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Abstract—Until recent years, it was more or less undisputed
common-sense that an accurate view on traffic demands is
indispensable for optimizing the flow of traffic through a net-
work. Lately, this premise has been questioned sharply: it was
shown that setting just a single routing, the so called demand-
oblivious routing, is sufficient to accommodate any admissible
traffic matrix in the network with moderate link overload, so
no prior information on demands is absolutely necessary for
efficient traffic engineering. Demand-oblivious routing lends itself
to distributed implementations, so it scales well. In this paper, we
generalize demand-oblivious routing in a new way: we show that,
in contrast to the distributed case, centralized demand-oblivious
routing can eliminate link overload completely. What is more, our
centralized scheme allows for optimizing the routes with respect
to arbitrary linear or quadratic objective function. We realize,
however, that a centralized scheme can become prohibitively
complex, therefore, we propose a hybrid distributed-centralized
algorithm, which, according to our simulations, strikes a good
balance between efficiency, scalability and complexity.

Index Terms—traffic engineering, adaptive routing, demand-
oblivious routing, convex geometry

I. I NTRODUCTION

It is critical for a business-oriented service provider to
constantly monitor, analyze and optimize the manner trafficis
conveyed through its network in order to deliver the required
service to customers, to avoid congestion that might cause
disruptions, and to realize the largest profit margin attainable
with the given network infrastructure. The art and science of
satisfying these diverse requirements simultaneously is called
Internet Traffic Engineering [1]. Given that user demands
today are highly variable, one of the most important ingre-
dients of traffic engineering is an adaptive routing technique
that maps these permanently and unpredictably changing user
demands to the physical network infrastructure effectively.

Historically, forwarding paths were optimized with respect
to some measured and/or expected traffic matrix (if optimized
at all) and over-provisioning of network capacity ensured
that no congestion showed up when reality did not match
expectations [2], [3]. This static routing strategy, however, has
become more and more troublesome to operators recently, as
networks are beginning to face a more dynamically changing
environment. In consequence, various proposals have surfaced
to reduce the significance of traffic matrices in intra-domain

The first author was supported by the Janos Bolyai Fellowshipof the
Hungarian Academy of Sciences. The research was supported byNKTH-
OTKA grant CNK77802.

traffic engineering [4]–[9], or to straight out eliminate it[10]–
[17]. A promising approach is to design a single routing
that is suitable for handling not just one, but multiple traffic
matrices [5], [6] or, at the extreme,all legitimate traffic
matrices at the same time [18]–[28]. Using such ademand-
oblivious routingalgorithm eliminates the need to constantly
re-calculate and re-deploy routing with the change of user
demands.

Demand-oblivious routing lends itself to distributed imple-
mentations, because the amount of traffic sent to a forward-
ing path by a router only depends on information available
locally at that router. This ensures simplicity and scalability.
Moreover, simulation studies show that it can be unexpectedly
efficient in the face of changing demands. Unfortunately, how-
ever, no theoretical upper bound exists on the capacity over-
subscription, and hence, the congestion it might cause [20].

In this paper, we question the need for distributedness,
at least in an intra-domain, unicast setting. A commercial
network of our days is usually operated under the authority
of a sophisticated central network management system (like
HP OpenView or IBM Tivoli) that make available all the
necessary monitoring and routing information, plus tested
communications substrate, to deploy a centralized adaptive
routing algorithm. We show that centralized demand-oblivious
routing provides stability, hard QoS guarantees, optimizability
with respect to arbitrary linear or quadratic objective function
and, in contrast to the distributed case, absolutely no linkover-
subscription at all no matter how the users vary their demands.
It turns out, however, that due to theoretical reasons a central-
ized scheme scales poorly. Therefore, we also propose a hybrid
distributed-centralized routing algorithm, implementable with
minimal central control, that combines the benefits of the two
approaches for the price of sacrificing optimizability.

The rest of the paper is organized as follows. The next sec-
tion is devoted to build a completely new geometric framework
for demand-oblivious routing. The intention is to simplify
the treatment and make the mathematical underpinnings more
approachable. The notation, therefore, differs somewhat from
that of the literature. Our framework allows us to generalize
the notion of oblivious routing in novel ways: we describe
the centralized case in Section III and a hybrid scheme in
Section IV. Simulation results are discussed in Section V,
related work is assessed in Section VI and finally, Section VII
concludes the paper.



II. A GEOMETRIC FRAMEWORK FOR ADAPTIVE ROUTING

We need some basic terms and definitions from convex
geometry [29], [30]. ApolyhedronP is an intersection of
finitely many half-spaces:P = {x : Ax ≤ b} ⊆ Rn

where A is an m × n matrix andb is a columnm-vector.
A bounded polyhedron is called apolytope. A mapping
T : Rn 7→ Rm is called anaffine transformationif it takes
the form:T : y = Cx + d whereC is anm × n matrix and
d is a columnm-vector. The affine transformation of a setX

throughT is defined as:T (X) = {Cx + d : x ∈ X}. Affine
transformationsT have the following properties:

• x ∈ X implies T (x) ∈ T (X)
• consequently,X ⊆ Y implies T (X) ⊆ T (Y )
• an affine transformation of a polytope is again a polytope.

The special affine transformationy = αx, x ∈ X, R ∋ α > 0
is called thescalar multiple ofX, denoted byαX.

