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Abstract—Until recent years, it was more or less undisputed

traffic engineering [4]-[9], or to straight out eliminatg10]—

common-sense that an accurate view on traffic demands is [17]. A promising approach is to design a single routing

indispensable for optimizing the flow of traffic through a net-
work. Lately, this premise has been questioned sharply: it was
shown that setting just a single routing, the so called demand-
oblivious routing, is sufficient to accommodate any admissible
traffic matrix in the network with moderate link overload, so
no prior information on demands is absolutely necessary for
efficient traffic engineering. Demand-oblivious routing lends itself
to distributed implementations, so it scales well. In this paper, we
generalize demand-oblivious routing in a new way: we show that,
in contrast to the distributed case, centralized demand-oblivious
routing can eliminate link overload completely. What is more, our
centralized scheme allows for optimizing the routes with respect
to arbitrary linear or quadratic objective function. We realize,
however, that a centralized scheme can become prohibitively
complex, therefore, we propose a hybrid distributed-centralized
algorithm, which, according to our simulations, strikes a good
balance between efficiency, scalability and complexity.

Index Terms—traffic engineering, adaptive routing, demand-
oblivious routing, convex geometry

I. INTRODUCTION

that is suitable for handling not just one, but multiple ficaf
matrices [5], [6] or, at the extremeall legitimate traffic
matrices at the same time [18]-[28]. Using sucldemand-
oblivious routingalgorithm eliminates the need to constantly
re-calculate and re-deploy routing with the change of user
demands.

Demand-oblivious routing lends itself to distributed irpl
mentations, because the amount of traffic sent to a forward-
ing path by a router only depends on information available
locally at that router. This ensures simplicity and scditybi
Moreover, simulation studies show that it can be unexpécted
efficient in the face of changing demands. Unfortunatelyy-ho
ever, no theoretical upper bound exists on the capacity- over
subscription, and hence, the congestion it might cause [20]

In this paper, we question the need for distributedness,
at least in an intra-domain, unicast setting. A commercial
network of our days is usually operated under the authority
of a sophisticated central network management system (like

It is critical for a business-oriented service provider tgjp Openview or IBM Tivoli) that make available all the
constantly monitor, analyze and optimize the manner tréffic necessary monitoring and routing information, plus tested
conveyed through its network in order to deliver the reqlirecommunications substrate, to deploy a centralized adaptiv
service to customers, to avoid congestion that might caugiting algorithm. We show that centralized demand-obiisi

disruptions, and to realize the largest profit margin astalie
with the given network infrastructure. The art and sciente
satisfying these diverse requirements simultaneouslalied

routing provides stability, hard QoS guarantees, optityilitg
With respect to arbitrary linear or quadratic objectivediion
and, in contrast to the distributed case, absolutely nodirée-

Internet Traffic Engineering [1]. Given that user demandgpscription at all no matter how the users vary their demmand
today are highly variable, one of the most important ingret turns out, however, that due to theoretical reasons aaent
dients of traffic engineering is an adaptive routing techaiq jzed scheme scales poorly. Therefore, we also propose alhybr
that maps these permanently and unpredictably changing uggtributed-centralized routing algorithm, implemenéatyith

demands to the physical network infrastructure effecfivel

minimal central control, that combines the benefits of the tw

Historically, forwarding paths were optimized with respecapproaches for the price of sacrificing optimizability.
to some measured and/or expected traffic matrix (if optichize The rest of the paper is organized as follows. The next sec-
at all) and over-provisioning of network capacity ensuregbon is devoted to build a completely new geometric framewor
that no congestion showed up when reality did not matghr demand-oblivious routing. The intention is to simplify

expectations [2], [3]. This static routing strategy, hoems\has

the treatment and make the mathematical underpinnings more

become more and more troublesome to operators recentlyagproachable. The notation, therefore, differs somewroat f
networks are beginning to face a more dynamically changifgat of the literature. Our framework allows us to genegaliz
environment. In consequence, various proposals havecsarfathe notion of oblivious routing in novel ways: we describe
to reduce the significance of traffic matrices in intra-damaine centralized case in Section Il and a hybrid scheme in
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Section IV. Simulation results are discussed in Section V,
related work is assessed in Section VI and finally, Sectidn VI
concludes the paper.



[I. A GEOMETRIC FRAMEWORK FOR ADAPTIVE ROUTING Table |- Notations
We need some basic terms and definitions from convexG(V, E) | a directed graph, with the set of nodes(|V| = n)

geometry [29], [30]. ApolyhedronP is an intersection of and the set of directed edgés (|E| = m)

finitely many half-spacesP = {z : Az < b} C R" c the columnm-vector of edge capacities

where 4 is anm x n matrix andb is a columnm-vector. | (sk,di) | the set of source-destination pairs (or users)fer

A bounded polyhedron is called polytope A mapping K={1,.... K} )

