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{retvari, nemethgab}@tmit.bme.hu

High Speed Networks Laboratory

Department of Telecommunications and Media Informatics

Budapest University of Technology and Economics

Budapest, HUNGARY

– p. 1



Introduction

Routing optimization is hard without a good traffic
matrix

Rate-adaptive routing: adapt routing to the actual
demands

Build on demand-oblivious routing and play out the
“distributed-centralized” trade-off

Our main tool: network geometry
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Network geometry

Associate geometric objects with capacitated networks

Infer interesting properties
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The flow polytope

The set of legitimate routings

More precisely, the set of path-flows u the network can
accommodate, subject to link capacities
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The throughput polytope

The set of admissible traffic matrices

More precisely, the set of aggregate flows θ realizable
in the network, subject to link capacities
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Capacity scaling

Scaling the link capacities equals scalar multiplying the
corresponding polytopes
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Rate-adaptive routing

Adjust path flows according to actual user demands

A routing function tells how to map a traffic matrix to
path-flows

u = S(θ)

We only treat affine routing functions

u = Fθ + g

where F is a matrix and g is a constant transposition

For the kth user: uk = Sk(θ) = Fkθ + gk

Already broad enough to describe single path routing,
ECMP, oblivious routing, and many more
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Adaptive routing: distributed model

The flow sent to a path depends on local information
exclusively
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Demand-oblivious routing

Use the same set of traffic splitting ratios without
respect to the traffic matrix

Choose the one that minimizes the link over-utilization
experienced over any admissible traffic matrix
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Distributed and semi-static, so reasonably scalable
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The problem with oblivious routing

An oblivious routing function might order infeasible
routing to some admissible traffic matrices
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A geometric interpretation

Scale the flow polytope M up until it eventually
contains all the possible path flows S(T )

min α : S(T ) ⊆ αM
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Adaptive routing: centralized model

Let the routing function depend on global information
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Compound routing functions

Associate different routings to different regions of the
throughput polytope: S = {(Ri,Si) : i ∈ I}
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Compound, centralized routing functions

Theorem: for any network, there is a continuous,
compound, centralized affine routing function that can
route any admissible traffic matrix without link
over-utilization

Distributed:

Simple

Scalable

But inefficient

Centralized:

Stable

Feasible

Optimizable

Not quite scalable
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Scalability of centralized adaptive routing

The number of regions and routing functions needed
for optimal adaptive routing usually increases
exponentially with the complexity of the network
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Hybrid centralized-distributed model

The central controller computes S = {(Ri,Si) : i ∈ I},
where individual routing functions Si are distributed

Observes the actual traffic matrix θ, chooses the region
θ ∈ Ri and downloads the corresponding Si to the
routers
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Hybrid oblivious routing algorithm

HYBRID_OBLIVIOUS_ROUTING(T )
function HYBRID_OBLIVIOUS_ROUTING(X)

Compute an oblivious routing function S for X

if α falls beyond some configured limit then
store S and return

end if
(k, tk)←BEST_CUT(X)
HYBRID_OBLIVIOUS_ROUTING(X∩T∩{θ : θk ≤ tk})
HYBRID_OBLIVIOUS_ROUTING(X∩T∩{θ : θk ≥ tk})

end function
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Hybrid oblivious routing algorithm
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Only a few cuts can make a difference

The oblivious ratio steadily improves as we add more
cuts
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Conclusions

Rate-adaptive routing: discover the distributed-
centralized spectrum

Demand-oblivious routing is scalable but inefficient

We presented the first ever optimal rate-adaptive
routing algorithm
– provably feasible, stable and optimizable
– heavily centralized, so hard to implement
– scales poorly

The hybrid distributed-centralized scheme seems to
unify the advantages of the two
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