In our framework, each user is provisioned a set of paths
and the task of routing is to assign path flows for the users
in accordance with the actual user demands and the capacity
of network links. More precisely, suppose we are given the
network topology as a directed graphG(V,E) and a vector of
positive, finite link capacitiesc = [cij > 0 : (i, j) ∈ E] (see
Table I for a summary on notations). Each user is associated
with a unique source-destination pair(sk, dk) : k ∈ K and
supplied with a set of static pathsPk. Additionally, each user
k independently presents its momentary demandθk at the
source nodesk, and it is the task of the adaptive routing
algorithm to vary the flows along the individual paths so
that user traffic is conveyed from the source nodes to the
destination nodes without disruptions. In other words, the
routing algorithm adjusts the path flowsuP : P ∈ Pk, k ∈ K
with respect to the actual traffic matrix[θk : k ∈ K] in a way
as to avoid, or at least to minimize, link oversubscription.A
routing is, consequently, represented by a vector of path flows:
u = [uk : k ∈ K] ∈ Rp1 × Rp2 × . . . × RpK = Rp, wherepk

is the number of paths fork andp is the number of all paths.
In geometric terms, a routingu is a point in the p-

dimensional Euclidean spaceRp and the requirement that it
does not violate link capacities is equal to saying thatu is
included in theflow polytopeM embedded into this space:

M = {u :
∑

k∈K

Pkuk ≤ c, u ≥ 0} ⊂ Rp.

M contains all admissible routings, subject to link capacities
and non-negativity constraints. In the sequel, we shall often
use the following consequence of the above definitions: ifM

is the flow polytope for a network characterized by the link
capacitiesc, then the flow polytope of the network whose link
capacities were scaled by someα positive scalar toαc is the
scalar multiple ofM , αM .

Consider the affine transformationT : Rp 7→ RK that from
a routing u generates the corresponding traffic matrixθ by
summing up the path flows for each particular path of a user:

θ = T (u) = [θk =
∑

P∈Pk

uP : k ∈ K] = Qu .

Table I: Notations
G(V, E) a directed graph, with the set of nodesV (|V | = n)

and the set of directed edgesE (|E| = m)
c the columnm-vector of edge capacities
(sk, dk) the set of source-destination pairs (or users) fork ∈

K = {1, . . . , K}

Pk the set ofsk → dk paths assigned to somek ∈ K
pk the number of paths for userk, pk = |Pk|

p number of all paths,p =
P

k∈K
pk

Pk anm×pk matrix. The column corresponding to path
P ∈ Pk holds the path-arc incidence vector ofP

uP scalar, describing the traffic routed at pathP

uk a column-vector, whose components areuP : P ∈
Pk for somek ∈ K (whether we meanuk or up

will always be clear from the context)
u a column vector representing a particular choice of

uP s (a “routing”)
θk the demand/throughput of some userk ∈ K

θ a columnK-vector representing a particular combi-
nation of throughputs (a “traffic matrix”)

M flow polytope, the set of path flows corresponding to
P, subject to non-negativity and capacity constraints

T throughput polytope, the set of throughputs realiz-
able overP, subject to capacity constraints

S a routing function,S : RK 7→ Rp

Sk the routing function corresponding tok ∈ K, Sk :
RK 7→ Rpk

Here, Q is a K × p matrix. The elements inkth row of Q

are all 1 at positions
∑

l<k pl + 1, . . . ,
∑

l≤k pl and all zero
otherwise. Mapping the flow polytopeM throughT gives the
throughput polytopeT [31]:

Rp ⊃ M
T : θ=Qu−−−−−−→ T ⊂ RK .

Accordingly, the throughput polytope contains all the traffic
matrices realizable in the network by some properly chosen
static routing without violating link capacities:

T = {θ : ∃u ∈ M so thatQu = θ} .

Consequently, we callθ ∈ T admissible. As is the case
with the flow polytope, multiplying the capacity vector by
some positive real equals, in geometric terms, multiplyingthe
polytopeT with the same scalar. Unfortunately, computingT

for arbitrary networks is a difficult problem, already intractable
for moderate sized networks [31]. Thus, we shall use it only
for theoretical modeling purposes.

The two geometrical objects, the flow polytope and the
throughput polytope, will be central to our framework for
demand-oblivious routing. A sample network and the corre-
sponding polytopes are depicted in Fig. 1.

The other central objects in our framework arerouting
functions. Remember that the fundamental problem in adaptive
routing is to adjust routing to the momentary traffic matrix.
Therefore, one can represent a broad class of adaptive routing
algorithms as a routing functionS that maps from the through-
put space to the flow space:S : RK 7→ Rp. Given some traffic



(a) topology

(s1, d1) = (3, 4)

(s2, d2) = (1, 4)

(b) users

P1 = {(3, 4)}

P2 = {(3, 2), (2, 4)}

P3 = {(1, 2), (2, 4)}

(c) paths (d) flow polytope (M ) (e) throughput polytope (T )

Figure 1: A sample network, source-destination pairs, a setof paths for each user and the corresponding flow and throughput
polytopes. Edge capacities all equal 1 unit.

matrix θ, the corresponding routing is obtained by applyingS
to θ: u = S(θ).

Note, however, that one can not set arbitrary routing func-
tions. In particular, given a traffic matrixθ, the corresponding
routing S(θ) must realize precisely thisθ. In other words,
every θ is a fix point of the round-trip from the throughput
space to the flow space and back (throughput invariance):

∀θ ∈ RK : T (S(θ)) ≡ θ .

