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Abstract—IP Fast ReRoute (IPFRR) is the IETF standard for Once alternate next-hops are active, traffic flows undisiaipt

providing fast failure protection in IP and MPLS/LDP networks  pypassing the failed component, letting the IGP to converge
and Loop Free Alternates (LFA) is a basic specification for ;, the background.

implementing it. Even though LFA is simple and unobtrusive, it . L .
has a significant drawback: it does not guarantee protection for A basic specification for IPFRR is Loop-Free Alternates

all possible failure cases. Consequently, many IPFRR proposals (LFA, [3]). When connectivity to some next-hop is lost, all
have appeared lately, promising full failure coverage at the price traffic that would have used the unreachable next-hop ispdass
of added Complexity and non-trivial modifications to IP hardware on to an alternate next_hop, called a Loop Free A|ternam, th

and software. Meanwhile, LFA remains the only commercially ; P ;
available, and therefore, the only deployable IPFRR solution. still has a path to the destination that is unaffected by the

Deployment, however, crucially depends on the extent to which fallur_e_. L'_:A is simple, it can be realized with str_a|ghtfcawl

LFA can protect failures in operational networks. In this paper, ~Mmodifications to current IGPs, and deployment is easy thanks
therefore, we revisit LFA in order to give theoretical insights and  to the fact that it does not require support from other reuter
practical hints to LFA failure coverage analysis. First, we identify On the other hand, LFAs not always protect both link and

the topological properties a network must possess to profit from .\ ,qe failyres at the same time and may also lead to temporary
good failure coverage. Then, we study how coverage varies as new,

links are added to a network, we show how to do this optimally Ioops when mu]tiple simultaneous failures show up. But the
and, through extensive simulations, we arrive to the conclusion major problem is that often not all routers have LFAs to all
that cleverly adding just a couple of new links can improve the other routers, which means that certain failure scenanes a

quality of LFA protection drastically. impossible repair rapidly.
Altler;ggt(e;rerms—lP protection, 1P Fast ReRoute, Loop Free ¢ nately, complete IP-level local protection is difit

due to IP’s destination-based forwarding paradigm. As only
. INTRODUCTION adjacent routers are aware of a failure, remote routers tlo no

. . . know whether an arriving packet is traveling on its shortest
Transporting delay and loss sensitive traffic in the Interne o . .
path or it is already on a detour and so exceptional forwgrdin

has become an important requirement in the last few Ye8alRould be applied. Without being able to differentiate et

At the moment, t_he ”:? protocol suite is not_yet amenable Rese two cases, local IP protection can never attain 100%
fully support multimedia streams due to various reasons, o]n

A ; . ilure coveragk Most IPFRR proposals, therefore, either
of which is slow response to failures. Recovery with curren ) L : ;
. o ange IP’s destination-based forwarding [4]-[6] or idiroe
Interior Gateway Protocols (IGPs) is in the order of hundre . . o .

. . ) some forms of signaling to indicate that a packet is on a detou
of milliseconds [1], typically beyond what is tolerable to

multimedia stream. Similar is the case of MPLS networks thag '€ Call for out-of-band failure signaling [7], others use
. nvaluable extra bits in the IP header [8], [9] or add special

rely on LDP for label exchange, as LDP is dependent on tE|1r$formation to it for in-band signaling [10], and still ottse

IGP for routing. Therefore, the IETF defined a framework 9 9 !

called IP Fast ReRoute (IPFRR [2]), for native IP protectioRroloose to mark detours by tunneling [11] [.13]' While moder_n

. . L S routers can handle tunneled packets at wire speed, tugnelin
in order to reduce failure reaction time to tens of milliseds . .

) ) . : . needs additional address management [13], [14] and, if the
in an intra-domain, unicast setting.

IPERR is based on two principledocal rerouting and additional IP header does not fit into the MTU, can cause

precomputed detourd.ocal rerouting means that only router$ acket fragmentation and time-consuming reassembly at the

. ) . o ; ; . tunnel endpoint. It seems, therefore, that the price for IP-
directly adjacent to a failure are notified of it, which elim- : . .

. ) . level local protection, capable to handle all possibleufail
inates one of the most time-consuming steps of IGP-basg

restoration: global flooding of failure information. Adidib- cases, is considerable added complexity and management

ally, IPFRR mechanisms are proactive in that detours atki:élrden, modifications to the essential IP infrastructured a

