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Abstract— The Minimum Cost Multicommodity Flow problem
plays a central role in today’s operations research theory with
applications ranging from transportation and logistics to telecom-
munications network routing. In this paper, we introduce a novel
Lagrangian-relaxation technique, which, given an initial feasible
solution, can solve the minimum cost multicommodity flow
problem as a sequence of single-commodity flow problems. Our
methodology is best suited for OSPF traffic engineering, because
it can rapidly improve a given path set towards approximate
optimality while simultaneously provides the link weights, which
implement the paths as shortest paths.

I. INTRODUCTION

Let G(V,E) be a directed graph, formed by the set of nodes
V (|V | = n) and the set of edges E (|E| = m). Let the
capacity of an edge (i, j) be given by uij > 0 and the cost by
unit of traffic be given by cij > 0. Let the capacity and cost
values be gathered into m-vectors, say, u and c, respectively.
Let K denote the set of source-destination pairs (sk, dk) :
k ∈ K, which are referred to as sessions for short. There is tk

amount of demand associated with each session k. In vector
notation, tk is an n-vector, such that (tk)i = tk if i = dk,
(tk)i = −tk if i = sk and all zero otherwise. Let the arc flow
sent by session k to edge (i, j) be denoted by Xk

ij and let us
gather the values of Xk

ij for session k into the m-vector xk.
Finally, let N be the node-arc incidence matrix associated with
G [2]. Then, we consider the minimum cost multicommodity
flow problem in the following classical form:

min
∑

k∈K cxk (1)
Nxk = tk ∀k ∈ K (2)

∑
k∈K xk ≤ u (3)
xk ≥ 0 ∀k ∈ K (4)

In this formulation, the objective (1) is to minimize the
aggregate cost of arc flows xk summed over all sessions
k and all edges (i, j), while satisfying the so called flow
conservation constraints (2) for each commodity at each node.
The independent single-commodity flow problems are coupled
together by the bundle constraints (3), which require that the
capacity of a link must not be violated by the sum of the flows

of all commodities on that link. Finally, the non-negativity
constraints in (4) specify that the flows are non-negative.

The linear programming formulation of the minimum cost
multicommodity flow problem contains one variable for each
commodity for each edge (a total number of km) and a flow
conservation constraint for each node and each commodity
(kn) plus a bundle constraint for each link summing up to
a total number of kn + m constraints. Hence, the size of
the linear problem grows dramatically with the increase of
the network and user population, and even for a medium
sized problem the ubiquitous simplex algorithm merely crawls
towards the optimum. As of our favorite open source lin-
ear programming toolkit, the GNU Linear Programming Kit
(GLPK, [1]), for a network of 60 nodes, 180 edges and 35
sessions the solution process takes almost five minutes on a
800 MHz Intel PIII processor and consumes more than 12
MB of RAM. Therefore, various decomposition techniques,
approximations and relaxations are proposed in the literature
to facilitate fast solution of large-scale multicommodity flow
problems (for a comprehensive evaluation of these methods,
consult [2], [3] and [4] and references therein).

Nevertheless, neither column-generation nor basis partition-
ing methods promise to speed up the solution process by
more than one order of magnitude. This is still completely
inconvenient for traffic engineering, which requires rapid al-
gorithms to ensure quick adaptation to topology changes or
management controls. Therefore, in this paper we propose
a new Lagrangian-relaxation method to iteratively solve the
minimum cost multicommodity flow problem starting from
an initial feasible solution, permitting us to reduce memory
requirements and trading-off running time for the precision
of the solution. A large number of Lagrangian-relaxation
techniques for solving the minimum cost multicommodity flow
problem is known in the literature [2], however, our formula-
tion is special, as it has some very interesting consequences
and is specifically tailored to OSPF traffic engineering.