In the simplest case, common to many networks of our days,
each user is assigned a single path (e.g., the shortest path)
and all traffic is routed to that path regardless of whether this
causes congestion or not. In such cases, the componentSk of
S corresponding to some userk is given asuk = Sk(θ) = θk.

In order to balance network load, traffic may be split
between multiple paths. In this case,Sk takes the form
uk = fkθk where fk is a column vector of sizepk. To
respect throughput invariance, elements offk must sum up
to 1: ∀k ∈ K : 1T fk = 1 (here,1T is a row vector of all 1s).

These routing functions are all implementable in a dis-
tributed fashion, as the flow sent to a path at a source node
only depends on local information. We call a routing function
distributed, if ∂Sk

∂θl

= 0 if k 6= l, wherever the derivative is
defined.

In order to improve efficiency, one may allow the routing
function to depend on global information as well. An im-
portant case of suchcentralizedrouting functions is whenS
takes the form of an affine transformation:S(θ) = Fθ + g

(component-wise we haveSk(θ) = Fkθ + gk), whereF (Fk)
is a p×K (pk ×K) matrix andg (gk) is a column vector of
sizep (pk). SuchS are calledsimple affine routing functions.
Throughput invariance implies:

1T Fkl = δkl =

{

1 if k = l

0 otherwise
, 1T gk = 0 ,

whereFkl denotes thelth column ofFk. Note that distributed
routings discussed above can also be treated as affine routing
functions by restrictingF to block-diagonal matrices. Ad-
ditionally, fixing g at zero yields alinear routing function
(corresponding to traffic splitting ratios), while lettingg to
differ from zero yields anaffine distributedrouting function.

An important concept related to routing functions is the
domain.

Definition 1: The domainD(S) for someS describes the
set of traffic matrices that can be accommodated in the network
by S without causing link oversubscription:

D(S) = {θ : S(θ) ∈ M} ⊂ RK .

For an affine routing functionS, the domain is a polytope:

D(S) = {θ :
∑

k∈K

Pk(Fkθ + gk) ≤ c, Fθ + g ≥ 0} .

Considering the sample network depicted in Fig. 1, a possible
distributed adaptive routing might be to split the traffic ofuser
1 evenly between the two pathsP1 andP2, and route all traffic
of user 2 along its only available path. This setting corresponds
to the distributed linear routing functionS1:





u1

u2

u3



 =





1
2 0
1
2 0
0 1





(

θ1

θ2

)

+





0
0
0





However, this routing would mistreat certain traffic matrices.
The traffic matrixθ = [1, 1]T , although clearly admissible,
overloads link(2, 4) when fed intoS1. In fact, anyθ for which
θ1 + 2θ2 > 2 causes overload at that link, which sets the
domain ofS1 as:

D(S1) = {θ : θ1 + 2θ2 ≤ 2, θ ≥ 0} .

The question arises how to route the traffic matrices that fall
outside of the domain ofS1. It turns out that one can not do
this using only distributed linear routing functions (notethat it
certainlycan be done with other types of distributed adaptive
routing schemes [12], [13]). A way to avoid overloading link
(2, 4) would be to concert traffic splitting ratios between the
two users. Consider the centralized affine routing functionS2:





u1

u2

u3



 =





1 1
0 −1
0 1





(

θ1

θ2

)

+





−1
1
0





The domain ofS2 turns out to be

D(S2) = {θ : 1 ≤ θ1 + θ2 ≤ 2, 0 ≤ θ2 ≤ 1} ,

which covers the entire regionT \ D(S1) as required.
It is tempting to combineS1 andS2 into a singlecompound

routing function, which then would be suitable to accom-
modate any admissible traffic matrixθ ∈ T with causing



no link overload at all. To do this, we associate different
routing functions to different regions of the throughput space,
so S takes the formS = {(Ri,Si) : i ∈ I} where Ris
give a disjunct partition of the throughput space, and we
set u = Si(θ) wheneverθ ∈ Ri. Easily, the domain of
a compound routing function is the union of the domains
of its members. Care must be taken, however, to eliminate
overlapping regions in order to maintain unambiguity of the
compound routing function. In our example, we may choose
either S1 or S2 to coverD(S1) ∩ D(S2), but not both. It is
convenient to setR1 to the entire domain ofS1 and letR2

be T \ D(S1). This way the compound routing function will
be continuous over the entire domain, which prevents routing
from exhibiting drastic fluctuations.

While one could certainly go on and generalize routing
functions further (e.g., consider parameters other thanθ or
allow nonlinear functions, see e.g. [12], [13]) in order to
capture a broader range of adaptive routing algorithms, we stop
here. In the next section, we shall show that a compound affine
routing function can already guarantee feasibility, continuity,
adaptivity to arbitrary user demands, and optimizability.

III. D ISTRIBUTED AND CENTRALIZED

DEMAND-OBLIVIOUS ROUTING

In the literature, a demand-oblivious routing is usually
associated with the following optimization problem:

min
S

α : S(T ) ⊆ αM . (1)

The minimal scalarα solving (1) is called theoblivious
ratio and the corresponding routing function is calleddemand-
oblivious routing. The interpretation of the optimization prob-
lem (1) is as follows. The setS(T ) represents all the routings
one can get when applyingS to the set of admissible traffic
matricesT , and we want thisS(T ) to fit into the set of
feasible routingsM as much as possible. The objective is,
consequently, to minimize the factor needed to up-scale the
flow polytope so that it eventually contains the entire set
S(T ). Recalling thatαM corresponds to the flow polytope
of a network whose capacity is adjusted toαc brings us to
the interpretation:α signifies the maximal link over-utilization
caused when routinganyadmissible traffic matrix overS. This
also implies thatα ≥ 1.

