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Abstract—IP-level failure protection based on the IP Fast
ReRoute/Loop-Free Alternates (LFA) specification has become
industrial requirement recently. The success of LFA lies in its
inherent simplicity, but this comes at the expense of letting certain
failure scenarios go unprotected. Realizing full failure coverage
with LFA so far has only been possible through completely re-
engineering the network around LFA-compliant design patterns.
In this paper, we show that attaining high LFA coverage is
possible without any alteration to the installed IP infrastructure,
by introducing a carefully designed virtual overlay on top of the
physical network that provides LFAs to otherwise unprotected
routers. We study the problem of how to provision the overlay
to maximize LFA coverage, we find that this problem is NP-
complete, and we give Integer Linear Programs to solve it. We
also propose novel methods to work-around the limitations of cur-
rent LFA implementations concerning Shared Risk Link Groups
(SRLGs), which might be of independent interest. Our numerical
evaluations suggest that router virtualization is an efficient tool
for improving LFA-based resilience in real topologies.

Index Terms—IP Fast ReRoute, Loop-Free Alternates, router
virtualization

I. INTRODUCTION

Demand for native, fast protection in IP networks has

increased lately. Failure recovery was traditionally a respon-

sibility of Interior Gateway Protocols (IGPs), which adopt a

restoration mechanism based on global failure notification, a

robust but lengthy process. To bring routing convergence down

to the orders of tens of milliseconds, as required by many

applications and services today, the IETF has standardized

a fast protection framework for IP, called IP Fast ReRoute

(IPFRR, [1]). IPFRR, on the one hand, advocates local rerout-

ing, meaning that only routers directly adjacent to a failure

are notified about it in order to eliminate global flooding of

failure information. On the other hand, IPFRR is proactive in

that detours are installed in the forwarding engine long before

any failure occurs. Thus, when a failure eventually shows

up routers are able to switch to an alternate path instantly.

Once alternate next-hops are active, traffic flows undisrupted

bypassing the failed component, letting the IGP to converge

in the background.

An accompanying basic specification for IPFRR is Loop-

Free Alternates (LFA, [2]). In order to foster deployment,

LFA is very simple. Routers try to assign to each next-hop an

adjacent router as a secondary next-hop, called a Loop-Free

Alternate, which can forward traffic when connectivity to the

default next-hop is lost even without being explicitly notified

about the failure. LFA can be implemented with minimal

modifications to IGPs and deployment is easy as support from

other routers is not required. Unfortunately, very often not all

routers can find proper LFAs to all next-hops and so in general

it is not possible to achieve 100% failure case coverage in all

topologies with LFA. A relatively recent addition to the LFA

suite is Remote LFA [3], which allows for non-adjacent routers

as well to become LFAs via IP-IP tunnels or MPLS/LDP LSPs.

Unfortunately, Remote LFA shares many of the limitations of

LFA (although, to a much smaller extent), and hence in general

100% protection coverage is still not guaranteed [3].

Lately, several alternatives to LFA have been proposed to

realize complete IP-level failure protection [4]–[13]. At the end

of the day, however, price for complete protection is consider-

able added complexity and management burden, modifications

to the essential IP infrastructure, and breaking the incremental

deployment path. For instance, [4] proposes to change IP’s

destination-based forwarding, [5] calls for out-of-band failure

signaling to indicate that a packet is on a detour, while others

use invaluable extra bits in the IP header for this purpose [6]

or add special information to it [7] for in-band signaling.

Still others propose to mark detours by tunneling [8], raising

considerable address management concerns [9], [10], and [11]

necessitates a centralized control plane. For further pointers,

consult the surveys [12], [13]. Currently, we do not see any

of these IPFRR methods passing standardization bodies and

becoming widely available in commercial IP routers (let alone

being deployed by operators), and there does not seem to be

much hope that this situation will change in the next couple of

years. Operators, however, need fast IP-level protection now.

LFA, in contrast, is readily available in basically all com-

mercial IP routers out of the box [14]–[16], and support for

Remote LFA is also beginning to appear sporadically. What

is more, LFA has become a de-facto industrial requirement

with the advent of Seamless MPLS, an architecture to provide

scalable end-to-end MPLS/LDP transport service based on

existing IP protocols [17].

In order to realize high protection coverage with LFA,

currently operators need to change the very physical network

topology or straight out rebuild it from scratch [18], [19] or,

alternatively, re-engineer the default forwarding paths by re-

computing the IGP link costs [20]. Consequently, there is a

compelling industrial motivation to find LFA-based network

optimization techniques, which promise with boosting LFA



failure case coverage with minimal or no alterations to the

installed IP infrastructure, until more efficient IPFRR mech-

anisms eventually become commonly available.

In this paper, we show that improving LFA failure case

coverage is feasible without touching the physical topology

and the forwarding paths in any ways, or requiring any new

features from the IP data and the control planes that are

essentially fixed by what is available in commercial network

gear today. The idea is to intervene at the management plane

by taking advantage of router virtualization, a technique for

sharing a single IP routing device between multiple virtual

routing instances, and building a virtual overlay topology

especially tailored for LFA-based failure protection. Con-

ceptually, virtual routers are indistinguishable from physical

routers, each instance having its own forwarding and control

planes, which allows us to assign virtual routers as LFAs to

routers that originally did not have one. Network virtualization

was primarily introduced to overcome Internet ossification

and increase diversity, to provide isolated environments for

experimental protocols, and to improve utilization and security

in provider networks, all in all, to let operators to extract larger

profit from their valuable infrastructure [21]–[23]. Our work

demonstrates that router virtualization can also be beneficial

as a way to improve resilience in operational networks.