T : R" — R™ is called anaffine transformatiorif it takes | % the set ofsy — di, paths assigned to somec K
P the number of paths for usés, py = |Py|

the form:7 : y = Cxz + d whereC is anm x n matrix and
d is a columnm-vector. The affine transformation of a s&t | P number of all pathsp =3, ¢ c px _
through7 is defined asT (X) = {Cz +d : z € X}. Affine P anm x py matrix. The column corresponding to path

transformations/” have the following properties: P € P holds the path-arc incidence vector Bf
9 prop ’ up scalar, describing the traffic routed at pdth

« z € X implies 7 (x) € T(X) U a column-vector, whose components are : P €
o consequentlyX C Y implies7(X) C 7(Y) Py, for somek € K (whether we meanu;, or u,
« an affine transformation of a polytope is again a polytope. will always be clear from the context)
The special affine transformation= az,z € X,R > a > 0 u a column vector representing a particular choice| of

upS (a “routing”)

Bek the demand/throughput of some ugee K
a columnK-vector representing a particular combi
nation of throughputs (a “traffic matrix”)
flow polytope, the set of path flows corresponding|to
‘P, subject to non-negativity and capacity constraints

is called thescalar multiple ofX, denoted by X .

In our framework, each user is provisioned a set of pat
and the task of routing is to assign path flows for the userd
in accordance with the actual user demands and the capa:i%
of network links. More precisely, suppose we are given the

network topology as a directed graph{V; £) and a vector of | 1. throughput polytope, the set of throughputs realiz-
positive, finite link capacities = [¢;; > 0: (i,7) € E] (see able overP, subject to capacity constraints

Table | for a summary on notations). Each user is associateg a routing functionS : RX — R?

with a unique source-destination pdis,,di) : £ € K and | s, the routing function corresponding fo € K, Sk :
supplied with a set of static patfi®,. Additionally, each user R¥ — RPx

k independently presents its momentary demd&pdat the

source nodesg, and it is the task of the adaptive routing

algorithm to vary the flows along the individual paths sélere, @ is a K x p matrix. The elements ikth row of @
that user traffic is conveyed from the source nodes to thee all 1 at position ,_, p; +1,...,> ., » and all zero
destination nodes without disruptions. In other words, thmherwise. Mapping the flow polytop® through7 gives the
routing algorithm adjusts the path flows> : P € P,k € K throughput polytop&” [31]:

with respect to the actual traffic matrig, : k£ € K] in a way T 0=Qu X
as to avoid, or at least to minimize, link oversubscriptian. R? > M TCR™.

routing is, consequently, represented by a vector of patysflo Accordingly, the throughput polytope contains all theftcaf

u=[ug:ke€K] R XRP2 x... xR =RP, wherepr  matrices realizable in the network by some properly chosen
is the number of paths for andp is the number of all paths. gt4tic routing without violating link capacities:

In geometric terms, a routing: is a point in thep-
dimensional Euclidean spad®® and the requirement that it T'={0:3ue M so thatQu = 0} .
does not violate link capacities is equal to saying thas

) . X ) Consequently, we call € T admissible As is the case
included in theflow polytopeM embedded into this space:

with the flow polytope, multiplying the capacity vector by

M= {u: Z Pouy < ¢, u >0} C RP. some positive real equals, in geometric terms, multiplytimg
polytopeT with the same scalar. Unfortunately, computifig

for arbitrary networks is a difficult problem, already irgtable

for moderate sized networks [31]. Thus, we shall use it only

for theoretical modeling purposes.

keK

M contains all admissible routings, subject to link capasiti
and non-negativity constraints. In the sequel, we sha#roft
use the following consequence of the above definitiond/if . :
is the flow polytope for a network characterized by the Iin]ﬁ1 The two geometrical objects, the flow polytope and the

o . throughput polytope, will be central to our framework for
capac!t!esc, then the flow polytope OT .the network whpse l'nkdemand-oblivious routing. A sample network and the corre-
capacities were scaled by somepositive scalar taxc is the

scalar multiple ofM, M. sponding polytopes are depicted in Fig. 1.

. : . The other central objects in our framework ai@uting
m. D K
Con_5|der the affine transformatigh : R i R. that f_rom functions Remember that the fundamental problem in adaptive
a routingu generates the corresponding traffic matfixoy

summing up the path flows for each particular path of a us routing is to adjust routing to the momentary traffic matrix.
eIrherefore, one can represent a broad class of adaptivengouti
0 ="T(u)=[0 = Z up: k€Kl =Qu. algorithms as a routing functia$i that maps from the through-
Pepy, put space to the flow spac§:: R¥ — RP. Given some traffic



s1,d1) = (3,
@ "2 ‘@ E82,d2§=8g

(b) users
Pr={(3,4)}
@ P2:{(372)1(274)} u t t =6
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Figure 1: A sample network, source-destination pairs, atetaths for each user and the corresponding flow and thraughp
polytopes. Edge capacities all equal 1 unit.

matrix 6, the corresponding routing is obtained by applyig  Definition 1: The domainD(S) for somesS describes the
to 0: u = S(9). set of traffic matrices that can be accommodated in the n&twor

Note, however, that one can not set arbitrary routing funby S without causing link oversubscription:
tions. In particular, given a traffic matri& the corresponding . K
routing S(6) must realize precisely thi§. In other words, D(S)=1{0:5(6) e M} CR™ .
every § is a fix point of the round-trip from the throughputFor an affine routing functios, the domain is a polytope:
space to the flow space and batkr¢ughput invariance

D(S)={0: Y Pu(Fub+gr) <c, FO+g>0}.