Lemma 1:The optimization problem (1) can be posed
equivalently using the notion of domains:

min
S

α :
1

α
T ⊆ D(S) . (2)

In the alternative definition, the oblivious ratioα is interpreted
as follows: given an admissible traffic matrixθ ∈ T and
a routing that solves (2), at least1

α
θ is guaranteed to be

routable without violating link capacities. Consequently, the
optimization problem (2) calls for finding a routing whose
domain contains the largest portion of the set of admissible
traffic matrices.

Proof: Direction (1)⇒(2): S(T ) ⊆ αM ⇒ 1
α
S(T )

0∈T
=

S( 1
α
T ) ⊆ M ⇒ 1

α
T ⊆ D(S) by Definition 1.

Direction (2)⇒(1): 1
α
T ⊆ D(S) ⇒ T ⊆ αD(S) ⇒ S(T ) ⊆

S(αD(S))
0∈D(S)

= αS(D(S)) ⊆ αM by Definition 1.
If the demand-oblivious routing is searched for in the

form of a simple, distributed affine routing function, then the
optimization problem (1) can be stated as a linear program
of polynomial size [18]. Note that [18] considers the arc-
flow formulation, but the conversion to path-flow (and vice
versa) is trivial [22]. The resultant traffic splitting ratios can
be configured statically at the source nodes, so this scheme
scales well. What is more, it proves surprisingly efficient:
simulations on real-world and artificial ISP topologies show
that the oblivious ratio almost always remains under 2, thatis,
it rarely causes more than 100% link oversubscription [18].
Nonetheless, it has also been pointed out that in certain
directed networks the oblivious ratio grows without limitswith
the increase of the network size and user population [20].

Distributed demand-oblivious routing is scalable but it is
not efficient enough for practical purposes. It is tempting to
investigate what we find at the other end of the distributed-
centralized spectrum. We have seen in the previous section that
if one allows for compound routing functions that depend on
global information, then, at least in our sample case, link over-
utilization could be avoided. And indeed, the following result
states that a centralized affine routing function always exists
that, in contrast to distributed schemes, guarantees feasible
routing for any admissible traffic matrix.

Theorem 1:For any network, there is a compound affine
routing functionS = {(Ri,Si) : i ∈ I} with I finite so that
D(S) = T andS is continuous overT .

Proof: Let f(u, θ) be some linear or quadratic objective
function and consider the multiparametric program

z(θ) = min f(u, θ)
∑

k∈K Pkuk ≤ c

1T uk = θk ∀k ∈ K
u ≥ 0

This is basically a conventional multicommodity flow prob-
lem, though, the right-hand-side now depends on the input
parameterθ. It then follows from [32] that the solution can be
written as a continuous, piecewise affine function ofθ:

u = F iθ + gi wheneverθ ∈ Ri ,

where the regionsRi are disjunct (apart from the boundaries)
polyhedral sets that give a polyhedral partition ofT .

For a more in-depth exposition of this result, consult [33].
The significance of this theorem is that, theoretically, no

prior information on traffic matrices is necessary to designa
demand-oblivious routing function that guarantees feasibility.
One solves a multiparametric linear or quadratic program,
which, although computationally quite involving, is viable
thanks to recent advances in geometric multiparametric pro-
gramming algorithms [32], [34]. This phase can be done
offline. The result is a set of polyhedral regions and affine
functions. In operation, a central controller periodically scans



the network, reads the momentary traffic demandsθ, solves
a series of polyhedron inclusion problems to findi ∈ I
so that θ ∈ Ri and setsu = F iθ + gi. An additional
benefit is that centralized demand-oblivious routing allows
for optimizing the routing function through specifying the
objectivef(u, θ). Both linear and quadratic objective functions
are permitted. Plausible objectives would be to minimize delay
or to minimize the maximum link utilization.

The advantages of centralized demand-oblivious routing
are guaranteed feasibility and optimizability. The downside
is that it can become arbitrarily complex: unfortunately there
is no polynomial upper bound on the number of regions and
individual simple routing functions needed to coverT . And, as
simulation results confirm (see Section V), the size of the index
setI quickly grows out of control. WhenI exceeds about105,
centralized demand-oblivious routing becomes impractical as
the controller spends most of its time solving polyhedron in-
clusion problems trying to figure out which individual routing
function to apply. Storage requirements too can become an
issue. Finally, centralized operations itself could be seen as
disadvantageous by some: such a scheme necessitates collect-
ing all the network topology and link capacity information,
plus the instantaneous user demands, at a central place. The
fact that many of today’s provider or enterprise networks are
operated using some central network management software,
which makes the required information readily available with
no additional effort, mitigates this issue somewhat.

IV. A HYBRID APPROACH

Distributed demand-oblivious routing is scalable but can
become arbitrarily inefficient. In contrast, centralized schemes
are efficient but scale poorly. Obviously, a middle-ground
should be found. In this section, we propose a hybrid
distributed-centralized scheme with the intention to combine
the advantages of the two approaches. Our hybrid scheme will
require minimal central control, and it will rather rely on dis-
tributed operations to improve scalability while also attempting
to be as efficient as possible. The price for improved scalability
is, however, giving up optimizability.