The main question is then how to provision the virtual

overlay in a way as to maximize LFA coverage. Special

attention must be paid to leave the default forwarding paths,

often carefully engineered beforehand to reflect crucial oper-

ational concerns [24]–[26], intact. In addition, we also need

to account for Shared Risk Link Groups (SRLGs), collections

of network links likely to fail jointly due to virtualization,

for which LFA currently has scarce support for. As the main

contributions of the paper, we formulate the resultant network

optimization problem in a concise mathematical framework,

we find that the problem is NP-complete even in a very

minimalistic setting, and we give Integer Linear Programs

(ILPs) to solve it under different SRLG models. Furthermore,

we present experimental evidence that the proposed techniques

are efficient in improving LFA coverage in many common ISP

topologies. In what follows, we concentrate mainly on LFA,

with noting that the proposed techniques are easily adaptable

to Remote LFA as well.

The paper is structured as follows. The formal framework

is given in Section II and Section III, NP-hardness and the

ILPs are discussed in Section IV, numerical results are given

in Section V, and finally Section VI concludes the paper.

II. ROUTER VIRTUALIZATION AND LOOP-FREE

ALTERNATES

Loop-Free Alternates is the barebones IP Fast ReRoute

specification. To understand LFA in operation, consider the

sample network in Fig. 1a and suppose that node a is willing to

send a packet to node d. Normally, this occurs via the shortest

a → d path a− b− c−d of cost 7. However, when a’s link to

its next-hop b fails, a looses connectivity to d intermittently.

In such cases, a is safe to send the packet to c as c still has
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Fig. 1. Sample network and edge costs (a) and virtual topology (b) when
adding the virtual router a′ to a. The edges are directed to highlight the
shortest path tree to node d.

an intact path to d. In fact, any neighbor suits as long as it

does not loop the packets back to a, i.e., is not upstream of

a. Such neighbors are called Loop-Free Alternates (LFAs).

In general, for some source s, destination d, and next-hop

t, a neighbor n 6= t of s is a link-protecting LFA if [2]:

dist(n, d) < dist(n, s) + dist(s, d) , (1)

where dist(x, y) denotes the shortest path distance from node

x to node y. An LFA is also node-protecting [2], if n’s shortest

paths to d are disjoint from t, i.e., the following holds in

addition to (1):

dist(n, d) < dist(n, t) + dist(t, d) . (2)

For instance, c is a node-protecting LFA from a to d w.r.t.

next-hop b. When no ambiguity arises, we omit the default

next-hop and simply say “c is an a − d LFA”. Similarly, e

is a node-protecting a − d LFA. However, a is not a c − d

LFA, because if c passed packets to a when (c, d) had failed

then those packets would eventually loop back to it along the

a → d shortest path (recall that a is not aware of the failure).

In fact, c does not have an LFA to d in this configuration at

all, leaving the network vulnerable to the failure of link (c, d).
In summary, a node does not have an LFA if all its neighbors

except the next-hop are upstream. However, if we somehow

provision a new neighbor that is not upstream to it, then this

neighbor will provide a suitable LFA. In this paper, we propose

to achieve this by adding a “virtual router” to the physical

router, duplicating some of its physical links as virtual links,

and assigning costs to these links in a way as to ensure that

the new neighbor is no longer upstream. Since a virtual router

has a separate routing table and it runs its own instance of the

IGP, it will show up as an individual entity in the routing state

of its neighbors and hence is eligible as an LFA. This makes

it possible to provide LFA to otherwise unprotected routers.

The virtual network obtained by adding a virtual router

a′ to a is depicted in Fig. 1b. Not just that a′ is now a

node-protecting LFA from c to d, but it also protects several

more node pairs too that were unprotected in the default

topology. In particular, a′ provides LFA for b− c, b−d, b−e,

c − d, and c − e, boosting LFA failure coverage from 50%

to 75%. We emphasize that the same effect could not have

been achieved by layer-3 tunnels (as of [3]), because IP and

MPLS/LDP tunnels must follow shortest paths. In contrast,

router virtualization allows to establish essentially any tunnel

we want, by provisioning consecutive layer-2 virtual links

through a series of physically adjacent virtual routers.



There are many appealing aspects of leveraging router vir-

tualization to improve LFA coverage. The isolation of routing

contexts provided by virtual routers gives a flexible way to

fine-tune the virtual topology to arbitrary protection require-

ments. Major vendors all support virtualization in hardware

in off-the-shelf routers, capable to handle hundreds of virtual

contexts [27], [28]. Therefore, our proposal is deployable right

away with minimal management effort. Improved resilience,

however comes at a price, in the form of moderately larger IGP

signaling load, IP address management burden, and growing IP

forwarding tables at routers. Nevertheless, today’s IP routers

are powerful enough to let ISPs run hundreds of IGP instances

in a single area, and so this price seems negligible for better

network robustness and service availability.

The decision of how to provision the virtual overlay is by

far a non-trivial one. There are the natural requirements that

are already difficult enough to fulfill, like the need to minimize

the number of virtual instances executing on a router side by

side. But there are much more subtle issues to consider as

well, like the curious fact that a careless intervention might

very well decrease LFA coverage instead of increasing it.

To understand how this can happen, consider the virtual

topology depicted in Fig. 2. The physical topology consists

of 6 nodes, a to f . Two virtual nodes are also provisioned:

b′ is added to b to create an e − c LFA and c′ is added to c

to provide a d − b LFA. These nodes, however, introduce an

unexpected LFA loop: c′ is now a b − a LFA, but should b

try to use this LFA in case of the failure of (b, a) the packet

would get into the loop b−c′−b′−e−b. (Note that b′, seeing

its next-hop link (b′, a) went down, also switches to the LFA

e.) The reason is that the c′ → a shortest path contains the

virtual link (b′, a) provisioned on the same physical link as

(b, a), so the LFA and the link it protects fail jointly. Such an

LFA will be called a spurious LFA henceforth.