compu.ted, and installed in the forward_ing engine, long keefo Tt bi;ea:(rllgge?;r;her:gcx(;?]zrgfltng Ifgoﬁg)e/nigztr}'s the only
any failure occurs. Thus, yvhen a failure eventually ShOW?andardized and readily available IPFRR technology. Astle
up, routers are able to switch to an alternate path instan \X/o major router vendors are offering LFA-based IPFRR
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support out of the box [15], [16], and other vendors are
expected to follow suit. Consequently, operators in nead fo
improving network resilience are now facing the question
whether to deploy LFA, and this decision depends cruciatly o
the extent to which LFA can protect failures in the particula
topology. This paper aims to assist making this decision.
Even though thorough, simulation-based reports are avail-
able [17]-[21], a deep understanding of how certain network ~ Figure 1: A sample weighted network topology.
characteristics affect LFA failure coverage is still miggi
Thus, in the first part of the paper we study the graph
topological ingredients needed for good LFA protection. landdist(z,y) denotes the length of the shortast- y path.
this regard, this paper is a sequel to [22], where the authdxgheighbor fulfilling (1) is called dink-protecting Loop Free
study to what extent IP’s destination-based forwardingniisr  Alternate (LFA). For instanceq is a link-protecting LFA for
protection routing, and [23] presenting a similar studytfee noded towards nodef asdist(a, f) < dist(a, d) +dist(d, f).
02 scheme. As we find that LFA failure coverage strongly Many alternative LFA types exist. For instangels also an
depends on the topology as well as on the link costs, we studyA for d towardsf, but it also protects against the failure of
the effects of both separately. nodec, so it is anode-protecting LFAIt is also adownstream
Existing proposals modify standard IP forwarding in someeighbor as it is closer tof thand, as well as ger-link LFA
way to achieve full protection. Why not choose the othder the link (d,c) as it protects all the nodes reachable dy
way around? That is, instead of bending IP to provide fulthrough(d,c). For a full taxonomy, see [3], [20], [21].
protection in all networks, paying huge price in complexity
and deployability, why not bend the network topology itset?" Model
so that even LFA can guarantee full protection? We studyWe model the network topology by simple, undirected
this question in the second part of the paper. We show raegighted graphG(V, E)) with V' being the set of nodes arid
networks where by adding just two or three new links full LFAhe set of edges. Let = [V| and m = [E|, and denote
protection can be attained. This might be an acceptable pribe complement of the edge set withi. Let the cost of
for an operator to take the easy deployment path. In sor@dge(i, j) bec(i, j). For simplicity, we assume th&f) edges
cases, however, our analysis reveals that full LFA provecti are bidirectional and point-to-poinfii) costs are symmetric;
can only be achieved at the cost of a substantial topologgnd (i) each node has a well-defined next-hop towards each
redesign, which is a clear indication to choose alternatigtestination. This means that if multiple shortest paths are
protection schemes [24]. At the least, such an analysis cavailable to a destination, then one is chosen arbitrarily.
be instructive in the next regular network upgrade cycle. Being by far the most common in operational networks
The rest of the paper is organized as follows. Section (&ccounting for about 70% of unplanned outages [25]), we
gives an overview of LFA and provides a useful mathematicahall limit our attention tasingle link failuresexclusively. As
model. Section Il is devoted to graph theoretical LFA fedlu simplelink-protecting LFAssafeguard against just this type of
coverage analysis, and Section IV discusses the LFA grajelilures and they contain all the other LFA types as special
extension problem. Then, numerical results are describedciases, we do not treat those henceforth. Consequently, we
Section V and finally, Section VI concludes the paper. shall usually assume that the graph describing the netvgork i
2-edge-connectedvhich is the minimum topological require-
ment for being able to repair every possible link failure.
Perhaps the easiest way to demonstrate LFA is through an
example. Consider the network depicted in Fig. 1 and suppde Theoretical framework
that routerd wishes to send a packet to routér The next- Definition 1: Consider an undirected, weighted graph
hop of d along the shortest path towardsis c. If, however, G(V,E). For eachd € V, define a relation<4) on V as
link (d, ¢) fails, thend needs to find an alternative neighbofollows: let u <, v if at least one shortest path fromto d
to pass on the packet to. It cannot send the packet to, sgyes throughu. Letu <, v if eitheru <4 v or v = v. Finally,
b, asb's shortest path tof goes through itself, sé would put =, v if u is not ordered with respect to by (<,).
send the packet back causing a loop (remember that in IPFRRIn Fig. 1, for instanced < b butd =, b, anda z; d.
routers not immediately adjacent to a failure do not geffieoti ~ The relation(<,) defines a partial order o¥f, since it is
of it). Instead, it needs to find a neighbor that is closer t@flexive, transitive and antisymmetric. The partially enmed
the destination than the length of the route from the neighbget (v, <,) is called thed-poset. Eachi-poset has exactly
through itself. This relation can be expressed as follows: one lower boundd. We say that some € V is an ancestor
. . . (descendant) of someec V in thed-poset ifu <4 v (u =4 v,
dist(n, d) < dist(n, 5) + dist(s, d) , @) respectively). Additionally, a parent (child) is a neighing
wheres is the actual source nodé,is the node the packet isancestor (descendant). By assumption, if a node has naultipl
destined ton is a neighbor of other than the failed next-hop parents, then one is assigned as next-hop arbitrarily.

II. LOOPFREEALTERNATES



Using this model, we redefine (1) as follows: Rings are important in telecommunications, and the above

Definition 2: For somes € V andd € V, aneighbom € V' theorem suggests that they are very badly suited for LFA.
of s that is not the next-hop is a link-protecting LFA (simplyBesides, the theorem also suggests that graphs without shor
LFA, henceforth) ifs A4 n. cycles are problematic for LFA. For instance, fault-totdra

Simply put,n is an LFA if no shortest path from to d networks are often connected in hypercube topologies, 2D an
passes through Hence, no loop will arise if a packet destinedD meshes (each consisting 4tycles), or 2D and 3D torus
to d is handed bys to n instead of its primary next-hop. Notetopologies (consisting of longer cycles), and these cahaog
that the conditiors #; n means that eithes <, n or s =, n. perfect LFA coverage either.

From the above discussion, it is clear that in genergl
networks not all nodes have LFA protection to every oth
node [17]-[21]. To measure theFA failure coverage)(G) in Next, we turn to the characterization of networks with
a weighted grapl@, we adopt the simple metric from [3]:  perfect LFA coverage. Herein, we concentrate on the uniform
cost case, when shortest path routing boils down to min-hop
routing.

