IP Fast ReRoute: Loop Free Alternates Revisited

Gábor Rétvári, János Tapolcai High Speed Networks Laboratory Department of Telecommunications and Media Informatics Budapest University of Technology and Economics Email: {retvari, tapolcai}@tmit.bme.hu Gábor Enyedi, András Császár TrafficLab Ericsson Telecommunications Hungary

Email: {gabor.sandor.enyedi,andras.csaszar}@ericsson.com

E

Backgrounds

- Many operators provide commercial telecom services over pure IP
- Legacy IP failure recovery is slow (>150 ms)
- For <50 ms resilience, IP-level protection is the way to go
- "Can we turn it on today?"
- "Well, sort of"
- There *is* an IP fast-resilience scheme available in many off-the-shelf routers: Loop Free Alternates (LFA)
- But with LFA certain failure cases are impossible to repair
- Can we improve?
- Not by changing LFA!

IP Fast ReRoute

- A framework for fast protection implemented in pure IP
 - instant failure detection (e.g., BFD, layer 2)
 - $\circ~$ switch to precomputed detours
 - locally route around the failure
 - then get packet back to shortest path
 - let the IGP converge in the background
 - recompute detours
- Benefits both pure IP and MPLS-LDP

Basic IPFRR: Loop Free Alternates

- Piggy-back IPFRR on a standard link-state IP shortest path routing protocol (OSPF, IS-IS)
- When next-hop goes away, pass packet on to a neighbor that still has an intact route to the destination
- Basically any neighbor that will not send it back
- Enough to ensure that the alternate neighbor is not upstream
- So it will not loop the packet back

Basic IPFRR: Loop Free Alternates

- In the sample network nodes are routers, destination is \boldsymbol{t}
 - \circ the default next-hop from b to t is e
 - \circ if *e* goes away, *b* can still pass packets to *d*

- Nodes $b,\,c,\,d$ and e all have an LFA to t
- Node *a* has no LFA: no fast protection!

Alternatives of LFA

- IPFRR is hard: destination-based forwarding does not play well with local rerouting
- For full protection, packets on detour must be distinguished from packets on default paths
- Alter destination-based forwarding (FIR & co.)

S. Nelakuditi et al. "Fast local rerouting for handling transient link failures", INFOCOM'04.

- o consider packet's incoming interface in forwarding
- full protection, but per-interface FIB is not supported
- Explicit failure signaling (e.g., remote LFAPs)

I. Hokelek et al., Loop-free IP Fast Reroute using local and remote LFAPs" Internet Draft, Feb 2008.

- standalone signaling mechanism for IPFRR
- operators reluctant to deploy

Alternatives of LFA

• In-band signaling (MRC, SafeGuard, IP redundant trees)

A. Kvalbein et al. "Fast IP Network Recovery Using Multiple Routing Configurations", INFOCOM'06.

- o e.g., mark detours in the IP header
- could never be pushed through IETF
- Tunneling (near-side/far-side tunneling, Not-via)

S. Bryant et al. "IP fast reroute using Not-via addresses", Internet Draft, March 2007.

- "lightweight in-band signaling": mark packets in destination address
- wire-speed tunneling not reachable everywhere
- MTU issues can cause debug nightmare
- Various combinations

M. Menth et al. "Loop-free alternates and not-via addresses: A proper combination for IP fast reroute?", Comput. Netw., 54/8 pp. 1300–1315, 2010.

Revisit LFA

- Alternatives are too complex
 - extra-management burden, added complexity and non-trivial infrastructure upgrade: deployment barrier
- In contrast, LFA is unobtrusive and incrementally deployable
 - standardized and commercially available
 - Cisco IOS Release 3.7, JUNOS 9.6
 - remains the only IPFRR technique widely implemented
 - but it does not provide complete protection!
- Before deployment of LFA, some questions must be answered
 - 1. To what extent LFA can protect real networks?
 - 2. Which topologies are good for LFA, and which are bad?
 - 3. If LFA turns out inefficient in a particular case, how can we improve?