Components that are expected to fail concertedly are called

a Shared Risk Link/Node Group (SRLG). At the moment,

LFA implementations in IGPs contain varying support for

SRLGs, and hence it is implementation-dependent whether an

IP router is able to identify this LFA loop. What is worse, in

the physical topology b used to have a perfectly legal LFA to

a, namely node f . Unfortunately, as there is no way to declare

a precedence on LFAs it is possible that the spurious LFA is

chosen, sending a packet into a loop or a blackhole.

Our example demonstrates that an inadvertent virtualiza-

tion decision easily introduces spurious LFAs, and these can

override legal LFAs. Correspondingly, when building an LFA-

optimized overlay one must take extreme care of the SRLGs

introduced through virtualization.

III. NOTATIONS AND MODEL

Router virtualization opens up a broad range of new LFA-

optimization strategies. In this section, we narrow this wealth

of options to a well-defined, practically motivated subset.

The main goal is to minimize interference with the normal

operation of the network, and only involve virtual routers in

packet forwarding when absolutely necessary. This guarantees
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Fig. 2. Virtual network containing an LFA loop.

that packets do not take excess detours, helps break down

management complexity, and eases debugging data plane

misconfigurations. The requirements are as follows.

A. Physical and virtual topology

Problem inputs. We are given the physical network, or

substrate, as an undirected graph GS(VS , ES) and IGP link

costs cS : ES 7→ N. We assume that the substrate consists

of point-to-point links only (i.e., no LANs, NBMA media,

etc.). Our task is to construct a virtual topology GV (VV , EV )
with link costs cV : EV 7→ N in a way as to maximize LFA

coverage in GV . Nodes in GV are called virtual nodes or

contexts and links are called virtual links. Denote the set of

neighbors of some node v ∈ VS in GS by NS(v). Similarly,

NV (v) denotes the neighbors of some v ∈ VV in GV .

There is a default routing and forwarding layer. We assume

that associated with each physical router there is a default

context, holding the interface and loopback IP addresses of the

physical router, running the common control and management

protocols a router usually runs, and originating and terminating

all traffic entering or leaving the network at that router. Mark

the default context for a physical router v ∈ VS by the same

v ∈ VV . Similarly, for each edge e ∈ ES there is a default

virtual link e ∈ EV and ∀e ∈ ES : cV (e) = cS(e). In fact,

GS is a subgraph of GV in our model. We call this subgraph

the default layer. Let fN : VV 7→ VS be a mapping which to

each v ∈ VV \ VS orders the corresponding default context

and to the default context orders itself.

Traffic flows in the default layer along the default shortest

paths. Traffic only enters a virtual router when a failure

shows up, and so virtual routers serve exclusively as LFAs for

nodes not protected in the physical topology. This minimizes

the disruptions under error-free conditions and ensures that

in normal operations the virtual topology distributes load as

efficiently as the underlying physical network. To achieve this,

the cost of virtual links is set so that they never appear in any

u → v shortest path in GV for any (u, v) ∈ VS × VS .

There is a default next-hop for each source-destination pair.

For the sake of notational brevity, we shall deliberately ignore

Equal-Cost MultiPath and assume that for each s − d pair

there is a well-defined default next-hop nh(s, d). In addition,

we presume that a proper LFA only needs to be available to

protect this default next-hop. We note, however, that multiple

next-hops are easy to incorporate into the proposed algorithms.

Virtual links connect physically connected nodes. Virtual

links are provisioned between nodes that are adjacent in the



substrate: ∀(i, j) ∈ EV : (fN (i), fN (j)) ∈ ES . The reasons

for this assumption are manifold. First, as virtual links never

span multi-hop paths, they are easy to provision as layer-2

virtual links (say, Ethernet VLANs). Such connections often

do not even require distinct IP addresses. This minimizes im-

pact on the IP layer and eliminates much of the configuration

overhead and MTU issues that plague tunnel-based IPFRR

mechanisms [9], [10]. Additionally, layer-2 connections are

free from the limitations of layer-3 tunnels, which are bound

to shortest paths. Finally, two virtual links now belong to the

same SRLG if and only if they share the same physical link,

which would not hold over multi-hop tunnels.

B. Failure and SRLG model

Single component failures in the physical network. We

assume single link/node failures, which constitute the major

portion of unplanned outages in operational networks [29].

However, a single link failure in the physical network usually

manifests itself as multiple simultaneous failures in the virtual

topology, because not just the default link but all the virtual

links provisioned on it also go down. The same applies to

nodes. To represent this fact in our model, we define the

following SRLGs. Associated with each link e ∈ EV there

is an SRLG SE(e) composed of all the links provisioned on

the same physical link as e. If e fails, all links in SE(e) fail

as well. Similarly, for each node v ∈ VV there is an SRLG

SN (v) that consists of all the nodes co-located with v. Again,

if v fails all nodes in SN (v) fail.

SRLG support varies across implementations. The LFA

specification introduces local SRLGs as the minimum require-

ment for conforming implementations [2]. A local SRLG has

all its member links with one end connected to the same router.

Thus, associated with each v ∈ VV and each e ∈ EV incident

to v, there is a local SRLG containing all the edges incident to

v sharing an SRLG with e: {(i, j) ∈ SE(e) : i = v ∨ j = v}.