#all (s, d) pairs Observation 1:Consider an undirected gragh with uni-
lIl. LFA FAILURE COVERAGE A THEORETICAL ANALYsls  form edge costs. Now)(G) = 1, if and only if each node has
. ) o an LFA towards each of its neighbors.

Next, we give a graph-theoretical characterization of LFA gagily, if all neighbors are protected, then all nodes in the
failure coverage, as measured byG). First, we identify graph are protected as well since these are reached throeigh t
worst-case graphé: with minimal 7(¢7). Then we seek the peighpors. The other way aroundzifG) = 1 then, evidently,
opposite extreme: graphs with perfect LFA coverage (i.gy neighbors must be protected.

n(G) = 1). Since both the topological properties of the preyiously, we argued that graphs with long cycles are
underlying network and the actual edge costs have profougghplematic for LFA. The next result makes this claim explic
and intricate effect on the efficiency of LFA, it is worth Theorem 2:Consider an undirected, simple gragiiV, E)
examin'ing their impact separately. Thus, we first study fullith uniform costs. Now)(G) = 1, if and only if each edge
LFA failure coverage under the assumption that costs d&contained in at least one triangle (cycle of length 3).
uniform, and then we endue our graphs with costs and see pyqf: First, we show that if al(u, v) € E are contained
how our results generalize to the weighted case (if at all). j, 4 triangle, ther)(G) = 1. Let some triangle containing
(u,v) beu— v —w. One easily sees that£, w, as it is the
direct path through edggw, v) that is the shortest (min-hop)

It has been observed previously that the quintessentiglth fromw to v, andw — u — v is strictly longer than that.
worst-case graphs for IPFRR are rings, i.e., cycle graphsThus,w is an LFA foru towardsv protecting edgéu, v), and
which all nodes are of degree 2 [6], [26]. The reason is thee claim then follows from Observation 1.
bad interplay between destination-based forwarding aed th To see the reverse direction, we prove that(if:) = 1, then
small path diversity in rings. It is not surprising, thenefp every edge is contained in a triangle.7fG) = 1, then for
that we find the even ring to have the smallest LFA coveragech(u,v) € E nodeu has an LFA towards. Let this bew.
out of all 2-connected graphs with the same number of nodessily, (u, w) € E. We only need to show thdtw,v) € E as

Theorem 1:The LFA failure coverage of a 2-connectedwell to have a triangle. Indirectly, ifw,v) ¢ E, thenu <, w,
graph G on n nodes is bounded byl; < n(G) < 1 and which contradicts the assumption thatis an LFA. [
the lower bound is tight for rings with even number of nodes Theorem 2 implies that complete graphs, chordal graphs and
and uniform edge costs. maximal planar graphs have full LFA coverage in the uniform

Proof: Consider a ringG(V, E) with n = |V| > 2 and cost case.
even, let costs be uniform and choose sahw V. Now, there _
aren — 2 nodes having exactly one parent and one child in tife Perfect LFA coverage: weighted graphs
d-poset. Since a node cannot get LFA from its children or its Next, we extend our analysis to weighted graphs. Call an
next-hop, these — 2 nodes do not have LFA. The remainingedge(u, v) a forwarding edgeif the next-hop fromu to v is
node (at the opposite side @fin the ring) has two parents, oneexactly v. In other words, a forwarding edge is an edge that
of them is the next-hop and the other provides an LFA. Henamnnects a node to a neighbor that is a next-hop towards some
for eachd € V there is only one node with LFA towards destinations. Below is a generalization of Observation 1.

which yieldsn(G) = —2— = -1 Observation 2:Consider an undirected, weighted gragh

n(n—1) =~ n—1"
To prove that this is( a Ic)>wer bound, we use the fact that Mow, n(G) = 1, if and only if for each forwarding edge:, v),
a 2-connected graph eaghe V is contained in at least onew has an LFA tov.
cycle. Take the smallest cycle containidagNote that this cycle  This observation basically says that we have full LFA
has no chords. One can use the above reasoning to show thadtection if and only if all next-hops remain reachablen#
over arbitrary edge costs, at least one node has LFA towalidk failure. The difference from Observation 1 is that weede

d in this cycle, and from this the result follows. W to protect forwarding edges only, as in a weighted graph not

. Perfect LFA coverage: uniform edge costs

#LFA protected(s, d) pairs
0(G) = P (s,d) p

A. Worst case graphs




the same cost. Obviously, we want to do this with the fewest
new edges possible. Consider the problem statement:
Definition 3: LFA graph extension problem in the uni-
form cost case (minLFAu)Given a simple, undirected graph
G(V, E) with uniform edge costs on all edges and an integer
Figure 2: A weighted graph with full LFA coverage. [, is there a set’ C E with |F| < [ andV(u,v) € F :
c(u,v) = c so thatn(G(V,EU F)) = 1?

Note that adding uniform cost edges to a uniform cost graph
all edges are actually used to forward traffic. Unfortunatelnecessarily changes the shortest paths between some of the
Theorem 2 does not extend so naturally to the weighted casedes. This is because at least the nodes connected by the

Theorem 3:Consider an undirected, weighted simple grapfew edge will use it to reach each other, instead of whatever
G(V,E). Now, n(G) = 1, if each forwarding edgé€:,j) is shortest path they had before. Hence, the requirement that
contained in a trianglé—j—k for which the triangle inequality shortest paths be invariant to LFA graph extension cannot be
holds with strict inequality: met when solving minLFAu.