The basic idea of geometric multiparametric programming
algorithms is to first find some suitable affine function that
solves the problem for some setting of the parameters, and
then compute the (polyhedral) parameter region over which it
is both optimal and feasible, cut away the present region and
recurse into the rest of the parameter space. Unfortunately,
the regions computed this way can be arbitrarily small, which
often results in an immense number of individual routing
functions in the output. Instead of this bottom-up approach,
we propose a top-down method where the parameter region
is supplied explicitly as input to the algorithm. We compute
an affine routing function over the region, and if the oblivious
ratio falls beyond a configured limit, we stop. Otherwise, the
current throughput region is too large to be covered with a
single routing function, so we generate a cut that divides
the current throughput region into two with the intention to
decrease the oblivious ratio over the resultant regions. The cut

is chosen to be orthogonal to one of the axes, which makes
it possible to construct a binary decision tree facilitating fast
online search [35]. Next, the algorithm proceeds by recursing
into the subregions. We decided to fall back upon to distributed
routing functions inside the regions, so our scheme will require
minimal central control, only to lookup the right region based
on the actual demands.

In the rest of the section, we develop the tools needed
to build our hybrid algorithm, describe it in detail and then
discuss its advantages and disadvantages.

A. Demand-oblivious routing over an arbitrary region

So far, the oblivious ratio has been defined with respect
to the throughput setT . Our algorithm will need to find it
with respect to arbitrary regions, not justT , so first we extend
the concept adequately and then we show how to solve the
resultant optimization problem.

Definition 2: Given an arbitrary set of traffic matricesX ⊂
RK , the oblivious ratioα(X) with respect toX is defined as
the optimal solution of the optimization problem:

α(X) = min
S

α : S(X) ⊆ αM . (3)

Note thatα(X) is equivalent to the conventional notion of
oblivious ratio whenX = T . In other cases,α(X) depends
on X: it may be smaller than 1 whenX ⊂ T , it may be
unbounded ifX is unbounded, or it might not be defined at
all if X * RK

+ . Further note that Lemma 1 does not generalize
to arbitrary regions.

Below, we extend the linear programming-based method of
[18] to solve (3). The difference will be that we allow for
arbitrary polyhedral regionsX, not justT . Herein, we briefly
reproduce the treatment from that paper with some trivial mod-
ifications to handle this extension. For the rest of this paper, we
shall assume thatX is polyhedral:X = {θ : Hθ ≤ h}, where
H is aq×K matrix andh is a columnq-vector. Additionally,
we limit our attention to distributed affine routing functions
that take the formSk(θ) = fkθk + gk for all k ∈ K.

For start, expanding (3) yields:

min α : 1T fk = 1, 1T gk = 0 ∀k ∈ K (4)

∀(i, j) ∈ E :

∑

k∈K P
ij
k (fkθk + gk)

cij

≤ α ∀θ ∈ T ∩ X (5)

whereP
ij
k denotes the row of the path-arc incidence matrixPk

corresponding to link(i, j). The above is not a linear program,
because constraint (5) is present for everyθ ∈ T ∩X, yielding
infinitely many constraints. Therefore, we organize (5) into a
slave problem for each(i, j) ∈ E:

α ≥ max

∑

k∈K P
ij
k (fkθk + gk)

cij

(6)
∑

k∈K

Pkuk ≤ c, Hθ ≤ h (7)

1T uk = θk, uk ≥ 0 ∀k ∈ K (8)

Dualizing (6)–(8) and collecting all dual slave problems
yields a single giant linear program:



min α : 1T fk = 1, 1T gk = 0 ∀k ∈ K (9)

∀(i, j) ∈ E :{wijc + λijh +

∑

k∈K P
ij
k gk

cij

≤ α (10)

wijPk ≥ 1T β
ij
k ∀k ∈ K (11)

λijHk − β
ij
k ≥ P

ij
k fk

cij

∀k ∈ K (12)

wij , λij ≥ 0 } (13)

whereHk is thekth column ofH, wij andλij are the duals
to the constraints (7) andβij

k to constraints (8), specific to the
dual subproblem corresponding to each(i, j) ∈ E. Note that
the additional constraints∀k ∈ K : fk ≥ 0, gk = 0 can be
added to compute linear distributed routing functions.

B. Finding the best cut

Suppose that we are given the throughput regionX (where
X has already been trimmed down by taking the intersection
with T ) and we find the oblivious ratioα(X) too large in this
region, so we decide to cut the region into two and recurse
into the resultant subregions. Albeit there are infinitely many
cutting planes we can choose from, it is worthwhile to pick
one that is orthogonal to one of the axes, that is, can be written
in the form θk ≤ t for somek ∈ K. This way, the regions
becomeK-dimensional hyper-rectangles, which simplifies the
mathematical treatment and facilitates for building a fast
orthogonal decision tree for the online phase of the algorithm.
On the other hand, we rule out many non-orthogonal cutting
planes that may, or may not, produce higher-quality cuts.