A conforming IGP then will never install an LFA through a

link that shares a local SRLG with the primary next-hop. Local

SRLG support is easy to deploy as it does not need network-

wide configuration and dissemination mechanisms [30], [31],

but it is also quite limited in that routers will only spot

non-SRLG-disjoint paths at the first hop. There is no such

restriction when the IGP supports general SRLGs, but this

needs global management and it may also add unacceptably

to the computational complexity of finding LFAs [3]. Finally,

there are IGP implementations that do not support SRLGs at

all. We call this the no-SRLG model. According to our best

available data IGPs today either do not support SRLGs or

only support local SRLGs, but no implementation we know of

features general SRLG support. Consequently, we shall present

specific algorithms for the former two cases only, and we shall

not address general SRLGs at all in the sequel.

C. SRLG-disjoint LFAs

LFAs obey the IGP’s SRLG model. Ignoring SRLGs in

the course of building the virtual topology might introduce

microloops or blackholes. To eliminate such cases in our

model, we shall use the following SRLG-compliant LFA

definition in the followings.

Definition 1: Let (s, d) ∈ VS × VS be node pair, let t =
nh(s, d), and let n be some neighbor of s. Then, n is an

SRLG-disjoint s− d LFA protecting link e = (s, t), if:

LFA-1: n 6= t,

LFA-2: the loop-free condition (1) holds for s, d, and n,

LFA-3: e and (s, n) do not belong to a common SRLG, and

LFA-4: each n → d shortest path is SRLG-disjoint from e.

Full packet tracing for detecting forwarding anomalies. As

demonstrated by the example in Fig. 2, one must trace the

procession of a packet hop-by-hop from the source node all

the way to the destination in order to reliably identify LFA

loops. The tracing procedure must also keep in sight the cases

when the packet reaches its destination, or enters a blackhole,

through a cascade of LFAs. We shall assume that a proper

packet tracing procedure is available to the network designer.

Using this procedure, we define the following metric for LFA

failure case coverage in the virtual topology. Let IE(s, d)
be an indicator function, taking the value 1 if a packet sent

from s would reach the destination d in GV over the link

costs cV (this is checked by the tracing procedure), and zero

otherwise. Note that IE(v, v) = 1. Then, the link-protecting

LFA coverage is defined as

ηE =

∑
(s,d)∈VS×VS

IE(s, d)

|VS × VS |
.

Due to space constraints, we focus on the link-protecting

case in the rest of the paper. The development for the node-

protecting case goes along similar lines, with the difference

that we require (2) in addition to (1) for LFA-2 in Definition 1.

IV. THE LFA VIRTUAL ROUTER AUGMENTATION PROBLEM

Next, we address the problem of building an LFA-optimized

overlay under the model assumptions introduced above. The

model basically asks for augmenting a physical topology with

virtual routers and set the cost on the resultant virtual links

in a way as to maximize LFA coverage. Since SRLG support

varies widely across commercially available routers, we give

a specific algorithm for the case when only local SRLGs can

be set, and one when no SRLGs can be used at all.

The ultimate goal would be to build an entire virtual

topology in one step so that each node-pair in the substrate

becomes LFA-protected. Instead, in this paper we solve the

somewhat less ambitious task to add a single virtual router to

a known node, and our objective is merely to maximize LFA

coverage along the way instead of aiming for full coverage.

This problem will be referred to as the LFA virtual router

augmentation problem (LFAVirt). As shall be shown, even

this simple variant is already NP-complete (which immediately

sets the complexity of the one-step optimization problem as

NP-hard), but it is still complex enough to build efficient

optimization strategies on top of it.

Informally, in LFAVirt we are given the substrate GS and

some node v in GS , and our task is to build a virtual topology

GV by adding a virtual node v′ to v and setting the link



costs so that default shortest paths remain the same while

LFA coverage increases the most. The formal description of

LFAVirt for the link-protecting case is as follows.

Definition 2: LFAVirt(GS , cS , v, k): Given a substrate

GS(VS , ES) with link costs cS , a positive integer k, and a

node v ∈ VS , is there a graph GV (VV , EV ) : VV = VS ∪{v′},

EV ⊆ ES ∪ {(v′, u) : u ∈ NS(v)} and a cost setting cV on

GV , so that the link costs and shortest paths in GS do not

change and
∑

(s,d)∈VS×VS
IE(s, d) ≥ k?

Below, we shall solve the optimization version where we

ask for the highest k for which LFAVirt answers affirmative.

The version where we ask for adding a virtual node to an

arbitrary router (instead of a known one) is solvable by doing

this optimization for each v ∈ VS and taking the maximum.

A. Complexity analysis

The first question we ask is whether the LFAVirt problem

is tractable. Consider the below characterization.

Theorem 1: LFAVirt(GS , cS , v, k) is NP-complete under

any SRLG model.

The main idea of the proof is constructing a special substrate

and designating a node in a way that virtualizing the node

opens up a plethora of LFA-options. Deciding on which LFA

to choose means determining cV , which is then shown to solve

arbitrary instances of the minimum feedback arc set problem,

a well-known NP-complete problem [32, GT8, pg.192.]. A

crucial property of the proof is that it does not involve SRLGs

at all, and so it remains valid under basically any SRLG model.

For the complete proof, refer to the Appendix.

B. Solving LFAVirt under local SRLG support

The LFA specification requires local SRLG support from

implementations [2]. Below, we ask to what extent this model

allows to improve LFA coverage in virtual topologies.