Theorem 4:The LFA graph extension problem in the uni-

d%St(Z.’j) < dI.St(Z_’ k_) + d%St(k_:’]) 2) form cost case (minLFAu) is NP-complete.
dist(i, k) < dist(s, j) + dist(j, k) ®) For a complete proof, the reader is referred to the Appendix.
dist(k, j) < dist(k, ) + dist(i, j) (4) The transformation is from the minimal set cover problem

(SP5, [30]), which is known to be NP-complete.
Next, we turn to discuss the algorithmic aspects of LFA
raph extension. First, we give an Integer Linear Program

use geographical distances as costs are particularlyswidel ILP) with O(n®) binary variables for obtaining an exact
geograp P ysu solution. Due to its complexity, the ILP is expected to work

e L 1 e 20y smal etvors only. Thereore, we ko e 3 grecy
Y ' pproximation suitable for larger topologies.

As one easily checks, the graph_ In Fig. 2. has fu_II LFA" Consider a graplG(V, E) with uniform costs. Then, the
coverage, even though the forwarding edgg) is contained task is to compute the minimal set of edgésC E so that

in no triangle at all n(G(V,EUF)) = 1. By Theorem 2, this can be achieved by
IV. LFA GRAPH EXTENSION ensuring that each edge is contained in a triangle. We int@d
The conditions for full LFA coverage turn out to be somels) binary variablesz;; : (i, j) € E'U E to indicate whether

what restrictive, suggesting that only special topologigmit e €dge(i, j) is to be added to the graph. We sgf = 1 for
full protection. Indeed, practical studies show that in coon  €aCh edge already i6r. Additionally, we introduce another

networks LFA coverage is usually in the order of 50-90% [17]_1-” ) (5) binary _variabIeSyik..j, whose role will be clear
[21]. In this section, we seek ways to improve this situatiofmmediately. Consider the ILP:

Proof: Eq. (4) basically states that£; k, sok is an LFA
from i to j. Then, the result follows from Observation 2m
The theorem suggests that densely connected networks

There are essentially three approaches to increasing LFA in Z Tij (5)
coverage: changing link costs, changing the topology, orglo (i) e BUE
both. We study the first option in [27], while this paper is . = .
dedicated to the second approach. In particular, we ask tow t ki < s+ ) V(i j) € EUE YR €V \{i,j}(6)
extend the network with new links (e.g., by leasing addaion  z;; < Z Yikj V(i,j)€e EUE @)
capacity, provisioning new virtual links, or deploying new keV\{ij}
fibers) to improve LFA coverage, and we shall recur to T =1 Y(i,j) € E (8)

manipglating costs only_ if imprpvement canno_t be achieved iy yins € 10,1} V(i,j) € EUE, Yk € V' \ {i,}(9)
otherwise. The reason is that in many operational networks -~ '
edge costs are deliberately optimized, for the purposesant| ~ According to the constraint (6),; can only take the value
balancing, reducing delay and improving resiliency [28], ol. if both edges(i, k) and (k, j) are to be contained in the
to obviate equal-cost paths in order to eliminate packet réxtended graph. Then, (7) expresses that we want each edge
ordering, unwanted packet fragmentation [29], etc. Mddy t0 be contained in at least one triangle. This is because (7)
costs would destroy carefully engineered shortest pats dgquires that for eaclii, j) € £ U E with z;; = 1 there
this would make deploying LFA less attractive to operatorsPe at least oné: € V' with y;,; = 1, i.e., both edgesi, k)

As before, we again study the impacts of the graph topologj?d (%, j) be in the graph making up a triangle with, ;).

and edge costs separately. Finally, the objective says that we want this to be achievitd w
) . ) the minimum number of edges. After obtaining an optimal
A. LFA graph extension: uniform link costs solution* to (5)(9), we add the edgds, j) € E : z; = 1

In this section, we ask how to add edges to a graph to G to attain perfect LFA coverage.
achieve full LFA coverage, provided that both the edges The above ILP ha®)(n?) binary variables, so solving it to
originally existing in the graph and the edges we add haeptimality might not always be an option. Therefore, next we



present a greedy heuristics (inspired by [31]) which, intcast  that for eachy € V\{d} : u <4 v. Thus, for eachu € V'\{d},
to the ILP, runs in polynomial time. The greedy algorithm ithere is another node # d so that either =, v or u >4 v.
as simple as it can get: in every iteration we add the edge tiathe first case, ifu,v) € E thenv is already an LFA from
increases LFA coverage the most. u to d. If not, add (u,v) to E with sufficiently large cost.
The latter case means thathas an ancestor. Now, there
Algorithm 1 Greedy LFA graph extension for gragi(V, E) are three cases. Eith&} (u,d) ¢ E in which case addu, d)
1. while (G(V, E)) < 1 with sufficiently large cost(ii) (u,d) € E butw is not a child
> (u,v)  argmax 7(G(V, EU{(i,§)})) of d then v already has_ an LEA tal through edge(u, d);
(i,))€E or (iii) (u,d) € E andw is a child ofd. In this caseu has
3: E+— EU{(i,7)} at least two parents in thé-poset:d and the parent on the
4. end while shortest path to the ancestomwhich is guaranteed to exist by
the assumption: >4 v. The parent that is not the next-hop
Theorem 5:Given a graphG(V, E) with uniform costs as then provides an LFA. Since adding high cost edges does not
input, Alg. 1 terminates with full LFA coverage. alter shortest paths, we can repeat the above process for eac
Proof: Alg. 1 certainly terminates when all complement/ € V' independently to eventually obtain full LFA coverage.
edges are added to the graph. Since uniform cost complet&€cond, we show that if the condition does not hold then
graphs have perfect LFA coverage, the statement folloms. at least one node cannot have an LFA. Suppose that for some
The algorithm needs a procedure to compyté&). This ¢ € V all children ofd in the d-poset are ordered with respect
can be done irO(n3) using the Floyd-Warshall algorithm tot0 €ach other. Then, there is a “minimal” child : Vv €
compute thelist(-) function and anothe®(n3) for checking V \{d;n} : n =4 v. This precisely means that no node fuffills
(1) for each node tuplés, d,n). The procedure is calleff| the LFA criterion, so neither. has an LFA inG nor G can