Below, we show a method to search for the orthogonal cut
θk ≤ t that, for any selection ofk ∈ K and any value of
t, reduces the oblivious ratio the most. Choose somek ∈ K
and letτk = minθ∈X θk andTk = maxθ∈X θk. Additionally,
consider the setX(t) = X ∩ {θ : θk ≤ t} and define a
functionµ : R 7→ R that to the parametert orders the oblivious
ratio corresponding toX(t), µ(t) = α(X(t)) = minS α :
S(X(t)) ⊆ αM , whereS is distributed linear or affine. The
other side of the cut,θk ≥ t, defines the regionY (t) = X∩{θ :
θk ≥ t} and the corresponding functionν(t) = α(Y (t)). Note
that X(Tk) = Y (τk) = X, so µ(Tk) = ν(τk) = α(X).

Theorem 2:The functionµ(t) is well-defined, monotoni-
cally increasingand continuous on the domain[τk, Tk]. The
function ν(t) is well-defined, monotonicallydecreasingand
continuous on the domain[τk, Tk].

The next Lemma implies definedness and monotonicity.
Lemma 2:Given someZ ∈ RK for which α(Z) exists, for

any Y ⊆ Z: α(Y ) exists andα(Y ) ≤ α(Z).
Proof: Easily, if someSZ routes some regionZ, then it

is feasible in (9)–(13) for anyY ⊆ Z. It is also true that the
optimal solution can only be smaller, soα(Y ) ≤ α(Z).

Next, we show right-continuity ofµ(t) and left-continuity
of ν(t). Note that our proofs are a bit more generic, in that
we prove continuity over any sequence of convex sets whose
elements are sufficiently “close” to each other:∀X,∀ǫ >

0,∃X ′ : dH(X,X ′) < ǫ, where dH denotes the Hausdorff
metric.

Lemma 3:For anyδ > 0 there is anǫ > 0 so that on any
extended(convex) setX ′ : X ⊂ X ′, dH(X,X ′) ≤ ǫ, it holds
that α(X ′) − α(X) ≤ δ.

Proof: Let γ > 0 be such that
∑

k∈K

√
pkPk1 ≤ γc

(where 1 is a vector of all 1s) and consider someS :

α(X) = α(X,S)
def
= minα α : S(X) ⊆ αM . For each

k ∈ K, let τk = minθ∈X θk, Tk = maxθ∈X θk, vk = Sk(τk)
and Vk = Sk(Tk). Let ǫ = min ( δ

γ
,mink τk). Searchv′

k :

1T v′
k = τk − ǫ, v′

k ≥ 0, |vkp − v′
kp| ≤ ǫ and V ′

k : 1T V ′
k =

Tk + ǫ, V ′
k ≥ 0, |Vkp − V ′

kp| ≤ ǫ. This can always be done.
Construct the routing functionS ′(θ) = f ′

kθk + g′k, k ∈ K,
f ′

k =
V ′

k
−v′

k

Tk−τk+2ǫ
, g′k = v′

k − (τk−ǫ)(V ′

k
−v′

k
)

Tk−τk+2ǫ
. One easily sees

thatS ′ is a routing function on anyX ′ ⊃ X, dH(X,X ′) ≤ ǫ,
i.e., ∀θ ∈ X ′ : S ′(θ) ≥ 0 and throughput invariance holds.
Additionally, ∀k ∈ K : dH(Sk(X),S ′

k(X ′)) ≤ √
pkǫ, hence

∀θ ∈ X ′ : ∃θ̂ ∈ X so thatS ′
k(θ) ≤ Sk(θ̂) +

√
pkǫ1. Next,

we show thatS(X) ⊆ αM ⇒ S ′(X ′) ⊆ (α + δ)M . Observe
∀θ ∈ X ′ :

∑

k∈K PkS ′
k(θ) ≤

∑

k∈K Pk(Sk(θ̂) +
√

pKǫ1) ≤
αc+γǫc ≤ (α+δ)c. Consequently,α(X ′) ≤ α(X)+δ, which
completes the proof.

Finally, continuity comes from the Lemma below.
Lemma 4:For anyδ > 0 there is anǫ > 0 so that on any

reduced(convex) setX ′ : X ′ ⊂ X, dH(X,X ′) ≤ ǫ, it holds
that α(X) − α(X ′) ≤ δ.

Proof: Chooseǫ > 0 as in Lemma 3 and consider any
X ′ ⊂ X, dH(X,X ′) ≤ ǫ. Note thatα(X ′) is defined since
X ′ ⊂ X. Let S : α(X ′) = α(X ′,S) and use Lemma 3 to
obtain a routing functionS ′ on the extension ofX ′ to X. Now,
we haveα(X ′) ≤ α(X) ≤ α(X,S ′), andα(X,S ′)−α(X ′) ≤
δ, henceα(X) − α(X ′) ≤ δ, which completes the proof.

Our task is now to find a valuet for which the oblivious
ratios of the two subregions, in particular the larger one, is
minimal. As bothµ(t) and ν(t) are continuous on[τk, Tk],
so is their maximum. We conclude thatmax(µ(t), ν(t)) has a
unique minimum on[τk, Tk] and this occurs whenµ(t) = ν(t).
Note that neitherµ(t) nor ν(t) changesstrictly, thus thet at
which the minimum occurs is not necessarily unique, and it
is not guaranteed that we can indeed decrease the oblivious
ratio using an orthogonal cut along this dimension. Some other
dimension might produce a better cut in such cases.