Under the local SRLG model, the IGP drops LFAs that

share the first-hop link with the default next-hop, but it can

not look “further” to determine whether the complete path

from the LFA to the destination is SRLG disjoint. In terms

of Definition 1, the IGP will be able to decide on LFA-1,

LFA-2, and LFA-3, but it will not be able to take LFA-4

into account. Therefore, in the course of building the virtual

topology we must guarantee ourselves that spurious LFAs are

never provisioned, not even accidentally. The way we achieve

this is that to use the packet tracing procedure to check whether

packets would be sent into an LFA loop or blackhole and

explicitly disallow such LFAs to be provisioned.

Below, we show an Integer Linear Program (ILP) to solve

the optimization version of LFAVirt under the local SRLG

model. In fact, we solve a somewhat more complex version

as we allow the substrate to already contain virtual nodes

and links with the corresponding SRLGs. This allows to

incorporate the ILP into a greedy optimization framework for

building complete LFA-optimized overlays. In every iteration

we add the node that maximizes LFA coverage, taking the

virtual topology from the previous iteration as the substrate.
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Fig. 3. Illustrations for escape nodes and trap nodes. Dashed arrows mark
shortest paths.

First, we characterize the source-destination pairs that can

gain an LFA when a new virtual node v′ is added to the

physical node v. Clearly, an s−d pair can obtain an LFA only

if the new virtual node v′ is adjacent to s and the (s, v′) link

is local-SRLG-disjoint from the (s, nh(s, d)) link (otherwise,

the IGP will drop the LFA). Correspondingly, v′ is eligible as

a new LFA for some s− d pair if:

• s is adjacent to v′,

• s− d is unprotected, and

• the links (s, nh(s, d)) and (s, v′) are local-SRLG-disjoint,

i.e., nh(s, d) 6= v.

Denote the set of such s − d pairs with L. Then, for each

s− d pair in L we seek the nodes that can provide an SRLG-

disjoint LFA to s− d through v′. Let t = nh(s, d) and call a

g node an escape node if

• g ∈ NV (v) and

• a packet sent from g would reach d when link (s, t) fails.

Here, the second condition is verified by the packet tracing

procedure (see Fig. 3a). For each s, d ∈ L, let Esd denote the

set of escape nodes for s− d.

Easily, we want to assign at least one escape node as the

next-hop of v′ towards d, as then v′ will provide a new LFA

to s− d. For this, we need to set link costs cV such that

dist(v′, d) = cV (v
′, g) + dist(g, d) for some g ∈ Esd . (3)

Next, we characterize the cases when the new virtual node

v′ may, under an inauspicious selection of the link costs, give

rise to a spurious LFA. An s− d pair is said to be critical, if

• s is adjacent to v′, and

• nh(s, d) 6= v.

Let Q denote the set of such critical s − d pairs. For any

critical s − d pair, call a node g ∈ NV (v) a trap node if a

packet sent from g would not reach d when (s, nh(s, d)) fails

(see Fig. 3b). Trap nodes are the direct opposite of escape

nodes, as a trap node, if chosen as a next-hop for v′, would

create a spurious LFA. Mark the set of trap nodes for s − d

by Tsd.

The below condition, if holds for each critical s − d pair,

ensures that no trap node will be chosen as a next-hop for v′:

dist(v′, d) < cV (v
′, g) + dist(g, d) for all g ∈ Tsd . (4)

The ILP is based on the idea that eligible and critical node

pairs and the respective escape nodes and trap nodes can

be pre-computed statically, so L, Q, Esd, and Tsd can be



generated offline. Hence, in the course of the optimization

we only need to take care of satisfying (3) and (4).

The variables of the ILP are as follows:

• The binary variable xn : n ∈ NV (v) tells whether to

provision the virtual link (v′, n): xn = 1 if (v′, n) is a

new virtual link, and zero otherwise.

• The binary variable ys,d : s, d ∈ L marks whether s− d

has obtained an LFA: ys,d = 1 if s − d has LFA after

adding v′, and zero otherwise.

• The binary variable zg,s,d : s, d ∈ L, g ∈ Esd is set so

that zg,s,d = 1 if g is the next-hop of v′, zero otherwise.

• The non-negative real variable cn : n ∈ NS(v) represents

the cost cV (v
′, n) of the virtual link (v′, n). We require

that cn ≥ cS(v, n)+C where C is a problem parameter,

to ensure that paths via v′ are longer than the default

shortest paths. In the rest of this paper, we set C = 1.

• Finally, the non-negative real variable δu : u ∈ VS \
{v, v′} denotes the shortest path distance from v′ to u.

Consider the ILP below (the role of parameters K and ǫ

will be made clear soon).

max
∑

s,d∈L

ys,d − ǫ
∑

n∈NS(v)

(cn + xn) (5)

ys,d ≤ xs, zg,s,d ≤ xg s, d ∈ L, g ∈ Esd (6)

ys,d ≤
∑

g∈Esd

zg,s,d s, d ∈ L (7)

δd ≤ dist(g, d) + cg +K(1− zg,s,d) s, d ∈ L, g ∈ Esd (8)

δd +K(1− xs) +K(1− xg) ≥

dist(g, d) + cg + C s, d ∈ Q, g ∈ Tsd (9)

cn ≥ cS(v, n) + C n ∈ NS(v) (10)

xn, ys,d, zg,s,d ∈ {0, 1}, cn ≥ 0 (11)

The objective function (5) maximizes the number of LFAs

the new virtual node v′ gives rise to. Parameter ǫ is a

small constant, which ensures that the optimization favors the

solution with the smallest link costs and the fewest virtual

links. The first constraint in (6) states that v′ can only become

an LFA for s if the virtual link (s, v′) is present. Similarly,

zg,s,d ≤ xg expresses that we can only set g as next-hop for

v′ if the virtual link (v′, g) is provisioned.