Vo eRE . T(S0) =6 . Pt

In the simplest case, common to many networks of our daySonsidering the sample network depicted in Fig. 1, a passibl
each user is assigned a single path (e.g., the shortest pdibjributed adaptive routing might be to split the trafficuser
and all traffic is routed to that path regardless of whethisr thl evenly between the two pati#s and P, and route all traffic
causes congestion or not. In such cases, the compdhenit of user 2 along its only available path. This setting coroesis
S corresponding to some uskiis given asu, = Si(8) = 6.  to the distributed linear routing functio; :

In order to balance network load, traffic may be split 1
between multiple paths. In this casé&, takes the form b ? 0 01 0
ur = fr0r where fi is a column vector of sizep;. To 2 0 (92) +10
respect throughput invariance, elementsfefmust sum up U3 ! 0
to 1:Vk € K : 17 f, =1 (here,17 is a row vector of all 1s). However, this routing would mistreat certain traffic magsc

These routing functions are all implementable in a di§he traffic matrix¢ = [1,1]7, although clearly admissible,
tributed fashion, as the flow sent to a path at a source nooleerloads link(2, 4) when fed intaS; . In fact, anyé for which
only depends on local information. We call a routing funetiod; + 26, > 2 causes overload at that link, which sets the
distributed if %—‘3;“ = 0 if k # [, wherever the derivative is domain ofS; as:
defined.

In order to improve efficiency, one may allow the routing D(S1)=10:01+20, <2, 6 >0}
function to depend on global information as well. An imThe question arises how to route the traffic matrices thét fal
portant case of suchentralizedrouting functions is whe  outside of the domain af;. It turns out that one can not do
takes the form of an affine transformatiafi(f) = F'6 + g this using only distributed linear routing functions (n¢tet it
(component-wise we haws,(0) = Fi0 + gi), whereF" (Fi,)  certainlycan be done with other types of distributed adaptive
is ap x K (pr x K) matrix andg (gx) is a column vector of routing schemes [12], [13]). A way to avoid overloading link
sizep (px). SuchS are calledsimple affine routing functions (2, 4) would be to concert traffic splitting ratios between the

o

Throughput invariance implies: two users. Consider the centralized affine routing funcsion
1 ifk=1 u 1 1 -1
17 Fy = 64 = , 1Tge=0, : 0
wE K {0 otherwise Ik ug | =10 -1 91 +| 1
us 0 1 2 0

whereF},; denotes théth column of F},.. Note that distributed

routings discussed above can also be treated as affine goutifie domain ofS, turns out to be

fgnctions b'y' restrictingF’ to'block-c'iiagonal r.natrices..Ad— D(So)={0:1<01+0,<2, 0<0<1},

ditionally, fixing g at zero yields dinear routing function

(corresponding to traffic splitting ratios), while lettingto which covers the entire regidfii \ D(S;) as required.

differ from zero yields araffine distributedrouting function. It is tempting to combing; andS: into a singlecompound
An important concept related to routing functions is theouting function which then would be suitable to accom-

domain modate any admissible traffic matrik € T with causing



no link overload at all. To do this, we associate different Direction (2)=(1): 27 C D(S) =T C aD(S) = S(T) C
routing functions to different regions of the throughpuaegp, S(aD(S)) 0eD(S5) aS(D(S)) C aM by Definition 1. -
so S takes the formS = {(R!,S?) : i € I} where R's .

: - . t the th h If the demand-oblivious routing is searched for in the
give a disjunct partition of the throughput space, and W&y, of 5 simple, distributed affine routing function, théret
setu = S'(0) wheneverd € R'. Easily, the domain of

. optimization problem (1) can be stated as a linear program

af c_ompoungj routing funct|ort1) IS tEe urs]lon of the d?_ma'néf polynomial size [18]. Note that [18] considers the arc-
of its members. Care must be taken, however, to eliming{§, tormylation, but the conversion to path-flow (and vice
overlapping regions in order to maintain unambiguity of thg, o4y s trivial [22]. The resultant traffic splitting rasi can

cpmpound routing function. In our example, we may Ch_oo%ee configured statically at the source nodes, so this scheme
enhers_l or S, 10 coverD(sh) M D(SQ)’_bUt not both. 1tis gcaies well. What is more, it proves surprisingly efficient:
convenient to Se_Rl fo the entire domain 0;81 and I?tRQ . simulations on real-world and artificial ISP topologies who
be 7"\ D(S,). This way the compound routing function will y, . the oplivious ratio almost always remains under 2, ihat

be continuous over the entire domain, which prevents rgutify .oy causes more than 100% link oversubscription [18].
from gxh|b|t|ng drastic flugtuatlons. ) . Nonetheless, it has also been pointed out that in certain