times in every iteration and at mo&E| iterations are run, b€ extended with new edges so that is has. u

which puts the complexity of Alg. 1 t&(n3(n2 — m)?). Next, we characterize the complexity of minLFAw. In what
. ) follows, we suppose that the network satisfies the requinésne

B. LFA graph extension: weighted graphs of Theorem 6, so the existence of a solution is guaranteed.

In contrast to uniform cost graphs, where we could not solve Theorem 7:The LFA graph extension problem for the
the LFA graph extension problem without changing someeighted case (minLFAw) is NP-complete.
shortest paths, in weighted graphs we can. If an edge withConsult the Appendix for the full proof.
sufficiently large cost is added to the graph, then shor@isp It seems that LFA graph extension is difficult, both in the
remain intact while LFA coverage may improve. Here, and ianiform cost case and the weighted case. Thus, we again
the rest of this paper, “sufficiently large” will generallyean present two algorithms, an exact solution for small network
“larger than the length of the longest shortest path”. and an approximation for larger topologies. However, be=for
Definition 4: LFA graph extension problem in the weightetlirning to the algorithms themselves, we need to make sure
case (minLFAw)Given a simple, undirected, weighted grapithat the problem is solvable in the first place.
G(V,E) and an integel, is there a sef’ C E with |F| < Theorem 6 suggests that some networks cannot be extended
and properly chosen costs, so thgt7(V, E U F')) = 1 and for perfect LFA coverage without altering the costs. Howeve
the shortest paths i6(V, E) coincide with the shortest pathsthis opens the door for a wide selection of strategies, based
in G(V,EUF)? whether the operator prefers the invariance of shortesspat
In minLFAw, the task is to add edges as well as to chooslee invariance of the topology. Some strategies would chang
their cost to attain full LFA coverage, with touching noedge costs but would not add new edges, other strategies woul
shortest paths at all. Unfortunately, this latter requigatn do both in order to minimize the number of shortest paths
cannot always be met. Intuitively speaking, if under thaiakt altered. Discussing all these strategies goes well beybed t
choice of the edge costs some nafidnas the property that scope of this paper. Below, we present a simplistic solution
all traffic destined tod enters via a single edge, sdy;,d), which changes at most one shortest path and adds at most one
then that edge can never be protected by an LFA: to whatewslge per each node that violates Theorem 6.
alternate node: tried to send traffic in case of the failure of Let D C V be the set of nodes not satisfying Theorem 6. In
(n,d), that traffic would eventually arrive back to causing addition, letleaf(d) denote the leaf nodes on the shortest-path
a loop. The following theorem makes this idea explicit: tree rooted adl: leaf(d) = {v : fu € V so thatu =, v}.
Theorem 6:Let G(V, E) be a simple, weighted graph. Now,Finally, choose some < min; j)cg c(i, j).
there is some integet so that the LFA graph extension The idea is to choose some non-transit nedéor each
problem in the weighted case (minLFAw) is solvable Gh destination nodé violating Theorem 6 and make it a child of
for [, if and only if eachd € V has at least two children in d. This amounts to adding an edde, d) if no such edge
the d-poset that are not ordered with respect to each otherexisted before and setting its cost to ensure thas not
Proof: First, we show that if eacli € V' has at least two ordered with respect to any other child @fin the d-poset.
children, sayni, na: n1 2, ne, then minLFAw is solvable. We Obviously, this will bringd to terms with Theorem 6.
give a trivial LFA graph extension. By the assumptidn: so Theorem 8:Alg. 2 adds at mositD| edges to the graph and



Algorithm 2 Pre-process grap&(V, £) for minLFAw The ILP hasO(n? — m) binary variables, which makes it

1: for d € D intractable in larger topologies, calling for an approxiioa.

2: choose some € leaf(d) We observe that Alg. 1 readily generalizes to the weighted
3: if (v,d) ¢ EthenE <+ EU{(v,d)} case. The only modification is that before examining whether
4: c(v,d) < dist(v,d) — € a particular edge, when added to the graph, would improve
5: recomputeD LFA coverage, we must take care of setting its cost suffiient
6. end for large. Observing that in every graph conforming to Theorem 6

an edge improving LFA coverage can always be found (see
the trivial LFA graph extension in the proof) leads us to a
changes at mogiD| shortest paths. simple generalization of Theorem 5 to the weighted case.
Proof: Let G’ denote the graph obtained by executin%h Corollary 1: Given a weighted graph satisfying Theorem 6,
Alg. 2 on some grapl@. The first claim is straight forward. e approximate minLFAw algorithm terminates with full LFA
To prove the second one, we show that only the shortest p&ffyerage.
from the new childv to d changes for each € D. Suppose
some other shortest path, say, franto w, changed as well.