In OSPF traffic engineering, we are given a set of sessions
and a set of paths for each session. The task is to either
decide that the paths are not representable as shortest paths, or



otherwise compute appropriate link weights as to implement
the paths as shortest paths between the endpoints of the
sessions. This problem is of crucial importance in the vast
majority of today’s IP networks, which still mostly rely on
shortest path routing protocols, such as OSPF [5]. OSPF traffic
engineering promises to increase the network revenue and in
some settings it may provide performance close to optimal
exploiting the previously hidden capabilities of legacy routing
hardware and software [6], [7], [8]. A groundbreaking work
of Wang et al. [9] concludes that a set of paths is either
reproducible as shortest paths, or it can be improved upon
and transformed into a set of paths of the same capacity yet
consuming less bandwidth. The improved path set is in turn
shortest path reproducible. This can be done by solving a
minimum cost multicommodity flow problem starting from an
initial feasible solution, which is exactly what the proposed
Lagrangian-relaxation technique is best suited for.

The rest of this paper is structured as follows. In Section
II we discuss the proposed Lagrangian-relaxation. Section III
reveals, how to use our method for the purpose of OSPF traffic
engineering and Section IV briefly presents some related sim-
ulation results. Finally, in Section V we draw the conclusions
of our work.

II. THE IMPROVEMENT PROBLEM

Assume that we already know some feasible solution to
the multicommodity flow problem. Let the feasible solution
be given by the arc flow vector yk = [Y k

ij ] : (i, j) ∈ E for
each session k ∈ K. Then, yk solves the constraint system of
(1)-(4), i.e., {∀k ∈ K : Nyk = tk,

∑
k∈K yk ≤ u, yk ≥ 0}.

Furthermore, consider the following linear program, the so
called Improvement Problem (P-IMP):

min
∑

k∈K cxk (5)
Nxk = 0 ∀k ∈ K (6)

∑
k∈K xk ≤ u −

∑
k∈K yk (7)

xk ≥ −yk ∀k ∈ K (8)

The improvement problem possesses special structure. For
example, constraints (6) define flow circulations (if xk 6= 0)
of capacity circumscribed by constraints (7) and (8). Next,
we show that, given a feasible solution yk, solving P-IMP
equals to solving the minimum cost multicommodity flow
problem. Furthermore, due to its special structure, P-IMP lends
itself to price-directive decomposition, which has some notable
consequences.

Theorem 1: Let an instance of the minimum cost mul-
ticommodity flow problem be I and let a feasible solution
to I be given by yk. Furthermore, let an optimal solution of
the corresponding improvement problem be xk. Then, zk =
yk + xk is an optimal solution of I .

Proof: In order to prove the theorem it is enough to show
that arc flow vectors zk satisfy flow conservation constraints
(2), bundle constraints (3) and non-negativity constraints (4).
Then, any optimal solution to P-IMP, by definition, minimizes
I as well, because the objectives only differ in a constant term

∑
k∈K cyk. The flow conservation constraints (2) obviously

hold, since

Nzk = N(yk + xk) = Nyk + Nxk = tk + 0 ,

and because yk is feasible, zk is also feasible. The bundle
constraints (3) also hold, because

∑

k∈K

zk =
∑

k∈K

(xk + yk) ≤ u

according to (7). Finally, zk ≥ 0, as yk + xk ≥ 0 according
to (8), which completes the proof.

By introducing the improvement problem, the minimum
cost multicommodity flow problem is reformulated as a linear
optimization problem. In this problem, the task is to find some
flow circulations, which, together with the initial feasible solu-
tion yk give a minimum cost multicommodity flow instance.
Recall from network flow theory that any feasible single-
commodity flow instance can be transformed into any other
feasible flow instance along at most m directed circulations
[2]. This leads to a very interesting corollary of Theorem 1:

Corollary 1: Any feasible multicommodity flow instance
can be transformed into any other feasible multicommodity
flow instance along at most km single-commodity flow circu-
lations.