Constraints (7) and (8) correspond to the escape node

condition (3) for each s − d pair in L. In particular, (8)

will set the shortest path distance from v′ to d according

to whether the escape node g ∈ Esd is chosen as the next-

hop for v′ to d. If zg,s,d = 0, i.e., if g is not the next-hop

then the constraint is inactive, while if zg,s,d = 1 then the

constraint is active and sets δd and cg according to (3). To

switch between the active and inactive states, we use the large

constant K ≫ C + max(s,d)∈VS×VS
dist(s, d). Furthermore,

(7) sets an s − d pair protected, if at least one escape node

has been selected as the next-hop for v′ towards d.

Constraint (9) stands for the trap node condition (4) for

critical s − d pairs. The constraint is only active when both

(s, v′) and (v′, g) virtual links are present for some trap node

g ∈ Tsd, i.e., xs = 1 and xg = 1. In this case, it sets cg to

prevent g to become a next-hop for v′ to d according to (4).

Finally, the domain of the variables is set in (10)–(11).

After solving the ILP, the virtual topology is constructed

by augmenting the substrate with the virtual node v′ and the

virtual links (v′, n) : xn = 1 with cost cn for all n ∈ NS(v).

C. Solving LFAVirt when no SRLG support is available

Some LFA implementations do not support SRLGs at all,

not even local SRLGs. In this case, the IGP will only be able to

check LFA-1 and LFA-2, but will not take LFA-3 and LFA-4

into account. Under this model, all LFAs provisioned through

virtual nodes must be local-SRLG-disjoint as well, because the

IGP will not be able to tell these cases apart.

To incorporate this restricted SRLG model into the ILP, we

need to broaden the definition of critical node pairs and trap

nodes somewhat. Specifically, for some node pair s − d in

Ns(v)× VS and some node g ∈ NV (v), if either

• nh(s, d) and v′ are not local-SRLG-disjoint or

• packets sent from g would not reach d when the link from

s to nh(s, d) fails,

then s − d is added to the set of critical node pairs Q and g

is set as a trap node for s − d. With this definition in place,

the ILP is solved and the overlay is provisioned as before.

V. NUMERICAL EVALUATIONS

In the course of our numerical studies, we asked to what

extent LFA virtual router augmentation allows to improve

LFA coverage in real-world networks and how differing SRLG

support in IGPs affects the results? To answer these questions,

we implemented the ILPs for the local SRLG and the no-

SRLG model, and we integrated these into a greedy virtual

network optimization strategy where in each iteration we add

the virtual router that maximizes LFA coverage.

We selected common-place ISP topologies from the Rocket-

fuel dataset [35], SNDlib [33], and the Topology-Zoo project’s

dataset [34]. We applied the standard preprocessing techniques

to obtain approximate POP-level network maps, in that we

collapsed the topologies so that nodes correspond to cities and

we eliminated leaf-nodes. The topologies in the Rocketfuel

data set (AS1239, AS1755, AS3257, AS3967, and AS6461)

come with inferred link costs. For the topologies in the

Topology-Zoo dataset (Arnes, BellSouth, BellCanada, BICS,

BtEurope, BtNAmerica, ChinaTelecom, Deltacom, Geant, and

InternetMCI) we set the link costs inversely proportional to

the link capacity whenever capacities were available and we

used random costs otherwise. Unfortunately, no link costs or

capacities were available in the SNDlib library (Abilene, Italy,

Germany, NSF, AT&T, and the extended German backbone

Germ 50) except for the last one, so here we used unit costs.

We used CPLEX [36] for solving the ILPs on a server with

3GHz Intel Xeon CPU 5160.

In the first round of simulations, we observed the LFA

coverage after adding an increasing number of virtual routers

to the network under the local-SRLG model. The results are

given in Table I. Here, ηE(t) marks the link-protecting LFA



TABLE I
TOPOLOGIES, LINK-PROTECTING, AND NODE-PROTECTING LFA COVERAGE WHEN ADDING AN INCREASING NUMBER OF VIRTUAL NODES UNDER THE

LOCAL-SRLG MODEL: NAME, NUMBER OF NODES n, NUMBER OF LINKS m FOR EACH TOPOLOGY, ηE(t) UNDER SINGLE LINK FAILURES, AND ηN (t)
UNDER SINGLE LINK AND NODE FAILURES, AND AVERAGE EXECUTION TIME OF ONE ITERATION OF THE ALGORITHM IN SECONDS.

single link failures single link and node failures

Name n m ηE(0) ηE( 1

3
) ηE( 2

3
) ηE(1) ηE(2) time [s] ηN (0) ηN ( 1

3
) ηN ( 2

3
) ηN (1) ηN (2) time [s]

Abilene [33] 11 14 0.618 0.772 0.900 0.963 1.000 0.014 0.572 0.700 0.781 0.827 0.909 0.040

Germany [33] 17 25 0.694 0.886 0.944 0.981 1.000 0.025 0.562 0.694 0.790 0.838 0.897 0.109

BtEurope [34] 17 30 0.966 0.988 0.988 0.988 0.988 0.120 0.577 0.823 0.922 0.922 0.922 0.433

AS6461 [35] 17 37 0.933 0.996 0.996 0.996 0.996 0.072 0.757 0.941 0.977 0.977 0.977 0.350

InternetMCI [34] 18 32 0.954 0.986 1.000 1.000 1.000 0.022 0.643 0.803 0.898 0.941 0.977 0.216

AS1755 [35] 18 33 0.872 0.983 1.000 1.000 1.000 0.027 0.709 0.882 0.957 0.980 0.980 0.221

ChinaTelecom [34] 20 44 0.950 0.994 0.994 0.994 0.994 0.170 0.768 1.000 1.000 1.000 1.000 0.217

