Fairness in Capacitated Networks: a Polyhedral Approach

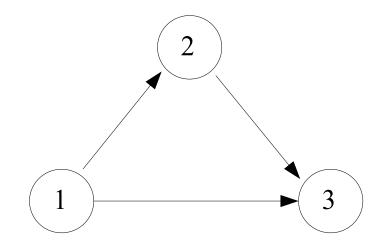
Gábor Rétvári, József J. Bíró, Tibor Cinkler

{retvari,biro,cinkler}@tmit.bme.hu

High Speed Networks Laboratory Department of Telecommunications and Media Informatics Budapest University of Technology and Economics H-1117, Magyar Tudósok körútja 2., Budapest, HUNGARY

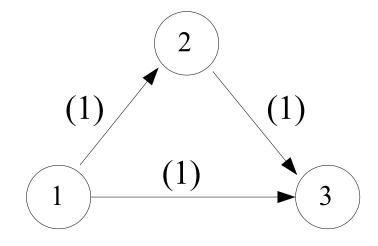
Model: the Geometry of Networking **Application:** fair throughput allocations in capacitated networks

A network



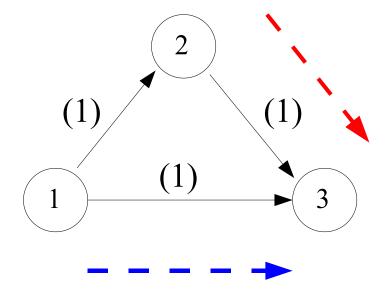
A graph G(V, E)

A network



A graph G(V, E)Edge capacities u

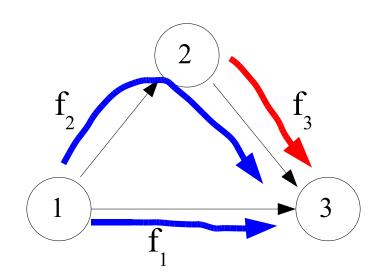
A network



 $(s_1, d_1) = (1, 3)$ $(s_2, d_2) = (2, 3)$

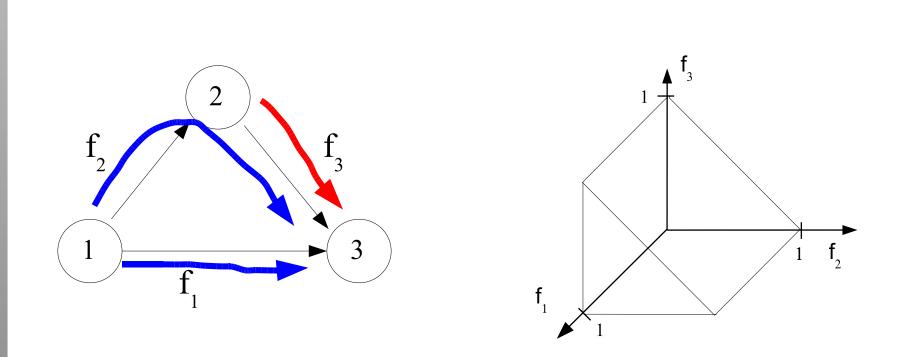
A graph G(V, E)Edge capacities uSource-destination pairs $(s_k, d_k) : k \in \mathcal{K}$

How does geometry come into the picture?



Given a network G_u

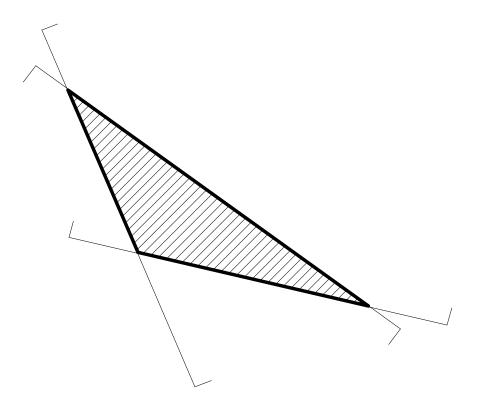
How does geometry come into the picture?