Link-protecting LFAs: some definitions

- p2p links, no LANs, no ECMP, no SRLGs, only link failures
- Some neighbor n of s is a link-protecting LFA for s to d if
 (i) n is not the default (shortest-path) next-hop of s to d
 (ii) dist(n,d) < dist(n,s) + dist(s,d)

• LFA coverage metric $\eta(G)$: characterize network topologies based on their amenability to LFA

$$\eta(G) = \frac{\# \text{LFA protected } (s, d) \text{ pairs}}{\# \text{all } (s, d) \text{ pairs}}$$

Graph theoretical LFA coverage analysis

• **Theorem:** for any 2-connected graph G on n nodes

$$\frac{1}{n-1} \le \eta(G) \le 1$$

- lower bound is tight for even rings/uniform costs
- upper bound is tight for complete graphs/uniform costs
- The worst topologies for LFA are rings

Networks with full LFA protection

- Treat the uniform cost and the weighted case separately
- Generalize from the former to the latter
- Theorem (uniform cost case): $\eta(G) = 1$, if and only if each edge is contained in a triangle (cycle of length 3)

 Complete graphs, chordal graphs and maximal planar graphs have full LFA coverage

Networks with full LFA protection

• Theorem (weighted case): $\eta(G) = 1$, if each forwarding edge is in a triangle for which the triangle inequality holds

$$dist(i, j) < dist(i, k) + dist(k, j)$$
$$dist(i, k) < dist(i, j) + dist(j, k)$$
$$dist(k, j) < dist(k, i) + dist(i, j)$$

• Only a sufficient condition but not necessary

What if some nodes do not have LFA?

- 1.) Change link costs
 - cheap but alters shortest paths
 - might be too much of a price for improved LFA coverage

- 2.) Alter the topology by adding new links
 - can be costly
 - but leaves shortest paths intact
 - at least, if new links are of sufficiently high cost

LFA coverage improvement

- Again, treat weighted and unweighted case separately
- LFA graph extension problem in the uniform cost case:

$$\min_{F \in \overline{E}} |F| : \eta(G(V, E \cup F)) = 1 \quad (\mathsf{minLFAu})$$

- We ask for the smallest complement edge set so that all edges are included in a triangle
- **Theorem:** *minLFAu* is NP-complete
- Gave an ILP and a greedy approximation
- The greedy approximation adds the link that improves the most
- **Theorem:** the greedy algorithm terminates with full LFA coverage

LFA coverage improvement: weighted case

- LFA graph extension problem, weighted case (*minLFAw*): do *minLFAu* without changing any shortest paths at all
- We must choose link costs appropriately as well
- **Theorem:** *minLFAw* is solvable, if and only if each node *n* has at least two upstream nodes in the shortest path tree rooted at *n*
- Gave a pre-processing algorithm
 - for each node violating the above requirements, adds at most one link and changes at most one cost
- **Theorem:** if solvable, *minLFAw* is NP-complete
- Again, gave an ILP and a greedy approximation
- In fact, the previous algorithm works here too with minimal modifications

Numerical results

• Ran the ILP and the approximation on select ISP topologies

	Uniform cost			Weighted			
Topology	η_0	ILP	greedy	η_0	preproc.	ILP	greedy
AS1221	0.833	1	1	0.833	1/1	2	2
AS1239	0.898	6	6	0.877	0/0	6	7
AS1755	0.889	4	4	0.886	0/0	8	8
AS3257	0.946	2	3	0.903	7/7	10	11
AT&T	0.823	5	6	0.823	0/0	10	13
Germ_50	0.801	21	22	0.92	0/0	18	21

- Default coverage is usually 70-90%
- The greedy approximation is efficient
- In many cases, very few new links needed

Numerical results

• LFA coverage in the first 4 iterations of the greedy algorithm

• Only 2-4 new links is enough for >95% LFA coverage

Conclusions

- IPFRR is under wide-scale deployment
 - LFA is the only commercially implemented technique
 - simple, but no protection for all failure scenarios
- In this paper: theoretical and practical studies on how to actually deploy LFA
 - which networks are good/bad for deploying LFA
 - introduced the LFA graph extension problem
 - o computationally hard, but efficiently approximable
 - just by adding a couple of links/changing a few link costs
 LFA coverage can be increased drastically
- We since submitted a paper on the "LFA cost optimization" version too