive the system
in order to findR; : 6 € R;. Additionally, the storage from any admissible initial state iV steps (theN-step
requirement also scales with(I). Unfortunately, constrained reachable sgtwould be a perfect measure of performance:
optimal control theory does not set a strict polynomial uppethe smaller the reachable set around the origin the betéer th
bound on this number. Therefore, below we turn our attenti®¢rformance. However, the reachable set is usually a convex
to heuristic methods for reducing the online complexity d?olyhedron, whose size is hard to characterize with a single
routing control. scalar. Using the polyhedron’s volume would be straightfor

A straightforward way to reduce controller complexityvard, but that would make it impossible to rightfully comgar
would be to increase the control horizdvi. Recall thaty  controllers defined over different dimensions. Therefave,
connotes the time the controller is allowed to spend drivirg €Stimate the size of a polyhedron by the edge length of its
system into the origin. Thus, the larger the control horittwn Pounding hyper-cube, and we measure the performance of
slower the controller. This is expected to yield larger coint & controller by the ratio of the initial state-space size and
regions and hence to decrease complexity. It must be notdtf reachable-set size in terms of this quantity. Consider t
however, that the ZBPF model, in its current form, assumé@lowing N-step goodnesdefinition:
that no further traffic arrives into the input buffers within b(Ry)
the time framerN. When this assumption is violated, the gN = L — o(T) 1)
system state as predicted by the controller and the reamyst

state divergk This usually does not pose enormous problenféere Ry is the N-step reachable sefl” is the set of
admissible traffic matrices arid X)) denotes the edge length

LThis problem only emerges foN-step controllers wherev > 1. For Of the bounding hyper-cube of polytop&. This goodness
N = 1, no prediction is needed as the system is cleared out in &esitgp.  definition connotes the ratio of demand a routing contraier

IIl. PERFORMANCE EVALUATION
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Figure 2: Average number of control regions for (a) the NSpotogy and (b) the AS 3257 (Tiscali, Europe) Rocketfuel
topology as the function of the number of usdfsand the number of paths per ugerTable (c) gives routing controller
performance in terms of (1) for the NSF topology.

guaranteedto clear out from the source nodes M steps. aged. Here, we only include the results for AS 3257 (Tiscali,
Correspondingly, the goodness of dRRC equals1, the Europe): Fig. 2b gives the complexity f@and 3 paths per
goodness of the zero controller (which does not route anger, respectively. The goodness was 65-75% in the firsbgberi
traffic at all) is0, and the closer ta the goodness the betterand 85-90% in the second (results are not included here due to
the performance. space limits). We obtained similar results on other Rociadtf

The controllers we evaluated were ZBPF routing controlletepologies.
with control horizon set td (1-RC), 2 (2-RC), and thel-step The main observations are as follows: First, for networks
controller over weak terminal set conditionsRC-W). The serving only a couple of users, optimal routing contrd (
objective function was set to minimize the cost of routing iRC) is clearly a viable option. However, complexity seems
terms of statically assigned path costs. We implemented ttoeincrease exponentially with the number of users, and it
ZBPF model and the corresponding routing controllers in thecomes intractable when the total number of paths in the
excellent Multi-Parametric ToolboXVPT, [25]) for Matlal?.  system surpasses ab@dt Increasing the control horizon, i.e.,

In the first round of our evaluations, we used the NSFNEZ-RC, looks more promising in this regard as it can clear out
Phase Il topology [26] and we observed how routing controlabout 65-75% of any admissible traffic matrix in a single step
performance and complexity changes in increasingly complend more than 90% in the second, with complexity growing
scenarios. The number of usdrswas varied betweehand9, significantly slower. Finally, we found that weakening the
source-destination pairs were chosen according to theorandterminal set conditions seems to be the most effective way
bimodal distribution similarly to [27], and maximally node of complexity reduction. Though, the performance penasty i
disjoint paths were computed for the users. The compleXity @rger due to the additive term in the objective function. A
the resultant controllers is given in Fig. 2a farand 3 paths potential reason for this might be an inadequate settingpef t
per user, and the goodness is indicated in Fig. 2c. Note that terminal payoff in our evaluations.
omitted the column corresponding 16RC, as the goodness Of course, we could not give a complete coverage on the
is always1. extensive topic of controller complexity reduction in tpper.

In the second round of the numerical studies, we conducttéiny solutions exist that offer optimal control but signifi-
extensive evaluations on ISP data maps from the Rocketfgahtly fewer control regions, at the price of increased ro#fli
dataset [28]. We used the same method as in [27] to obtain apmputational cost [29]-[31]. Further complexity redoati
proximate POP-level topologies: we collapsed the topelegicould be achieved by weakening the capacity constraints (C1
so that nodes correspond to cities, we eliminated leafsiodeor the sake of brevity, we completely ignored stability of
and we set link capacities inversely proportional to thé linreduced complexity routing controllers (although, in pice
weights. Again, the number of users was increased fiomwe found that they are always stable). Stability is, however
to 9, source-destination pairs were chosen according to tkasy to guarantee using additive, Lyapunov-type penaltiyen
bimodal distribution and paths were provisioned maximallgbjective function [32], [33].
node-disjoint. Six evaluation runs were conducted on wffe
randomly chosen network samples and the results were aver- IV. CONCLUSIONS

) , , “One major challenge of Internet traffic engineering is the
The code of the routing controllers, the network topologésl the

path sets used throughout the paper are available at agigitmit.bme.hu/ F€@lization of a!"tomate(_j antrOI capabilitie_s that adaptkdy
~retvari. and cost effectively to significant changes in a networlegest



while still maintaining stability” (Overview and Princig$ of [15]
Internet Traffic Engineering, RFC 3272, page 6, [1]). This

challenge has been open for a couple of years now. This Papg(

is aimed at demonstrating that quick but stable adaptation
of routing to changing operational conditions is certainlyﬂ]
possible.

The majority of existing work on traffic engineering is based
on a distributed scheme that tends to scale well with thE]
increase of the user population. The present work explties t
“centralized end” of the distributed-centralized spectriOn
this centralized end we find optimizability, strict feasitgiand 1]
hard QoS guarantees, essential ingredients in commerojal
erated provider networks a distributed scheme hardly gesvi
On the other hand, centralized routing control seems taesckP]
poorly. We demonstrated that the judicious increase of the
control horizon and the weakening of terminal set constsairj21]
are effective ways to reduce the number of control regions
without sacrificing performance, thus positioning routsan- 5
trol higher up scalability-wise. The solution to the conxitie
issues might be a hybrid centralized-distributed algaritias

we demonstrate in an accompanying paper [24] [23]
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