Given a network G_u

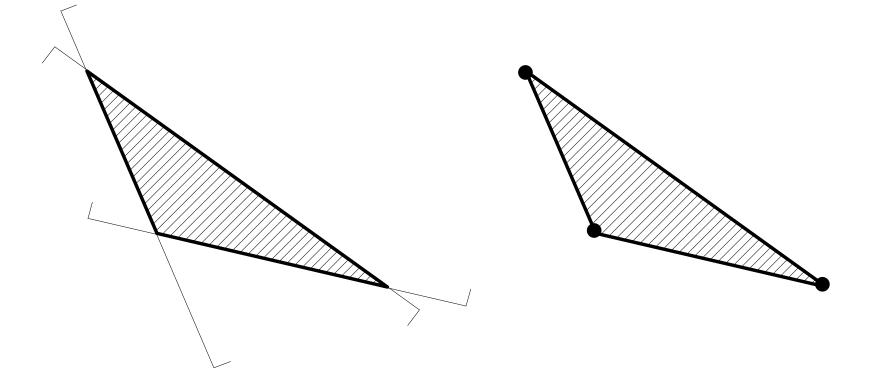
The flow polytope $M(G_u)$ describes all the routable path-flows

Polytopes



intersection of halfspaces

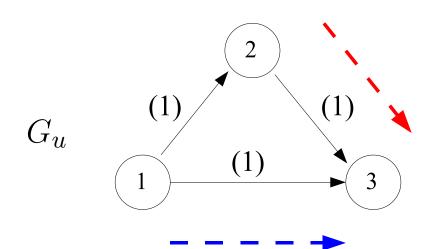
Polytopes



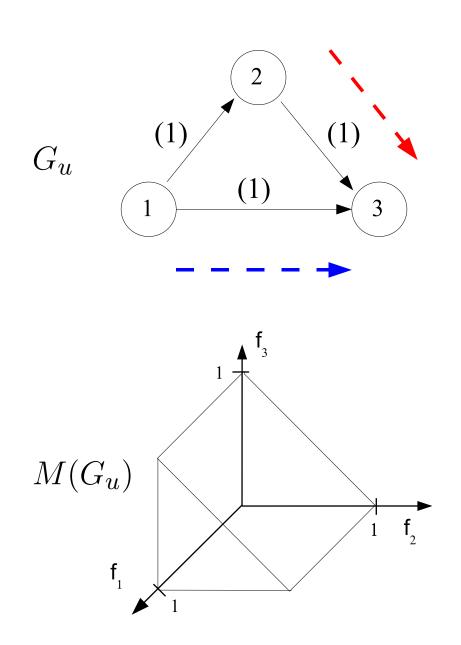
intersection of half- convex spaces points

convex combination of points

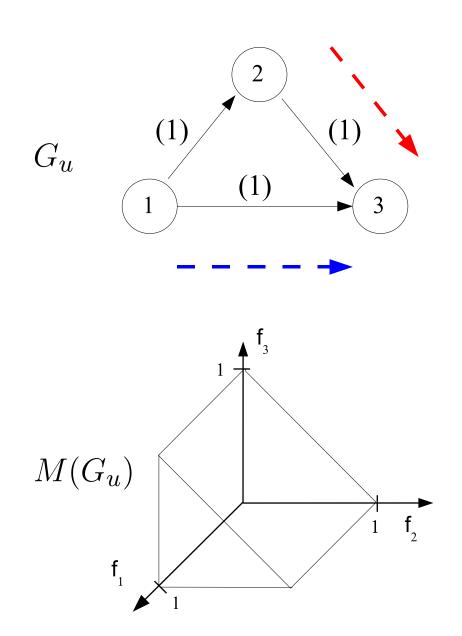
The throughput polytope



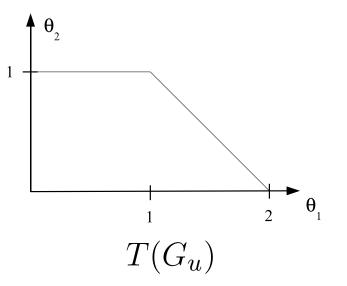
The throughput polytope



The throughput polytope



 $\theta_1 = f_1 + f_2$ $\theta_2 = f_3$

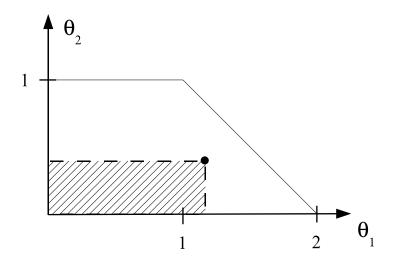


"The set of traffic matrices realizable in G_u "