Obviously, this path must contaifv, d). Sincev € leaf(d), First, we examine how many edges one must add to a
w # d. Let n be the next-hop frond to w in G'. Now, (v, d) network to achieve full LFA coverage. For conducting the nu-

must be contained in the shortest path frot n as well. Note Merical evaluations, we chose topologies that represerdzab

thatn is a child of d. Becausev =4 n (otherwise,d would selection of today’s transport networks. We used infer&i |
not be inD), dist(v,d) = dist(v,n) + dist(n, d). From this, data maps from the Rocketfuel dataset [32] (AS1221, AS1239,

we write dist(v, d) + dist(d, n) > dist(v, n). Due to the way AS1755, AS3257, AS3967 and AS6461). We obtained ap-
we selected, this remains true irG’ as well: dist' (v, d) + proximate POP-level maps by collapsing the topologies so
dist'(d,n) > dist(v,n), which contradicts the assumptionthat nodes correspond to cities and we eliminated leafsiode
that th7e shortest pat7h fromto n in G goes throughl. m These networks come with inferred link costs. We also chose

Next, we discuss algorithms to solve minLFAw. First, w§OMe network topologies from [33], namely, the Abilenelylta

V. NUMERICAL STUDIES

give an ILP to obtain an exact solution. Léty,dy) : k = Germany, NSF and AT&T networks and the 50 node extended
1,...,K be the set of source-destination paits, dj,) with German backbone, (Germ_50). Unfortunately, except for the
the property thas;, does not have an LFA td,. Additionally last network no valid link costs were available, so we seheac
let (ui,v;) : i = 1,...,L be the set of edges in t’hecost to1. Note that solving minLFAu and minLFAw yields

complement edge s&f and letd;;, be an indicator whose different results even for uniform cpsts graphs, as shbrteg
value is1 if edge (u;, v;), when added with sufficiently large paths are allowed to change in the first case but must remain
cost to the graph, would provide an LFA fox;,, d;), and zero intact in the latter. _ o
otherwise. Note thad,;, is well-defined and it is invariant to  1he details are in Table I. Our first conclusion is that,
the operation of adding high cost edges to the graph. Ingedd"_liné with what is reported in the literature [17]-21],

a binary variabler; for eachi = 1,.. ., L indicating whether LFA failure coverage in real networks is usually far from

edge(u;, v;) is to be added to the graph. Consider the |Lp:Peing complete. Most results are in the range 75-85%, rarely
reaching 95% and never attaining 100%. Curiously, however,

& we found many cases when full protection could be attained
mmeEi (10) by adding only a few new links. For smaller topologies,
=1 only some 1-6 additional links are needed, while in larger
and sparser networks we need significantly more links. For
instance, we would have to add about one fourth of the

4 . number of links originally existing in the German backbone

i €{0.1} i=L...,L (12) (Germ_50). Additionally, initial LFA coverage tends to be
Constraint (11) requires that the edges added to the graghaller in uniform cost graphs, while more links are needed
provide LFA for each unprotected source-destination faid for full coverage in weighted graphs. Finally, we observat th
the objective (10) expresses that we want to achieve this wthe greedy algorithm performs quite close to the optimum.
the fewest edges possible. Readers proficient in combiahtoiThis result is expected: LFA graph extension is nothing more
optimization will recognize the minimal set cover problenthan a minimal set cover problem under the hood, and the
in the ILP (10)—(12). Indeed, the ILP requires to find a sefreedy algorithm has been reported earlier to perform well
of edges that “covers” all the source-destination pairshat t for this particular problem [31].
they provide an LFA. As we used the exact same problem toNext, we study how robust these results are against the
prove the NP-completeness of minLFAw (see the Appendixghanging of costs. For this, we generated 100 graph instance
we arrive to the interesting conclusion that weighted LFfor each topology, where costs were taken randomly from the
graph extension is precisely equivalent to the minimal eeeéc range [1, 100] according to a uniform distribution, and we
problem. executed the greedy algorithm on the resultant networks. Th

L
> Giwwi > 1 k=1,...,K (11)
=1



Table I: LFA graph extension results: topology name, nuntfenodes () and edges(); initial coverage 1), ILP size,
number of added edges (“ext”) by the optimal and the gree@y. ) algorithms, and number of link costs changed and edges
added in the preprocessing phase (“Pre. c/e”) for the umifoost and the weighted case with real and random costs.