Wh'le one could certalnly_ go on and generalize routingiected networks the oblivious ratio grows without limiigh

functions further (e.g., consider parameters other thair o jncrease of the network size and user population [20].

allow nonlinear functions, see 9. [1.2]’ [13])_|n order 1o Distributed demand-oblivious routing is scalable but it is
capture a broader range of adaptive routing algorithms fom Snot efficient enough for practical purposes. It is temptiag t
herg. Infthe n_ext sectloln, V\:je shall show t?at ?;.:?mpour?‘?' af-f'irf'ﬁestigate what we find at the other end of the distributed-
rc:jutm.g. unctlonb.can alrea é’ guarzntee dea3| ollity, ;mlxmty ' centralized spectrum. We have seen in the previous sebiain t
adaptivity to arbitrary user demands, and optimizability. i 5ne allows for compound routing functions that depend on
I1l. DISTRIBUTED AND CENTRALIZED global information, then, at least in our sample case, livdro
DEMAND-OBLIVIOUS ROUTING utilization could be avoided. And indeed, the following uks
states that a centralized affine routing function alwaystexi
¥hat, in contrast to distributed schemes, guaranteesbhieasi
routing for any admissible traffic matrix.
mina : S(T) C aM . (1) Theorem 1:For any network, there is a compound affine
S routing functionS = {(R’,S%) : i € T} with Z finite so that
The minimal scalarx solving (1) is called theoblivious D(S) =T andS is continuous ovef'.
ratio and the corresponding routing function is caltemand- Proof: Let f(u,#) be some linear or quadratic objective
oblivious routing The interpretation of the optimization prob-function and consider the multiparametric program
lem (1) is as follows. The se(7T) represents all the routings

In the literature, a demand-oblivious routing is usuall
associated with the following optimization problem:

one can get when applyin§ to the set of admissible traffic z(0) = min f(u,0)
matricesT, and we want thisS(T") to fit into the set of Y okex Prur <c
feasible routingsM as much as possible. The objective is, 1T, = 6, VE € K

consequently, to minimize the factor needed to up-scale the
flow polytope so that it eventually contains the entire set

S(T). Recalling thataM corresponds to the flow polytopeThis is basically a conventional multicommodity flow prob-
of a network whose capacity is adjustedde brings us t0 |em, though, the right-hand-side now depends on the input

the interpretationz signifies the maximal link over-utilization yarametep. It then follows from [32] that the solution can be
caused when routingny admissible traffic matrix ove$. This \yritten as a continuous, piecewise affine functiorfof

also implies thaty > 1. _ _ _
Lemma 1:The optimization problem (1) can be posed u = F'0 + ¢* wheneverd € R" ,
equivalently using the notion of domains:

u>0

where the regiongt® are disjunct (apart from the boundaries)
min « lT cD(S) . (2) Polyhedral sets that give a polyhedral partition7af u
S o For a more in-depth exposition of this result, consult [33].
In the alternative definition, the oblivious ratiois interpreted  The significance of this theorem is that, theoretically, no
as follows: given an admissible traffic matrtk € T and prior information on traffic matrices is necessary to design
a routing that solves (2), at Iea%w is guaranteed to be demand-oblivious routing function that guarantees felityib
routable without violating link capacities. Consequentlye One solves a multiparametric linear or quadratic program,
optimization problem (2) calls for finding a routing whosevhich, although computationally quite involving, is viabl
domain contains the largest portion of the set of admissiltleanks to recent advances in geometric multiparametrie pro
traffic matrices. gramming algorithms [32], [34]. This phase can be done
Proof: Direction (1)=(2): S(T) C aM = éS(T) 05T offline. The result is a set of polyhedral regions and affine
S(AT)C M = 1T C D(S) by Definition 1. functions. In operation, a central controller periodigaitans

1
a



the network, reads the momentary traffic demafidsolves is chosen to be orthogonal to one of the axes, which makes

a series of polyhedron inclusion problems to finde Z it possible to construct a binary decision tree facilitgtfiast

so thatf € R’ and setsu = F'0 + g'. An additional online search [35]. Next, the algorithm proceeds by reagrsi

benefit is that centralized demand-oblivious routing aflowinto the subregions. We decided to fall back upon to disteitu

for optimizing the routing function through specifying therouting functions inside the regions, so our scheme willinegy

objective f(u, §). Both linear and quadratic objective functionsninimal central control, only to lookup the right region bds

are permitted. Plausible objectives would be to minimizZeyle on the actual demands.

or to minimize the maximum link utilization. In the rest of the section, we develop the tools needed
The advantages of centralized demand-oblivious routiig build our hybrid algorithm, describe it in detail and then

are guaranteed feasibility and optimizability. The dowlesi discuss its advantages and disadvantages.