AS3967 [35] 21 36 0.785 0.983 1.000 1.000 1.000 0.052 0.688 0.840 0.914 0.950 0.976 0.278

BellSouth [34] 21 36 0.797 0.997 1.000 1.000 1.000 0.043 0.614 0.957 1.000 1.000 1.000 0.188

AT&T [33] 22 38 0.822 0.963 0.993 1.000 1.000 0.050 0.683 0.798 0.796 0.796 0.796 0.586

NSF [33] 26 43 0.860 0.958 0.993 1.000 1.000 0.065 0.633 0.801 0.890 0.943 0.986 0.344

BICS [34] 27 42 0.764 0.948 0.982 0.988 0.988 0.068 0.578 0.722 0.810 0.856 0.904 0.361

AS3257 [35] 27 64 0.923 1.000 1.000 1.000 1.000 0.081 0.682 0.948 0.988 0.988 0.988 1.924

AS1239 [35] 30 69 0.873 0.995 1.000 1.000 1.000 0.091 0.675 0.890 0.916 0.916 0.916 3.882

Arnes [34] 31 47 0.830 0.982 0.994 0.997 0.997 0.097 0.740 0.916 0.939 0.939 0.939 0.699

Geant [34] 31 49 0.829 0.983 0.994 0.995 0.995 0.105 0.569 0.858 0.919 0.943 0.951 0.601

Italy [33] 33 56 0.784 0.923 0.969 0.982 0.985 0.170 0.626 0.810 0.813 0.813 0.813 3.689

BtNAmerica [34] 36 76 0.831 0.987 0.998 0.998 0.998 0.222 0.741 0.944 0.972 0.972 0.972 0.757

BellCanada [34] 39 55 0.614 0.852 0.965 0.983 0.985 0.118 0.477 0.693 0.788 0.809 0.849 0.329

Germ 50 [33] 50 88 0.900 0.982 0.997 0.998 0.998 0.269 0.827 0.917 0.946 0.959 0.964 0.833

Deltacom [34] 103 151 0.632 0.906 0.951 0.954 0.954 1.159 0.536 0.785 0.851 0.854 0.854 2.286

coverage ηE after provisioning t times n virtual nodes in the

network, where n denotes the number of nodes in the substrate.

So ηE(0) gives the initial LFA coverage in the physical

network, ηE(1) gives the LFA coverage when on average

1 virtual router is provisioned at each physical router, etc.

We also ran the evaluations for the node-protecting case. The

interpretation of the node-protecting LFA coverage ηN (t) is

similar. Table I also highlights some details for the topologies

(number of nodes n and number of links m in the substrate)

and it also gives the average execution time of a single iteration

of the greedy algorithm in seconds (i.e., the time needed to

solve the ILP for each node in the network and choosing the

virtual node that maximizes LFA coverage).

The most important observations are as follows.

First, it seems that router virtualization is indeed useful

in increasing the level of fast protection feasible with LFA.

For single link failures, from an initial 65-85% LFA coverage

adding a virtual node to just 33% of the physical routers

improves LFA coverage beyond 90% in most of the cases, an

additional 33% nodes improve this to more than 95%, while

two virtual nodes per router gives almost perfect (beyond 99%)

link protection. The improvement is in the range of 10-30%.

The results are similar for node-protection case as well, with

the difference that the final LFA coverage is smaller but the

improvement is more significant (40-50% in many cases).

Surprisingly, the ILPs turned out much easier to solve

than we expected. A major reason for this is that the ILP

instances themselves are not particularly large: even though

the formulation (5)–(11) seems daunting, the number of binary

variables remains in the range of ∆2n, where ∆ is the average

node degree and n is the number of nodes, and so for most

of the cases the ILPs contain only a couple of dozen variables

and columns. It seems, therefore, that the intractability result

proven in Theorem 1 rarely manifests itself on real instances.

In the second round of evaluations, we asked to what extent

the SRLG model (local SRLG or no-SRLG) affects the results.

We were also curious about the robustness of the algorithms

against the initial link costs in the substrate, so we reran the

evaluations for both SRLG models 20 times, each time over

freshly generated random initial costs. The mean values and

the confidence intervals near 95% significance for the link-

protecting and node-protecting LFA coverage are given in

Fig. 4 for some select topologies.

It looks that the no-SRLG model is overly restrictive, in

that it admits only a 2-10% initial improvement in the LFA

coverage and then it quickly goes into saturation. We also find

that the results are pretty robust against IGP costs1.

VI. CONCLUSIONS

With the advent of Seamless MPLS, Loop-Free Alternates

for fast IP-level failure protection has become an indispensable

tool in telecom networks. This is despite that LFA was

not designed with carrier-grade requirements in mind, and

therefore it does not provide out-of-the-box protection levels

acceptable to most profit-oriented businesses.

In this paper, we invoked router virtualization, a common-

place feature in contemporary IP devices, to improve the level

of protection provided by LFA. The motivation is to facilitate

integrating existing operator infrastructure into modern multi-

service MPLS/LDP networks without interfering with the

normal operation of the network, or the network topology

itself, in any ways. As far as we know, this is the first time

that such a solution is proposed. What is more, our solution

is deployable immediately with minimum management effort.

1See the web demo at http://opti.tmit.bme.hu/∼tapolcai/demo/?lfa-vn
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Fig. 4. Link-protecting ηE(t) and node-protecting ηN (t) LFA coverage in different SRLG models in select topologies when adding an increasing number
of virtual nodes.