Our algorithm to generate a cut to subdivide a region along
some dimensionk employs binary search to findt ∈ [τk, Tk] :
µ(t) = ν(t). At every iteration of the search, we computeµ(t)
and ν(t) for the present value oft (this amounts to solving
the linear program (9)–(13) twice). If|µ(t) − ν(t)| < ǫ, we
stop. Otherwise, we continue the binary search until we find
a t for which µ(t) is (approximately) equal toν(t). Doing
this for all k ∈ K yields an orthogonal cutting plane that is
expected to give the largest reduction in the oblivious ratio
(see the pseudo-code in Algorithm 1).

C. The hybrid algorithm

Our hybrid distributed-centralized demand-oblivious routing
algorithm is a synthesis of the above ideas. The procedure is
simple: we start the algorithm from the entire set of admissible



Algorithm 1 Generate an orthogonal cut on regionX

function BEST_CUT(X)
for l ∈ K

τl ← minθ∈X θl; Tl ← maxθ∈X θl

tl ← BINARY SEARCH(t ∈ [τl, Tl] : µ(t) = ν(t))
Al ← µ(tl)

end for
k ← argminl∈K Al

return (k, tk)
end function

traffic matricesT , and in each iteration we try to improve
the oblivious ratio. First, we compute an oblivious routing
for the present region. If we are contented with the result,
that is, the oblivious ratio falls beyond a configured limit,
say,L, we stop. Otherwise, we use Algorithm 1 to divide the
current region into two along an orthogonal cut and recurse
into the resultant subregions. The algorithm, starting from the
“conventional” oblivious ratio, is expected to improve it in
every iteration, while it also generates the compound routing
functions with the corresponding regions. A pseudo-code for
the hybrid algorithm is given in Algorithm 2.

Algorithm 2 Hybrid demand-oblivious routing algorithm
HYBRID_OBLIVIOUS_ROUTING(T )
function HYBRID_OBLIVIOUS_ROUTING(X)

(α,S)← minS α : S(X) ⊆ αM
if α ≤ L then

store (X,S) and return
end if
(k, tk)←BEST_CUT(X)
HYBRID_OBLIVIOUS_ROUTING(X ∩ T ∩ {θ : θk ≤ tk})
HYBRID_OBLIVIOUS_ROUTING(X ∩ T ∩ {θ : θk ≥ tk})

end function

In the present form, Algorithm 2 iterates until the oblivious
ratio falls beyond the limitL globally. Note that in some
cases the algorithm may never stop, as it is not guaranteed
that the oblivious ratio reduces in every iteration. To avoid
this, one may terminate the recursion after the number of
regions exceeds a predefined value. This makes the algorithm’s
complexity polynomial, as all the steps are of polynomial
complexity too.

The result is a compound routing functionS = {(Ri,Si) :
i ∈ I}, in which all the individual routing functions take
the form uk = f i

kθk + gi
k. Thus, our routing function lends

itself readily to distributed implementation, and only minimal
central control is required to pick the right regioni ∈ I and
the appropriate settings off i

k and gi
k. For this, the central

controller periodically determines the actual traffic matrix and
checks whetherθ still resides in the current regionRi. If
yes, no action is taken. Otherwise, the controller searches
for a new region and downloads the new settings off i

k

and gi
k to the routers. In our hybrid scheme the search

simplifies significantly, thanks to the fact that the regionsare
hyper-rectangles. First, the controller checks whether the cut
generated in the first iteration, say,θk1

≤ t1, holds for θ.

Half of the regions is beneath and the other half is beyond
this cut, which immediately rules out half ofI. In the next
step, the controller checks the cut arising from the second
iteration, θk2

≤ t2, and so on, in each step halving the
remainingI. Organizing the regions into such a decision tree
improves the online complexity toO(log |I|) (from O(|I|)).
For more information on orthogonal decision trees, consult
[35]. Note, nonetheless, that in contrast to the centralized
scheme the hybrid algorithm does not guarantee continuity
over the boundaries of the regions (albeit it does soinside),
neither it allows for optimizing the routing.

V. SIMULATION STUDIES

Our first round of simulations focused on the performance
of conventional, distributed demand-oblivious routing [18]. We
evaluated two performance attributes: the oblivious ratioα as
computed by (1), plus a new, geometric characteristicη(S) we
call link overload probability, which corresponds to the chance
that a randomly chosen admissible traffic matrix, when routed
by S, causes link over-utilization at some parts of the network:

η(S) =
Vol(T \ D(S))

Vol(T )
= 1 − Vol(D(S))

Vol(T )
,

whereVol(X) denotes the volume of the setX.
We used the NSFNET Phase II topology [36],K source-

destination pairs were chosen according to the random bimodal
distribution (similarly to [18]), andp maximally node-disjoint
paths were computed for the users. We examined increasingly
complex scenarios by growingK from 1 to 9 (unfortunately,
volume computation becomes intractable for larger values of
K). The results are shown in Fig. 2 forp = 2 andp = 3. What
is interesting is not that the oblivious ratio seems to increase as
the number of users grow (this trend mostly vanishes for higher
Ks), but rather that even for very small values ofα, say,1.5,
there is an overwhelming chance (70-90%) that a randomly
picked traffic matrix will overload some links in the network.
This suggests that the oblivious ratio, used extensively inthe
literature, is not really a good measure to characterize the
performance of oblivious routing.

The centralized scheme, however, avoids any forms of link
over-subscription, at the price of increasing complexity.Our
results (see Fig. 3), obtained on the same scenarios as above,
indicate that the complexity of centralized demand-oblivious
routing explodes with the increase of user population.