IS that it can pecome arbitrarily complex: unfortunatgly*reh A, Demand-oblivious routing over an arbitrary region

is no polynomial upper bound on the number of regions and o ) . )

individual simple routing functions needed to coerAnd, as SO far, the oblivious ratio has been defined with respect

simulation results confirm (see Section V), the size of tidein 0 the throughput sef’. Our algorithm will need to find it

setZ quickly grows out of control. Whef exceeds abouit)?, with respect to arbitrary regions, not just so first we extend

centralized demand-oblivious routing becomes imprakctisa the concept adequately and then we show how to solve the

the controller spends most of its time solving polyhedron if€sultant optimization problem. _ _

clusion problems trying to figure out which individual rongi KDef|n|t|on_2_: Given an arbitrary set of traffic matrices C

function to apply. Storage requirements too can become &n + the oblivious ratiax(X) with respect toX is defined as

issue. Finally, centralized operations itself could bensag the optimal solution of the optimization problem:

disadvantageous by some: such a scheme necessitates-collec o(X) =mina : S(X) C oM . (3)

ing all the network topology and link capacity information, s

plus the instantaneous user demands, at a central place. Noge thata(X) is equivalent to the conventional notion of

fact that many of today’s provider or enterprise networkes apblivious ratio whenX = T'. In other casesy(X) depends

operated using some central network management software,X: it may be smaller than 1 wheX C T, it may be

which makes the required information readily availablehwitunbounded ifX is unbounded, or it might not be defined at

no additional effort, mitigates this issue somewhat. allif X ¢ RE. Further note that Lemma 1 does not generalize
to arbitrary regions.
IV. A HYBRID APPROACH Below, we extend the linear programming-based method of

Distributed demand-oblivious routing is scalable but cdd8] to solve (3). The difference will be that we allow for
become arbitrarily inefficient. In contrast, centralizethemes arbitrary polyhedral region&’, not just?". Herein, we briefly
are efficient but scale poorly. Obviously, a middle-grounteproduce the treatment from that paper with some triviadmo
should be found. In this section, we propose a hybrifications to handle this extension. For the rest of this page
distributed-centralized scheme with the intention to comab shall assume thaX is polyhedral:X = {6 : H0 < h}, where
the advantages of the two approaches. Our hybrid scheme Willis a¢ x K matrix andh is a columng-vector. Additionally,
require minimal central control, and it will rather rely oisd we limit our attention to distributed affine routing funat®
tributed operations to improve scalability while also atpging that take the formsS;(0) = fi0r + gi for all k € K.
to be as efficient as possible. The price for improved scithabi  For start, expanding (3) yields:
is, however, giving up optimiz.ability.. _ . mina:  17f, =1,17g, = 0 vk € K 4)

The basic idea of geometric multiparametric programming P+
algorithms is to first find some suitable affine function that v(; ;) ¢ p :ZkeK w (fkbr + gr) <a V9eTNX(5)
solves the problem for some setting of the parameters, and Cij

then compute the (polyhedral) parameter region over whichyjhere pid denotes the row of the path-arc incidence matix
is both o.ptlmal and feasible, cut away the present region a@&rrespdnding to links, ). The above is not a linear program,
recurse into the rest of the parameter space. Unfortunatel¥.ause constraint (5) is present for every TN X, yielding

the regions computed this way can be arbitrarily small, WhiGninitely many constraints. Therefore, we organize (5piat
often results in an immense number of individual routing| 4, /e problem for eact, j) € E:

functions in the output. Instead of this bottom-up approach y
we propose a top-down method where the parameter region > rex P (fubk + gr)

>
is supplied explicitly as input to the algorithm. We compute @ = max Cij (©)
an affine routing function over the region, and if the obliwso Pour < c. HO<h 7
ratio falls beyond a configured limit, we stop. Otherwises th ];C Rtk = 6 - )
current throughput region is too large to be covered with a Ty = Opup >0 Vk €K )

single routing function, so we generate a cut that divides
the current throughput region into two with the intention to Dualizing (6)—(8) and collecting all dual slave problems
decrease the oblivious ratio over the resultant regions.cth yields a single giant linear program:



min o : 17, =1,1T¢, =0 Vkek (9) Lemma 3:For anyd > 0 there is ane > 0 so that on any
pi extendedconvex) setX’ : X C X', dy (X, X’) <, it holds
> kex D 9k <

V(i,j) € E {wc+Nh+ (10) thata(X’) — a(X) < 6.

C”
g iy Proof: Let v > 0 be such that) VoePrl < qe
4 T tj ke =
w Py 21 ﬁku vk ek (11) (where 1 is a vector of all 1s) and consider sonde :
v def .
NH), — B9 > B T vk € K (12) alX) = oz(X,S). = min, o : S(X) € aM. For each
Cij k € K, let 7, = mingex 0k, T = maxgex Ok, vy = Sk(7x)
W, N >0 } (13) and Vi, = Si(Ty). Let € = min (2, miny 7;). Searchu;, :