Uniform cost Weighted Weighted random
Topology ILP Gr. Pre. ILP Gr. Pre. Gr.
Name n m no ILP size ext | ext no cle ILP size ext | ext cle ext
AS1221 7 9 | 0.833 135 x 126 1 1| 0.833 1/1 7x11 2 2 | 1.13+ 0.18/0.72+ 0.15 285+ 0.2
AS1239 | 30 | 69 | 0.898 | 12684 x 12615| 6 | 6 | 0.877 | 0/0 | 107x366| 6 | 7 | 2.68+ 0.26/1.84+ 0.22 | 10.6+ 0.43
AS1755 18 | 33 | 0.889 2634 x 2601 4 4 | 0.886 0/0 35 x 120 8 8 1.32+ 0.2/0.92+ 0.16 7.55+ 0.3
AS3257 | 27 | 64 | 0946 | 9190x9126| 2 | 3 | 0903 | 7/7 | 68x280| 10 | 11 | 4.62+ 0.42/3.24+ 0.39 | 7.69+ 0.46
AS3967 21 | 36 | 0.864 4236 x 4200 7 7 | 0.743 0/0 108 x 174 9 11 | 1.53+ 0.25/1.03+ 0.19 | 10.3+ 0.33
AS6461 | 17 | 37 | 0919 | 2213x2176| 2| 2 | 0882 | 32 32x97 | 4| 4| 1984025118+ 0.18 | 4.6+03
Abilene 12 | 15 0.56 767 x 726 6 6 0.56 171 44 x 50 7 8 1.354+ 0.1/1.26+ 0.18 | 8.19+ 0.17
Italy 33 | 56 | 0.784 | 17116 x 16896| 12 | 13 | 0.784 | 0/0 | 228x472 | 17 | 20 | 1.82+ 0.27/1.14+ 0.2 | 17.4+ 0.42
Germany | 17 | 25 | 0.695 2257 x 2176 5 5 | 0.695 0/0 83 x 111 9 12 0.6 + 0.16/0.36+ 0.11 | 10.7 £ 0.28
NSF 26 | 43| 086 | 8275x8125| 9| 10| 086 | 00 | 91x282| 11 | 12 | 1.24+ 0.2/0.88+ 0.17 | 12.6+ 0.34
AT&T 22 | 38 | 0.823 5023 x 4851 5 6 | 0.823 0/0 82x193 | 10 13 | 2.21+ 0.25/1.574+ 0.21 | 10.2+ 0.35
Germ 50 | 50 | 88 | 0.801 | 60362 x 60025| 21 | 22 | 0.92 | 0/0 | 194x 1137 | 18 | 21 | 152+ 0.2/1.28+ 0.2 | 26.1+ 0.49
11— AS1221 We showed worst case graphs for LFA and we gave conditions
AS1239 --x- for full coverage, characterizing numerous important roekw
s AS1755 :--4--: topologies. As many real-world networks do not have 100%
S AS3257 T LFA coverage, we formulated the LFA graph extension prob-
§ AS3967 —-m- lem to augment graphs with new links for higher coverage.
g AS6461 ---o--+ This problem proved NP-hard, but efficiently approximable
3 Germany + -@--i in practice. Our numerical results suggest that there areso
2 ltaly i—-4-—i cases when only a minor topology upgrade is enough for 100%
L NSF —a— LFA coverage, but in most cases significantly more new links
Abilene —— are needed. On the other hand, we found that only 2-4 links can
AT&T --4-- pring most networks close to full coverage, and this might be
0.7 ‘ ‘

#links added 4

Figure 3: LFA coverage in subsequent iterations of the gree

algorithm in graphs with random costs.

results are given in the last columns of Table I. In addition,

the procession of the greedy algorithm is highlighted in Big
Results displayed are the mean values and the confide
intervals near 95% significance. The results indicate (Hat

the preprocessing phase is necessary, but in most of the case
it only touches at most 1-3 shortest paths and adds about [#
2 links; (ii) some topologies readily lend themselves to LFA

extension (in particular, AS1221 and AS646()i) the first

iteration attains a significant 5-12% improvement in the LFA

coverage, while subsequent iterations gradually attais; kend

(iv) the greedy algorithm usually realizes about 95% LFA

failure coverage by adding no more than 2-4 new links.

VI. CONCLUSIONS

an acceptable price to many operators for being able to henefi
from cheap IP-level protection by deploying LFA. For thetres

%ﬂternative protection schemes might be more attractidé [2
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APPENDIX

set cover

a nondeterministic algorithm needs to guess the set of edges
F with |F| <[ and a polynomial time algorithm can verify
if every edge is part of a triangle. To prove that minTR is
indeed NP-hard, we (Karp-)reduce it to minSC: given a minSC
instance with a bipartite grapi’(AU B, C') and an integek,

our task is to define an input gragh(V, E') for minTR that

is solvable with at mosk edges, if and only if the minSC
instance is solvable with at mostnodes.

ConstructG(V, E) as follows: letV = A; U A, UBU {s},
|V| = 2|A| + |B| + 1. Denote the nodes Y by a} € A,

a? € A, b; € B ands, respectively, wherée=1,...,|A| and
j=1,...,|B|. Additionally, let E = E; U E> U E3 where:
FEy: (a%,bj) and (a?,bj) if (Cbi,bj) eC,

Ey: (s,al) and(s,a?) fori=1,...,|A|,

Es: (bj,by) forall j=1,...,|B|,l=1,...,|B] andj # .

A minSC instance and its transformation are given in Fig. 4.

We say that an edge is protected if it is part of a triangle,
unprotected otherwise. We make the following observations
edges inE; are protected because of assumptidnsimilarly
edges inF5 are also protected because(f, while edges in
E5 are all unprotected. The idea is that in order to protect all
edges inE, we need to adds,b;) : b; € B edges, called
cover edgeshenceforth. Each sucts,b;) cover edge, when
added, protects thes, a}l), (s,a?) € E2 edges for alla; € A
nodes adjacent tb; in G'. Thus, we get a minimal cover of
G’ exactly when all edges i, become protected.

To conclude the proof we need to show tfeXif G’ can be
covered withk nodes fromB, then we can identifyc edges to
be added td@~ so that every edge becomes protected; (@ df
k edges are added t@ so that every edge becomes protected,
then we can identify & node subset o3 that covers every
node in A.