Finally, we evaluated the performance of the hybrid
demand-oblivious routing algorithm in both real-world and
artificial networks. First, we used the ISP data maps from
the Rocketfuel dataset [37]. We applied the same method
as in [18] to obtain approximate POP-level topologies: we
collapsed the topologies so that nodes correspond to cities,
we eliminated leaf-nodes and we set link capacities inversely
proportional to the link weights. Source-destination pairs were
chosen according to the bimodal distribution and paths were
provisioned maximally node-disjoint (p = 2). We conducted
experiments when the number of users was small (K = 7),
medium (K = 21) and large (K = 35) compared to the size
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Figure 2: Oblivious ratio and link over-
load probability for the conventional
(distributed) scheme forp = 2, resp.
p = 3, paths per user.
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Figure 4: Oblivious ratio of the hybrid
algorithm at every iteration in three
experiments on AS 3257,K = 7.
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Figure 5: Oblivious ratio of the hybrid
algorithm at every iteration in three
experiments on AS 3257,K = 21.
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Figure 6: Oblivious ratio of the hybrid
algorithm at every iteration in three
experiments on AS 3257,K = 35.
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Figure 7: Oblivious ratio for artificial
graphs for increasing values ofk after
the initial, 2nd, 4th and 6th iteration.

of the network, with both linear and affine distributed routing
functions. During running the hybrid algorithm, we registered
the oblivious ratio of the routing function produced at every
iteration. Here, we only include some typical results for AS
3257 (Tiscali, Europe) in Fig. 4, 5 and 6.

We observe that the hybrid algorithm, taking off from
the “conventional” oblivious routing obtained at the initial
iteration, produces steadily more efficient compound routing
functions in each step. In some cases, our algorithm achieved
significant improvement in the oblivious ratio: forK = 7,
case (2), it reduced the ratio from1.4 to less than1.2, which
amounts to basically halving the overload. In other cases, the
improvement is not that significant. In addition, distributed
affine routing seems slightly more efficient than linear routing,
but the improvement does not seem to be worth the added
implementation complexity.

To justify these claims, we conducted experiments on artifi-
cial networks as well. In [20, Theorem 7.1], Azaret al. give a
directed graph of

(

k
2

)

+k+1 nodes and
(

k
2

)

source-destination
pairs on which oblivious routing works spectacularly poorly.
In particular, the oblivious ratio is at least

(

k
2

)

. Running the
hybrid scheme on these graphs (see Fig. 7) reveals that even
though there is no theoretical guarantee on improvement,
our algorithm indeed improves the oblivious ratio even in
contrived examples, and only a few regions are enough to
produce a better quality demand-oblivious routing.

VI. RELATED WORK

Demand-oblivious routing has extensive literature [18]–
[28]. Räcke gives a method with polylogarithmic oblivious
ratio in undirected graphs [19]; Azaret al. prove that no such
worst-case bound exists for directed graphs [20]; and [24]
presents a randomized algorithm of polylogarithmic oblivi-
ous ratio with high probability provided that the demand-
distribution is assumed known. A different approach is in [26].
All of these papers treat the distributed case. In contrast,we
allow centralized implementations as well. This improves the
worst case oblivious ratio to1. Regarding optimizability and
oblivious routing, see [27], [28].

The geometric framework for investigating fundamental
properties of networks was introduced by the authors in [31].
The hybrid distributed-centralized algorithm is based on [35].
Similarly to them, we build an orthogonal decision tree for fast
online search. However, [35] is limited to hyper-cubic regions
whose size is halved in each iteration, while our algorithm
calculates optimal orthogonal cuts.

Intra-domain traffic engineering algorithms proposed re-
cently are DATE [14], TEXCP [16], REPLEX [17] and
COPE [9]. Perhaps the closest to ours is COPE, which com-
bines the advantages of prediction-based traffic engineering
and demand-oblivious routing. Our scheme, in contrast, does
not need predicted state.



VII. C ONCLUSIONS

Demand-oblivious routing is, loosely speaking, a way to set
traffic splitting ratios at routers statically so that congestion
is minimized, no matter which combination of demands the
users pose to the network. In this paper, we generalized this
scheme in various ways. First, we showed that if one allows
splitting ratios to be set dynamically, depending on local as
well as global information, then congestion can be eliminated
completely. An added benefit of this centralized demand-
oblivious routing scheme is that it allows for optimizing the
routing function. However, a centralized scheme necessarily
raises grave implementation issues, ranging from prohibitive
online complexity and offline storage requirements to insta-
bility caused by unpredictable communication delays between
the routers and the central controller. Nonetheless, in small
enterprise networks, transit ISPs or wherever applicable,a
centralized scheme promises with significant boost in network
profit by better exploiting the costly network infrastructure and
delivering better service.

It turns out that the geometric algorithms for computing the
optimal routing function are subject to the explosion of com-
plexity often called asthe curse of dimensionality. To avoid
this trap, we proposed a hybrid distributed-centralized scheme,
which reduces the involvement of the central controller to
picking the right distributed routing function. Extensivesimu-
lations showed that subdividing the throughput space to only
a couple of regions already reduces congestion significantly.
Unfortunately, appealing properties of the centralized scheme
are lost, like feasibility, continuity and optimizability, and
future research is necessary to recover at least some of these.
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