. i i 1Tv;C =T, — €0, > 0, |vgy — v;p| <eandV/ : 1TVk’ =
where Hy, is th_ekth CO'“”}? ofH, w _and>\ are the_ duals T+ e,V > 0,|Vip — Vk{p| < e. This can always be done.
to the constraints (7) and,’ to constraints (8), specific to the construct the routing functios’(8) = /60, + ¢\.k € K

dual subproblem corresponding to egehj) € E. Note that I p (Tk_e)(v,;—q)’k)k One Z:asily se,es

e . f/ = 75, g = 'U/, —
the additional constraintsk € K : f, > 0,9, = 0 can be F —~_ Te—ret2e’ Jk k T~y +2¢ ,
X - = . <
added to compute linear distributed routing functions. that & is a routing function on ani” 5 X, dy (X, X') < ¢,

e, vl € X' : §'(6) > 0 and throughput invariance holds.
B. Finding the best cut Additionally, Vk € K : dp (Sk(X), S, (X')) < /pre, hence

, VO € X' : 30 € X so thatS(0) < Si(0) + /prel. Next,
Suppose that we are given the throughput regiofwhere show thatS(X) C aM = S'(X') C (o + 8)M. Observe

X has already been trimmed down by taking the intersecti = A
with T") and we find the oblivious ratia(X) too large in this € X" Yper PeS1(0) < Xpex Pk/(Sk(g) T \/EGD. =
region, so we decide to cut the region into two and recur§&T7€¢ < (a+d)c. Consequentlyn(X’) < a(X)+4, which
into the resultant subregions. Albeit there are infinitelginy corr_lpletes the_prc_)of. u
cutting planes we can choose from, it is worthwhile to pick Finally, continuity comes from the Lemma below.
one that is orthogonal to one of the axes, that is, can beawritt L€Mmma 4:For anyo Z 0 t/here IS ane > O/SO that on any
in the form 6), < ¢ for somek ¢ K. This way, the regions "éduced(convex) setX” : X’ C X, du (X, X') < ¢, it holds
becomekK -dimensional hyper-rectangles, which simplifies thipata(X) — a(X') <. _ .
mathematical treatment and facilitates for building a fast Proof: Choosc/ae > 0 as in Lemma /3 and consider any
orthogonal decision tree for the online phase of the algorit X C X;dm (X, X’) < e Note thata(X’) is defined since
On the other hand, we rule out many non-orthogonal cuttiry C X- Let S : a(X') = a(X',S) and use Lemma 3 to
planes that may, or may not, produce higher-quality cuts. OPtain a routing functios’ on the extension ok’ to X. Now,
Below, we show a method to search for the orthogonal cif¢ haven(X’) < a(X) < (X, &), anda(X, §') —a(X') <
6, < t that, for any selection ok € K and any value of o hencea(X) —a(X’) <4, which completes the proof.m
t, reduces the oblivious ratio the most. Choose sdnme K Our task is now to find a value for which the oblivious
and letr, = minge x 0 and T}, = maxgc x 0). Additionally, ratios of the two subregions, in particular the larger ose, i
consider the sefX(¢) = X N {0 : 6, < t} and define a Minimal. As bothy(t) and v(t) are continuous offr, Tx],
function: : R — R that to the parametérorders the oblivious SO IS their maximum. We conclude thakx(u(?), v(7)) has a
ratio corresponding toX (t), u(t) = a(X(t)) = minga : Unique minimum orr;, T;] and this occurs when(t) = v(t).
S(X(t)) C oM, whereS is distributed linear or affine. The Note that neithep(t) nor v(t) changesstrictly, thus thet at
other side of the cut)y, > ¢, defines the regioli (t) = XN{6 : which the minimum occurs is not necessarily unique, and it
0, >t} and the corresponding functiort) = a(Y (¢)). Note IS Not guaranteed that we can indeed decrease the oblivious
that X (T},) = Y(r,) = X, s0 u(Tk) = v(7s) = a(X). ratio using an orthogonal cut along this dimension. Someroth
Theorem 2:The function u(t) is well-defined, monotoni- dimension might produce a better cut in such cases.
cally increasingand continuous on the domajm,, 7;]. The ~ Our algorithm to generate a cut to subdivide a region along
function v(t) is well-defined, monotonicallylecreasingand Some dimensior: employs binary search to finde [rx, Ty :
continuous on the domaifry,, Ty]. u(t) = v(t). At every iteration of the search, we compul(q)

The next Lemma implies definedness and monotonicity. @1d v(t) for the present value of (this amounts to solving
Lemma 2:Given someZ € RX for which a(Z) exists, for the linear program (9)—(13) twice). lfu(t) — v(t)| < ¢, we
anyY C Z: a(Y) exists anda(Y) < a(2). stop. Otherwise, we continue the binary search until we find
Proof: Easily, if someSy routes some regiot, then it & t for which ,(t) is (approximately) equal to/(¢). Doing

is feasible in (9)—(13) for any” C Z. It is also true that the this for all & € K yields an orthogonal cutting plane that is

optimal solution can only be smaller, sdY) < a(Z). = expected to give the Igrgest rgductlon in the obliviousorati
Next, we show right-continuity of:(¢) and left-continuity (S€€ the pseudo-code in Algorithm 1).

of v(t). Note that our proofs are a bit more generic, in that , .

we prove continuity over any sequence of convex sets who%e The hybrid algorithm

elements are sufficiently “close” to each othétX,Ve > Our hybrid distributed-centralized demand-oblivioustiogl