Note that in its linear programming formulation even P-IMP
poses the same difficulties as (1)-(4). A well known technique
to solve large-scale optimization problems is the Lagrangian-
relaxation method [3], [4]. Lagrangian-relaxation permits us to
iteratively solve complex problems by consecutively optimiz-
ing the embedded network flow problems as simple uncoupled
problems. Generally speaking, consider the problem instance:

I := min{cx : Ax ≤ b, x ∈ N} ,

where N is a specially constrained set, e.g., it may be a convex
space spanned by feasible solutions of some network flow
problem. The task is then to minimize an objective function
cx over N , such that the resultant x vector satisfies the side
constraints Ax ≤ b. Such optimization problems tend to be
rather hard to solve, and may very well be NP hard. The
Lagrangian dual problem is defined as:

L(w∗) = max
w≥0

L(w) ,

where
L(w) = min

x∈N
{cx + w(Ax − b)}

is called the Lagrangian-relaxation of I . In this case, the
Lagrangian-relaxation solves I if for some choice of the Lag-
range multipliers w∗ the solution of the Lagrangian-relaxation
x∗ is feasible in I and satisfies the complementary slackness
conditions w∗(Ax∗ − b) = 0. Note that x ∈ N vectors, by
assumption, are easy to generate. Hence, various nonsmooth
optimization techniques are known to solve the Lagrangian
dual problem iteratively, such as the subgradient method,
bundle methods and cutting-plane methods [4].



A straightforward Lagrangian-relaxation of the minimum
cost multicommodity flow problem (1)-(4) arises if one incor-
porates the bundle constraints (3) into the objective function
[2]. This technique is often referred to as price-directive de-
composition. A very interesting property of the improvement
problem is that it also lends itself to price-directive decom-
position. Given an initial feasible solution yk, one obtains
the following new Lagrangian-relaxation to the minimum cost
multicommodity flow problem:

L(w) = min
∑

k∈K

cxk + w(
∑

k∈K

xk +
∑

k∈K

yk − u) (9)

Nxk = 0 ∀k ∈ K (10)
xk ≥ −yk ∀k ∈ K (11)

Then, the Lagrangian dual problem can be written as:

L(w∗) = max
w≥0

∑

k∈K

Lk(w) + w(
∑

k∈K

yk − u) ,

and the Lagrangian-relaxation decomposes into independent
Lagrangian subproblems P-SUBIMP for each commodity k ∈
K:

Lk(w) = min(c + w)xk (12)
Nxk = 0 (13)
xk ≥ −yk (14)

Now, we make the following observations. Since constraint
(13) define flow circulations, a cycle cancellation algorithm is
probably a good choice to solve P-SUBIMP. We only need to
assure that the cycles carry the most negative flow possible
while satisfying (14) as well. In fact, an arc flow Xk

ij is only
circumscribed by the initial flow Y k

ij of the same commodity.
If, for some edge (i, j), Y k

ij = 0, then Xk
ij ≥ 0 holds and

we can not improve the objective function on that link. If
Y k

ij ≥ 0, then Xk
ij is required to be the most negative possible

(i.e., −Y k
ij ). A well known way to handle negative flows (and

many other issues) is the notion of residual graphs: In a
residual graph, negative flow on edge (i, j) is represented by
a positive flow on the associated reverse edge (j, i). Hence,
constraint Xk

ij ≥ −Y k
ij can be written as Xk

ji ≤ Y k
ij , which

just corresponds to the residual capacity on (j, i) after sending
Y k

ij amount of flow on (i, j). The negativity of the reverse
flow is captured by associating a negative cost cji + wji =
−(cij + wij) with the reverse edges (for more coverage
on residual graphs, the reader is referred to the precious
discussion in [2]). Hence, searching for the most negative-
valued flow circulations in G over positive edge costs cij +wij

equals to searching for the most negative-cost positive-valued
flow circulation in the residual graph G(yk) induced by the
initial flow yk. This task can be accomplished by the minimum
mean cycle cancellation algorithm in O(n2m2 log(nC)) time,
where C is the largest cost value [10], [11]. We summarize
the above discussion as follows:

Observation 1: Consider the residual graph G(yk) obtained
by instantiating yk in the uncapacitated network G∞. Then,
solving the improvement problem P-SUBIMP in G equals to

solving the minimum cost single-commodity flow circulation
problem over the modified cost set cij + wij in G(yk).