(a) Let B¢ C B be a cover inG’ with |B¢| < k. Add edges
(s,b;) : Vb, € B€ to E. Then, sinceB¢ is adjacent to every
node inA; and A; (due to it being a cover), every edgeiin
becomes protected. This is because, the edges’) € E-,
(a?,b;) € E; and (s,b;) make up a triangle; where? is
adjacent top; andx = 1, 2.

(b) Suppose that there is a set of cover edf§ésuch that
F’' = (s,b;) :b; € B C BandB’ is adjacent to every node in

problem A; and A,. Then, by the above reasonin, can be converted

(minSC):Given a bipartite grapli’ (AU B, C) and a positive to a set cover. LeF’ € E be a set of edges which, when added
integer k, is there a set of nodeB° C B with |B¢| < k,
such that every node id has a neighbor iB¢?

to G, protect all edges. First, we add all cover edged'ab
F’. Now, suppose that some edgesHnare not cover edges.
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Figure 5: The converted graph topology and link costs. Ray.depicts the graph and Fig. (b), (c) and (d) give the shiortes
paths and distances with different choices of the destinati

F does not contain edges of the forfh;,b;) : b;,b; € B B°} of sufficiently large cost. We discuss the LFA coverage
and (s,a?) : af € A; U Ay, since these all exist it?. Edges for different destinations separately.

(a7,b;) - af € A1 U Ay, b; € B can be dropped fronf”, as 1. d = s: As one easily checks in Fig. 5b, each node has
these do not protect any unprotected edge. What remains aneLFA towards destination. Nodes in A provide LFA for
edges of the typéaf, a?) : af,a? € A;UA,. Call thesecross each other as they are not ordered in #hgoset andA| > 2
edges Furthermore, call a node? € A; U A, protected if by assumptioriii) . Using (ii), one easily shows that nodes in
the edge(s, a?) is protected. We shall convert cross edges tB also provide LFA for each other.

cover edges before adding 1d. Clearly, we need to consider 2. d € A: All nodes in A\ {d} have an LFA towardsl,
only those cross edges where bathe A; anda? € A, are since they are not ordered in tleposet and A| > 2 due to
protected by a cross edge, otherwise a cover ed@® already (iii) (see Fig. 5c¢). Similarly, each € B has an LFA from
covers bothu; anda?. Let 4] C A; and the “opposite nodes” some other node iB. This leaves us with the single node
Al C A, be the set of these nodes. Since one cross edge eathat does not have an LFA té. This is because all of its
protect at most two nodes, there are at léa§t cross edges neighbors are i, butd is its next-hop so it can not be used
protecting A} and A}, and these are trivially substituted byas an LFA and all other nodes iA are its children. Nodes
exactly| A} | cover edges: for each} € A} choose a neighbor not connected tal can not provide an LFA ta either, since

b; € B and add the cover edds, b;) to F’. This will protect these are all its descendants. What remains are the neighbors
a? € A} too. Finally, all nodesB’ are adjacent to every nodeof d. So, we have to add an edge b;) for some(d, b;) € C

in A, and A,, which completes the proof. ® with sufficiently large cost to protect edge, d).

Proof of Theorem 7: minLFAw is in NP, since it was 3. d € B: First, eachb € B is protected due tdii).
formulated as an ILP in Section IV-B. To prove that it is NPSecond, eacla € A that is a neighbor ofl is protected by
hard, we again reduce it to minSC (see Definition 5): givesome neighbob € B\ {d}. Such neighbor exists due 9.

a minSC instance with a bipartite graglf(A U B,C) and Similarly, eacha € A that is not a neighbor of is protected
an integerk, our task is to define an input gragh(V, E) for by some neighbob € B\ {d}, which again exists due t().
minLFAw, so that minLFAw is solvable by adding at mdst Again, nodes remains without an LFA tel. However, at this
edges if and only if minSC is solvable with at mdshodes. point there already is at least one edgeb;) : b; € B that
Let us construcG(V, E) as follows:V = AUBU{s} and we added previously to have an LFA frognto somea € A.

F = FE, U FE>,U FE3U E, where This will serve as an LFA fors to d in this case too. Note
Ey: (s,a;) with cost1 for eachi = 1,...,|A], that it is guaranteed bfii) that at least one sudfs, b;) edge
Es: (a;,b;) with cost2 for each(a;, b;) € C, must have been added, and it is enough to have just a single
Es: (bj, b)) with cost3 forall j =1,...,|B|, l=1,...,|B] edge froms to B to have an LFA for eacld € B.
andj # I, In summary, in order to have an LFA fromto all nodes
Ey: (a;,a;) with costd foralli =1,...,|A[, j =1,...,|A] in A, we need to add edges fromto some nodes3° C B.
andi # j. Observe thaf3¢ is adjacent to every node iA, otherwise, we

éi@ not have LFA available from to some of the nodes id.
So B¢ is a cover exactly when we have perfect LFA coverage,
which completes the proof. [ ]

Fig. 5a shows the converted graph for the same min
instance we used in the previous proof (see Fig. 4a).

The idea here is that we embéd into G and, by carefully
choosing the edge costs, we ensure that achieving perféct LF
coverage inG precisely solves the minSC instance Gf.
More formally, we show that somB< C B is a cover, if and
only if n(G,VUF) = 1 for some set of edges : {(s,b) : b €