0,3X’ : dy(X,X’) < ¢, wheredy denotes the Hausdorff algorithm is a synthesis of the above ideas. The procedure is

metric. simple: we start the algorithm from the entire set of adrhissi



Algorithm 1 Generate an orthogonal cut on regian Half of the regions is beneath and the other half is beyond

function BEST_cUT(X) this cut, which immediately rules out half &. In the next
for le € 0T 0 step, the controller checks the cut arising from the second
Z:QISZE)Y(SIZE’ARZCRtHéaEZ,E%]l:/,L(t):I/(t)) iteration, 6, < ¢, and so on, in each step halving the
Ay — pult) remainingZ. Organizing the regions into such a decision tree
end for improves the online complexity t®(log |Z|) (from O(|Z))).
k «— argmin; ¢ A For more information on orthogonal decision trees, consult
return (k, t) [35]. Note, nonetheless, that in contrast to the centrdlize
end function scheme the hybrid algorithm does not guarantee continuity

over the boundaries of the regions (albeit it doesrside),

neither it allows for optimizing the routing.
traffic matricesT', and in each iteration we try to improve

the oblivious ratio. First, we compute an oblivious routing V. SIMULATION STUDIES

for the present region. If we are contented with the result, Our first round of simulations focused on the performance
that is, the oblivious ratio falls beyond a configured limitof conventional, distributed demand-oblivious routing][MWe
say, L, we stop. Otherwise, we use Algorithm 1 to divide thevaluated two performance attributes: the oblivious ratias
current region into two along an orthogonal cut and recursemputed by (1), plus a new, geometric characterigit) we
into the resultant subregions. The algorithm, startingnftbe call link overload probability which corresponds to the chance
“conventional” oblivious ratio, is expected to improve it i that a randomly chosen admissible traffic matrix, when mute
every iteration, while it also generates the compound nguti by S, causes link over-utilization at some parts of the network:
functions with the corresponding regions. A pseudo-code fo

the hybrid algorithm is given in Algorithm 2. n(S) = Vol(T'\ D(S)) =1- Vol(D(s5)) ,
Vol(T) Vol(T)
Algorithm 2 Hybrid demand-oblivious routing algorithm  whereVol(X) denotes the volume of the s&t.
HYBRID_OBLIVIOUS_ROUTING(T’) We used the NSFNET Phase Il topology [36&, source-
function HYBRID_OBLIVIOUS_ROUTING(X) destination pairs were chosen according to the random kmod
(a,S) < mins a : S(X) C aM distribution (similarly to [18]), angp maximally node-disjoint
i O‘Sér]é t@h(eg) andreturn paths were computed for the users. We examined increasingly
end if ’ complex scenarios by growin from 1 to 9 (unfortunately,
(k,t1) «BEST_CUT(X) volume computation becomes intractable for larger valfes o
HYBRID_OBLIVIOUS_ROUTING(X NT'N {6 : O <t }) K). The results are shown in Fig. 2 fpr= 2 andp = 3. What
HYBRID_OBLIVIOUS_ROUTING(X NT N {0 : 6x 2 t&}) is interesting is not that the oblivious ratio seems to iaseeas

end function the number of users grow (this trend mostly vanishes fordtigh

Ks), but rather that even for very small valuesogfsay, 1.5,

In the present form, Algorithm 2 iterates until the obliviou there is an overwhelming chance (70-90%) that a randomly
ratio falls beyond the limitL. globally. Note that in some picked traffic matrix will overload some links in the network
cases the algorithm may never stop, as it is not guarantégds suggests that the oblivious ratio, used extensivelghén
that the oblivious ratio reduces in every iteration. To dvoiliterature, is not really a good measure to characterize the
this, one may terminate the recursion after the number pérformance of oblivious routing.
regions exceeds a predefined value. This makes the alg&ithm The centralized scheme, however, avoids any forms of link
complexity polynomial, as all the steps are of polynomiaver-subscription, at the price of increasing complex@r
complexity too. results (see Fig. 3), obtained on the same scenarios as,above

The result is a compound routing functich= {(R!,S?) : indicate that the complexity of centralized demand-obli
i € T}, in which all the individual routing functions takerouting explodes with the increase of user population.
the formuy, = fi6; + g.. Thus, our routing function lends Finally, we evaluated the performance of the hybrid
itself readily to distributed implementation, and only mi@al demand-oblivious routing algorithm in both real-world and
central control is required to pick the right regiore Z and artificial networks. First, we used the ISP data maps from
the appropriate settings of; and g.. For this, the central the Rocketfuel dataset [37]. We applied the same method
controller periodically determines the actual traffic maend as in [18] to obtain approximate POP-level topologies: we
checks whethe# still resides in the current regio®’. If collapsed the topologies so that nodes correspond to cities
yes, no action is taken. Otherwise, the controller searchee eliminated leaf-nodes and we set link capacities inlerse
for a new region and downloads the new settings f¢f proportional to the link weights. Source-destination paiere
and g to the routers. In our hybrid scheme the searathosen according to the bimodal distribution and paths were
simplifies significantly, thanks to the fact that the regi@ams provisioned maximally node-disjoinp (= 2). We conducted
hyper-rectangles. First, the controller checks whetherdit experiments when the number of users was snidll= 7),
generated in the first iteration, saf, < t¢;, holds ford. medium (K = 21) and large £ = 35) compared to the size
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Figure 2: Oblivious ratio and link over- Figure 3: Number of regions in theFigure 4: Oblivious ratio of the hybrid
load probability for the conventional centralized scheme fgr = 2, resp. algorithm at every iteration in three
(distributed) scheme fop = 2, resp. p = 3, paths per user. Note the logexperiments on AS 3257 = 7.