At this point, we have basically discovered a universal
methodology to improve an initial feasible solution of an
optional multicommodity flow problem instance till it becomes
optimal. From Corollary 1 we know that any initial feasible
solution yk can be transformed into the optimal solution along
at most km flow circulations. Such flow circulations can be
found by executing an independent cycle cancellation process
for each commodity over a set of optimal Lagrange multipliers.

It is a useful property of Lagrangian-relaxation that the
optimal Lagrange multipliers w∗ are dual-optimal. This means
that for an edge (i, j), an optimal Lagrange multiplier w∗

ij

equals to the optimal dual variable associated with the bundle
constraint of the improvement problem for that link. However,
as the next theorem shows, we can say even more about the
optimal Lagrange multipliers w∗:

Theorem 2: Let I be an instance of the minimum cost
multicommodity flow problem, and w∗ be the set of Lagrange
multipliers, which are optimal to the Lagrangian-relaxation
formulation (9)-(11) of the corresponding improvement prob-
lem I ′. Then, w∗ are dual-optimal to both the improvement
problem I ′ and the multicommodity flow problem I .

Proof: Consider an optimal primal solution zk of I and a
set of Lagrange multipliers w∗ and flows xk, which are optimal
to I ′. Then, we only need to show that zk and w∗ together
satisfy the complementary slackness criteria: w∗(

∑
k∈K zk −

u) = 0. Recall that after solving the improvement problem
I ′ to optimality, one obtains the solution of I in the form:
zk = yk + xk. However, since xk is optimal with respect to
the initial feasible solution yk, so the complementary slackness
criteria for I ′ can be written as: w∗(

∑
k∈K xk +(

∑
k∈K yk −

u)) = w∗(
∑

k∈K(xk +yk)−u) = 0. This proves the theorem.

III. AN APPLICATION TO OSPF TRAFFIC ENGINEERING

In this section, we introduce some more mathematical
notation to formulate the principal theorem of shortest path
representability, i.e., the property of a set of paths that it
can be represented as shortest paths by some positive link
weights. Then, we reveal how to use the Lagrangian-relaxation
technique developed in the previous section to not only make
a decision on the shortest path representability of a particular
path set, but to also calculate the optimal link weights in one
turn.

Let Psk→dk be the set of all paths that connect a particular
source-destination pair (sk, dk) in G. In OSPF traffic engin-
eering our task then is to explicitly represent a given subset
Pk ⊆ Psk→dk as shortest paths for each session k ∈ K. Let
P =

⋃
k∈K Pk, nk = [nk

ij ] : (i, j) ∈ E be the number of
paths of session k traversing link (i, j) and nij =

∑
k∈K nk

ij .
The network induced by P is the so called path-graph GP .
GP includes all edges of all paths of P and the capacity of
the edges equals to the number of paths in P using that link,
i.e., uij = nij . We associate pk = |Pk| amount of demand
with each session in the path-graph. We assume that GP



is strongly connected with respect to the session endpoints
(sk, dk) : k ∈ K. Then, the principal theorem of shortest path
representability can be stated as follows:

Proposition 1: Let I be an instance of the minimum cost
multicommodity flow problem, which is characterized by the
path graph GP induced by a set of paths P . Furthermore, let
the link costs be cij = 1 and the demand set be tk = pk.
Let a solution to I be yk = nk. Note that yk is obviously
feasible but not necessarily optimal to I . Then, the path set P
is shortest path representable if and only if yk is optimal to I

[9].
The above Proposition has far-reaching consequences,

which helped to disprove the common belief of researchers
that shortest path routing is, by nature, useless to traffic
engineering. Namely, it is relatively easy to show that a set of
paths is either representable as shortest paths, or it is loopy,
and hence, is of negligible interest to traffic engineering. In the
latter case, the optimal solution to I defines a path set, which
is of the same capacity as P but uses strictly less bandwidth.
Shortest path representability can be confirmed by solving I ,
or solving the following dual of I:

max
∑

k∈K

pkπk
dk

−
∑

(i,j)∈E

nijwij (15)

