Demand-oblivious routing: distributed vs. centralized approaches

Gábor Rétvári and Gábor Németh

{retvari, nemethgab}@tmit.bme.hu

High Speed Networks Laboratory Department of Telecommunications and Media Informatics Budapest University of Technology and Economics Budapest, HUNGARY

Introduction

Routing optimization is hard without a good traffic matrix

Rate-adaptive routing: adapt routing to the actual demands

Build on demand-oblivious routing and play out the "distributed-centralized" trade-off

Our main tool: network geometry

Associate geometric objects with capacitated networks Infer interesting properties

The flow polytope

The set of legitimate routings

More precisely, the set of path-flows u the network can accommodate, subject to link capacities

The throughput polytope

The set of admissible traffic matrices

More precisely, the set of aggregate flows θ realizable in the network, subject to link capacities

Scaling the link capacities equals scalar multiplying the corresponding polytopes

Rate-adaptive routing

Adjust path flows according to actual user demands A routing function tells how to map a traffic matrix to path-flows

$$u = \mathcal{S}(\theta)$$

We only treat affine routing functions

$$u = F\theta + g$$

where F is a matrix and g is a constant transposition

For the *k*th user: $u_k = S_k(\theta) = F_k\theta + g_k$

Already broad enough to describe single path routing, ECMP, oblivious routing, and many more

Adaptive routing: distributed model

The flow sent to a path depends on local information exclusively

 $\mathcal S$ is distributed if $\frac{\partial \mathcal S_k}{\partial \theta_l}=0$ wherever $k\neq l$

Demand-oblivious routing

Use the same set of traffic splitting ratios without respect to the traffic matrix

Choose the one that minimizes the link over-utilization experienced over any admissible traffic matrix

$$\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & 0 \\ \frac{2}{3} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Distributed and semi-static, so reasonably scalable

The problem with oblivious routing

An oblivious routing function might order infeasible routing to some admissible traffic matrices

A geometric interpretation

Scale the flow polytope M up until it eventually contains all the possible path flows S(T)

 $\min \alpha : \mathcal{S}(T) \subseteq \alpha M$

Adaptive routing: centralized model

Let the routing function depend on global information

$$\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} + \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

Compound routing functions

Associate different routings to different regions of the throughput polytope: $S = \{(R^i, S^i) : i \in \mathcal{I}\}$

 $R_{1}: \text{if } \theta_{1} + \theta_{2} \leq 1 \text{ then } R_{2}: \text{if } \theta_{1} + \theta_{2} \geq 1 \text{ then}$ $\begin{pmatrix} u_{1} \\ u_{2} \\ u_{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \theta_{1} \\ \theta_{2} \end{pmatrix} \begin{pmatrix} u_{1} \\ u_{2} \\ u_{3} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \theta_{1} \\ \theta_{2} \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$

Compound, centralized routing functions

Theorem: for any network, there is a continuous, compound, centralized affine routing function that can route any admissible traffic matrix without link over-utilization

Distributed: Simple Scalable But inefficient Centralized: Stable Feasible Optimizable Not quite scalable

Scalability of centralized adaptive routing

The number of regions and routing functions needed for optimal adaptive routing usually increases exponentially with the complexity of the network

Hybrid centralized-distributed model

The central controller computes $S = \{(R^i, S^i) : i \in \mathcal{I}\}$, where individual routing functions S^i are distributed Observes the actual traffic matrix θ , chooses the region $\theta \in R_i$ and downloads the corresponding S^i to the routers

Hybrid oblivious routing algorithm

```
HYBRID_OBLIVIOUS_ROUTING(T)
function HYBRID_OBLIVIOUS_ROUTING(X)
   Compute an oblivious routing function \mathcal{S} for X
   if \alpha falls beyond some configured limit then
        store S and return
    end if
    (k, t_k) \leftarrow \mathsf{BEST\_CUT}(X)
   HYBRID_OBLIVIOUS_ROUTING(X \cap T \cap \{\theta : \theta_k \leq t_k\})
   HYBRID_OBLIVIOUS_ROUTING(X \cap T \cap \{\theta : \theta_k \ge t_k\})
end function
```

Hybrid oblivious routing algorithm

$$R_{1}: \begin{pmatrix} u_{1} \\ u_{2} \\ u_{3} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \theta_{1} \\ \theta_{2} \end{pmatrix}^{-1} \xrightarrow{1}_{1} \begin{pmatrix} \theta_{2} \\ R_{1} \\ R_{2} \end{pmatrix} \xrightarrow{1}_{1} \begin{pmatrix} R_{2} \\ R_{2} \\ R_{2} \end{pmatrix} \xrightarrow{1}_{1} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \xrightarrow{1}_{1} \begin{pmatrix} \theta_{1} \\ \theta_{2} \end{pmatrix} \xrightarrow{1}_{1} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

Only a few cuts can make a difference

The oblivious ratio steadily improves as we add more cuts

Conclusions

Rate-adaptive routing: discover the distributedcentralized spectrum

Demand-oblivious routing is scalable but inefficient

We presented the first ever optimal rate-adaptive routing algorithm

- provably feasible, stable and optimizable
- heavily centralized, so hard to implement
- scales poorly

The hybrid distributed-centralized scheme seems to unify the advantages of the two