p = 3, paths per user. scale on the; axis.
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Figure 5: Oblivious ratio of the hybridFigure 6: Oblivious ratio of the hybridFigure 7: Oblivious ratio for artificial
algorithm at every iteration in threealgorithm at every iteration in threegraphs for increasing values &fafter
experiments on AS 3257 = 21. experiments on AS 3257 = 35. the initial, 2nd, 4th and 6th iteration.

of the network, with both linear and affine distributed rogti VI. RELATED WORK
functions. During running the hybrid algorithm, we regist
the oblivious ratio of the routing function produced at gver Demand-oblivious routing has extensive literature [18]—
iteration. Here, we only include some typical results for A®8]. Racke gives a method with polylogarithmic oblivious
3257 (Tiscali, Europe) in Fig. 4, 5 and 6. ratio in undirected graphs [19]; Azat al. prove that no such
We observe that the hybrid algorithm, taking off fromworst-case bound exists for directed graphs [20]; and [24]
the “conventional” oblivious routing obtained at the ialti presents a randomized algorithm of polylogarithmic oblivi
iteration, produces steadily more efficient compound rguti ous ratio with high probability provided that the demand-
functions in each step. In some cases, our algorithm aahiewdistribution is assumed known. A different approach is i6][2
significant improvement in the oblivious ratio: fa& = 7, All of these papers treat the distributed case. In contast,
case (2), it reduced the ratio froi4 to less thanl.2, which allow centralized implementations as well. This improves t
amounts to basically halving the overload. In other cases, tworst case oblivious ratio td. Regarding optimizability and
improvement is not that significant. In addition, distrietit oblivious routing, see [27], [28].
affine routing seems slightly more efficient than linear gt The geometric framework for investigating fundamental
but the improvement does not seem to be worth the addeperties of networks was introduced by the authors in.[31]
implementation complexity. The hybrid distributed-centralized algorithm is based 86|
To justify these claims, we conducted experiments on artifsimilarly to them, we build an orthogonal decision tree fastf
cial networks as well. In [20, Theorem 7.1], Azetral. give a ©online search. However, [35] is limited to hyper-cubic oegi
directed graph of£) + k+1 nodes and*) source-destination whose size is halved in each iteration, while our algorithm
pairs on which oblivious routing works spectacularly pgorl calculates optimal orthogonal cuts.
In particular, the oblivious ratio is at Ieaéﬁ). Running the  Intra-domain traffic engineering algorithms proposed re-
hybrid scheme on these graphs (see Fig. 7) reveals that egently are DATE [14], TEXCP [16], REPLEX [17] and
though there is no theoretical guarantee on improveme@QOPE [9]. Perhaps the closest to ours is COPE, which com-
our algorithm indeed improves the oblivious ratio even ihines the advantages of prediction-based traffic engingeri
contrived examples, and only a few regions are enough dad demand-oblivious routing. Our scheme, in contrasts doe
produce a better quality demand-oblivious routing. not need predicted state.



VII. CONCLUSIONS [12]

Demand-oblivious routing is, loosely speaking, a way to set
traffic splitting ratios at routers statically so that cosijgn [13]
is minimized, no matter which combination of demands the
users pose to the network. In this paper, we generalized thig
scheme in various ways. First, we showed that if one allows
splitting ratios to be set dynamically, depending on local gs;
well as global information, then congestion can be elingdat
completely. An added benefit of this centralized demanﬂ—e]
oblivious routing scheme is that it allows for optimizingeth
routing function. However, a centralized scheme necdgsari
raises grave implementation issues, ranging from pratébit [17]
online complexity and offline storage requirements to msta
bility caused by unpredictable communication delays betwe[18]
the routers and the central controller. Nonetheless, inllsma
enterprise networks, transit ISPs or wherever applicable,;q;
centralized scheme promises with significant boost in netwo
profit by better exploiting the costly network infrastruetand [20]
delivering better service.

It turns out that the geometric algorithms for computing thig1]
optimal routing function are subject to the explosion of eorqzz]
plexity often called aghe curse of dimensionalityfo avoid
this trap, we proposed a hybrid distributed-centralizdueste,
which reduces the involvement of the central controller t[%]
picking the right distributed routing function. Extensisinu-
lations showed that subdividing the throughput space tg onl
a couple of regions already reduces congestion signif'y:anf?“]
Unfortunately, appealing properties of the centralizeloeste
are lost, like feasibility, continuity and optimizabiljtyand [25]
future research is necessary to recover at least some @&. tth%]
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