πk
j − πk

i ≤ 1 + wij ∀(i, j) ∈ E,∀k ∈ K (16)
wij ≥ 0 ∀(i, j) ∈ E (17)

An interesting property of this dual formulation is that it
also supplies link weights in the form 1 + wij together with
node potentials πk

n, which represent P as shortest paths. This is
the corollary of the complementary slackness property: nk

ij >

0 ⇒ πk
j − πk

i = 1 + wij [9]. Note that both primal and the
dual formulation involves an enormous number of variables
and constraints even for medium-sized problems, so solving
it by the simplex method puts merely unbearable CPU and
memory burden on network devices. Therefore, we propose to
use the Lagrangian-relaxation technique described in Section
II to find an optimal solution iteratively in the following way:

First, as nk is feasible to I , one can use it as an initial
feasible solution. This can be improved upon by solving P-
IMP, or equivalently, consecutively solving the Lagrangian-
subproblem (12)-(14) with yk = nk until optimality. In light
of Observation 1, this can be done easily by the minimum
mean cycle-cancellation algorithm.

A convenient and easy-to-use (but not necessarily the most
efficient [4]) way to solve the corresponding Lagrangian dual
problem L(w∗) = maxw≥0

∑
k∈K Lk(w)+w(

∑
k∈K nk −u)

is the subgradient method. In the nth iteration step of the
subgradient method, we execute the minimum mean cycle
cancellation algorithm for each session k in the residual graph
G(yk) characterized by the link weights 1+wn

ij . If the resultant
zk = nk + xk arc flow set is primal feasible and satisfies the
complementary slackness criteria, we stop the iteration and
conclude that the current solution zk is optimal. If, at any
iteration, the complementary slackness criteria are violated but
zk is primal feasible and improves the objective function, we

first conclude that, according to Proposition 1, the given set
of paths is not shortest path representable. Optionally, we can
restart the subgradient method from this feasible solution to
obtain an improved path set. This has the potential to reduce
the amount of work the cycle-cancellation algorithm has to
do at each iteration step since the new initial solution is
“closer” to the optimum. Otherwise, we modify the Lagrange
multipliers wn+1

ij = (wn
ij + 1

n

∑
k∈K Xk

ij)
+ and execute step

n + 1.
Furthermore, we observe that Theorem 2 has a very in-

teresting consequence related to shortest path representability,
which we formulate as follows:

Corollary 2: The optimal Lagrange multipliers w∗
ij are dual

optimal to I . Hence, w∗
ij solve the dual of I , and therefore

1 + w∗
ij define positive weights, which represent the given

path set as shortest paths.
The proposed method has a number of advantages in

comparison to standard linear programming solution methods.
Principally, Lagrangian-relaxation reduces the amount of ne-
cessary memory and CPU resources, because the uncoupled
subproblems are much easier to solve than the full-fledged
problem. What sets apart the proposed method from other
Lagrangian-relaxations aimed at the same purpose is that,
depending on the quality of the initial feasible solution, it
is believed to be more efficient in the average case. This
is because our method tries to improve a potentially close-
to-optimal solution rather than starting from scratch in each
step (which would be the case for instance with the shortest
path Lagrangian-relaxation). If a better feasible solution is
found, our method uses that solution as the new starting point,
which definitely speeds up the process. In addition, Corollary
2 assures that running the subgradient method to optimum
yields some link weights, which represent the optimal path
set as shortest paths. However, this may be a tedious task
and may very well last more than running a standard linear
program solver. Nevertheless, since the subproblems can be
solved in strictly polynomial time, the total time taken by
the optimization can be limited by stopping the process after
a pre-defined number of iterations. As the following brief
discussion of some related simulation studies suggests, the
resultant approximate OSPF Traffic Engineering scheme may
also very well be of large practical interest.