Even though the underlying optimization problem is NP-

complete, practice shows that LFA virtual router augmentation

lends itself readily to be solved as an Integer Linear Program.

In extensive numerical evaluations we found that, depending

on the extent to which SRLG support is available, practically

complete protection can be attained against single link failures

just by provisioning one or two virtual contexts at each IP

router. For node failures, LFA coverage is in the range 90-98%.

We again emphasize that this can be realized with existing IP

hardware and software available in off-the-shelf routers today,

with a one time management intervention.

We found that failure coverage greatly depends on the

SRLG support available in the IGP, and our techniques are

most powerful when the IGP supports local SRLGs. We

believe that this observation, coupled with the fact that it is

very easy to implement and deploy, can be a strong motivation

for vendors to add local SRLG support to their IP products if

they haven’t done that yet.
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APPENDIX

Definition 3: Minimum feedback arc set problem (minFAS,

A1.1: GT8, p.192., [32]): Given a digraph G = (V,A) and a

positive integer k ≤ |A|. Find a subset B ⊆ A with |B| ≤ k

such that B contains at least one arc from every directed cycle

in G.

Note that if B is removed from the graph, then all cycles are

broken. Thus, minFAS asks for a minimal set of arcs which,

when removed from the graph, leaves a DAG. The following

problem is therefore equivalent to minFAS:

Definition 4: Maximum spanning DAG (maxDAG): Given

a digraph G = (V,A) and a positive integer k ≤ |A|. Find a

subset B ⊆ A with |B| ≥ k such that the graph (V,B) is a

DAG.

As minFAS is NP-complete, maxDAG is also NP-complete.

Proof of Theorem 1: LFAVirt(GS , cS , v, k) is in NP,

since LFA coverage can be verified in polynomial time. To

prove it is NP-hard, we (Karp)-reduce it to the maxDAG prob-

lem. Given a maxDAG instance with digraph G = (V,A) and

an integer k, we construct a LFAVirt(GS , cS , v, k
′) problem

and we show that if, after adding virtual node v′ to v, there

are k′ LFA-protected (s, d) pairs, then the solution can be

transformed to a solution to the maxDAG instance with k

cardinality.

Next, we show how to construct GS from G. GS consists

of 2|V | + |A| + 1 nodes. For each arc (i, j) ∈ A, we assign

a node in GS , denoted by uij , and for each node i in V we

add two nodes to GS denoted by vi and wi. Plus we have an

additional node v. The edges of GS are the follows.

• For each i ∈ V add an edge (vi, wi) with cost 1 and

(v, vi) with cost n, where n = |V |. Node v is in fact the

center of a star and all its neighbors have degree two.

• For each i ∈ V add an edge (wi, wi+1) of cost n2, where

i is the id of each node from 0, . . . , n − 1 and addition

is modulo n.

• For each l ∈ V and (i, j) ∈ A, add an edge (wl, uij). If

l = j then set the cost to n2, if l = i then set cost to

n1 = n2 + 1
2 , otherwise set cost to n2 = n2 + 2n+ 1.

The shortest paths are as follows. To destination ui,j nodes

wk : k ∈ V have ui,j as the next-hop, node vi and vj has next-

hop wi and wj , respectively, while all the other vl : l ∈ A have

v as next-hop (see Fig. 5). Finally, the next-hop of node v is

vj . A node u becomes LFA protected after adding node v′

towards destination d, if the following conditions hold: (i) u
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Fig. 5. The transformed graph.

did not have LFA to d; (ii) u is adjacent to v, i.e. u ∈ NS(v);
(iii) the next-hop of v′ to d is a node vi which is not the

next-hop of v; and (iv) the next-hop of vi is node wi, and not

v.

The new LFAs created by v′ are as follows. Node vj
becomes LFA protected to destination ui,j , if the next-hop

of v′ is exactly vi. This occurs if (n2 + 1
2 ) + 1+ cV (vi, v

′) <
n2 + 1 + cV (vj , v

′), from which:

cV (vi, v
′) + 1

2 < cV (vj , v
′) , (12)

and for vl : l 6= i, j condition (n2 + 1
2 ) + 1 + cV (vi, v

′) <

n2 + 2n+ 1 + cV (vl, v
′) also holds, so:

cV (vi, v
′) + 1

2 < 2n+ cV (vl, v
′) . (13)

For destinations wj no new LFA is created, because the next-

hop for every vi : i 6= j is v. Similar is the case for vj : j ∈ V .

As a summary, new LFAs can only appear between node pairs

vj − ui,j : (i, j) ∈ A, and only if both (12) and (13) hold.

To conclude the proof we show that (1) if there is an

LFAVirt(GS , cS , v, kS +k) solution, where kS is the number

of protected node pairs in GS and k new LFAs are created

by adding v′, then there is a DAG of k links in G, and

(2) if there is a DAG of k links in G then there is an

LFAVirt(GS , cS , v, kS + k) solution with k new LFAs.

For (1), suppose there is a cost assignment cV (vi, v
′) : i ∈

V so that k new LFAs are created. Without loss of generality,

cV (vi, v
′) are integer in the range [1, n]. Add an arc (i, j) ∈ A

to B if cV (vi, v
′) < cV (vj , v

′). By (12) and (13), there are

exactly k such arcs and cV is a topological order of the arcs

in B. Thus, (V,B) is a DAG of k arcs.

For (2), suppose there is a DAG of k arcs in G. Find a

topological order of its nodes with ids [1, n] and assign the

order id of node i as cV (vi, v
′). Clearly, vj becomes LFA-

protected to destination ui,j if link (i, j) is part of the DAG

due to (12) and (13), so we have exactly k new LFAs.