IV. SIMULATION RESULTS

Our simulations were aimed at comparing the performance
and the execution time of the simplex method and the proposed
Lagrangian-relaxation technique. An intriguing question one
faces when attempting to evaluate the performance of a
particular OSPF traffic engineering method is how to obtain
a high quality traffic-engineered path set. In light of the fact
that this problem is NP hard [12], we decided to use the paths
yielded by the optimal solution of the maximum throughput
problem. Our experiments with other algorithms suggest that it
is the maximum throughput problem, which gives a reasonably
good path set in the majority of the random topologies.
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Fig. 1. Average execution time of the proposed Lagrangian-relaxation (LR)
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Fig. 2. Average call blocking ratio (CBR) when using the link weights
produced by the proposed Lagrangian-relaxation (LR) as the function of the
executed iterations compared to the CBR yielded by simplex link weights

The results presented below are averaged over 50 simulation
rounds. In each round, we generated a random graph of 40
nodes, 120 edges. We also instantiated 18 sessions in the
network at random locations. We calculated an initial path
set in the following way: First, we solved the maximum
throughput problem to obtain a feasible demand set. This
demand set defines the maximum amount of traffic the network
can serve over the actual topology and the placement of session
endpoints. Then, we set all link costs cij = 1 and solved the
maximum cost multicommodity flow problem over the demand
set. This produces a path set (and a path-graph), which is the
furthest possible from the optimal one (which would be the
result of solving the minimum cost problem), and used that as
an initial feasible solution to start our Lagrangian-relaxation
from. We expect the method to develop the path set towards
optimality and, at each iteration, produce an improved set of
link weights. We also used the simplex method to solve the
dual minimum cost multicommodity flow problem to obtain
precise traffic engineered link weights.

Figure 1 depicts the time taken by executing a pre-defined
number of iterations of the subgradient method. Note that
our implementation is only a “proof-of-concept” code written
mostly in Perl and by no means meant to be overly efficient.
This makes the comparison with the performance-optimized
simplex implementation substantially pessimistic, however,
even our suboptimal code is significantly faster at low iteration
numbers. A more equitable comparison would be to consider
the iteration count: The simplex method generally performs
1000-1500 iterations, while our method usually produces reas-
onable link weights in no more than a few dozen iterations (see
below). Additionally, the amount of memory required by our
method never exceeded the magnitude of some ten kilobytes,
while the simplex method ordinarily consumes at the scale of
megabytes (the use of column-generation would be especially
helpful here).

We also fed the link weights produced after a particular

number of iterations into a call-level OSPF simulator to
measure the average call blocking ratio (Figure 2). Our results
suggest that performance close to optimal (which is yielded
by the exact link weights computed by the simplex method)
can be achieved by as few as some 10-20 iterations and it
is not worth running more than a hundred rounds. The mere
fact that we were able to optimize a pretty bad set of paths in
barely a few dozen iterations underlines the potential practical
usefulness of the proposed Lagrangian-relaxation technique.

V. CONCLUSIONS

In this paper, we introduced a novel Lagrangian-relaxation
methodology, which, given an initial feasible solution, can
iteratively solve the minimum cost multicommodity flow prob-
lem. The proposed method may be of general interest, not
only because it solves a key problem in operations research
but because it is very descriptive and has some fundamental
corollaries related to the transformability of multicommodity
flow instances. We showed that our Lagrangian-relaxation
method is particularly useful in the field of OSPF traffic
engineering. On the one hand, given a set of paths, our method
can rapidly decide, whether or not the path set is representable
as shortest paths. Furthermore, it quickly provides approximate
link weights to implement the shortest path representation
without the need to solve large-scale resource-hungry lin-
ear programs. The full-fledged problem is decomposed into
uncoupled minimum cost flow circulation subproblems, for
which implementations and practical experience are readily
available. On the other hand, as the computed link weights
are not necessarily integer-valued, some post-processing work
may be desirable before they can be conveniently used in
real-life routing protocols. An obvious way to overcome this
problem would be to use constant step size in the subgradient
optimization, however, this raises convergence issues. Our
further efforts will be focused on this problem.
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