"The set of traffic matrices realizable in G_u " Polytope

"The set of traffic matrices realizable in *G*_u" Polytope Full-dimensional

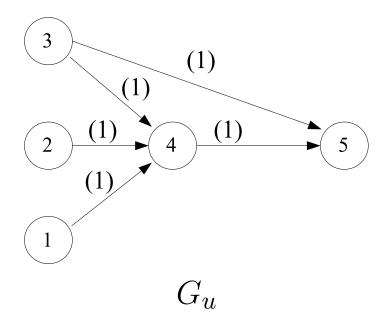
"The set of traffic matrices realizable in *G*_u" Polytope Full-dimensional Down-monotone

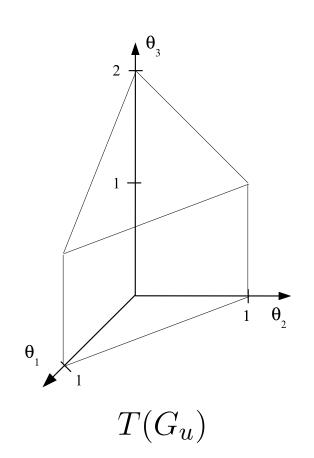


Another network

$$(s_1, d_1) = (1, 5)$$

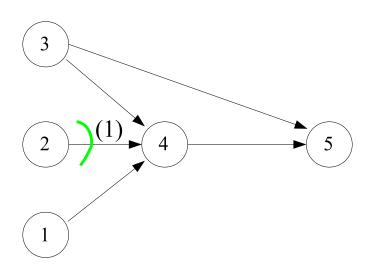
 $(s_2, d_2) = (2, 5)$
 $(s_3, d_3) = (3, 5)$



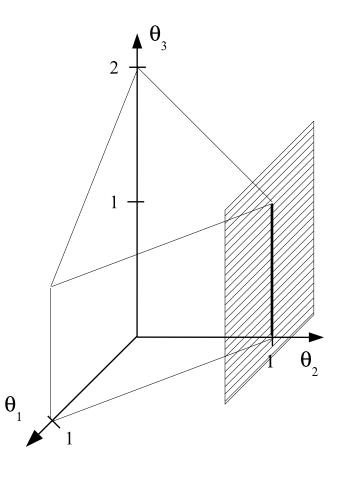


Minimum cuts (in the Ford-Fulkerson-sense)

$$(s_2, d_2) = (2, 5)$$

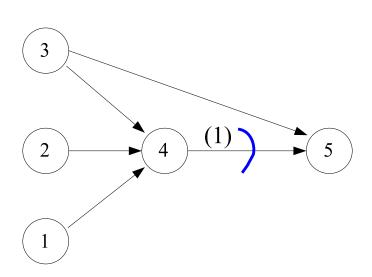


maximum flow = minimum capacity cut

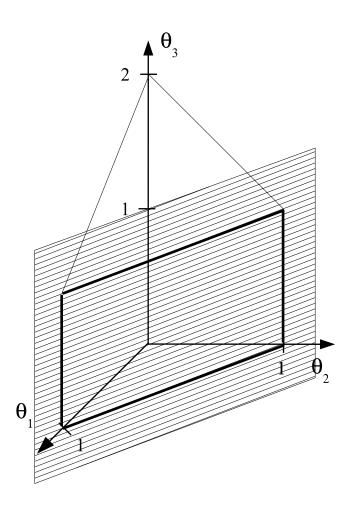


 $\theta_2 \leq 1$

Minimum cuts (in the multicommodity-sense)



separating edges of minimal capacity



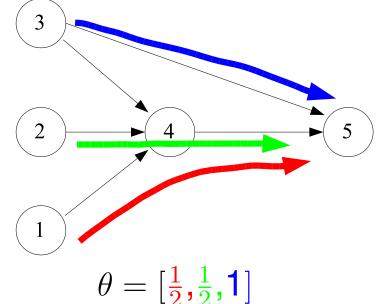
 $\theta_1 + \theta_2 \le 1$

Fairness in capacitated networks

An allocation of user throughputs that is

- realizable
- efficient
- rightful

Challenge: solve this problem without having to fix the paths

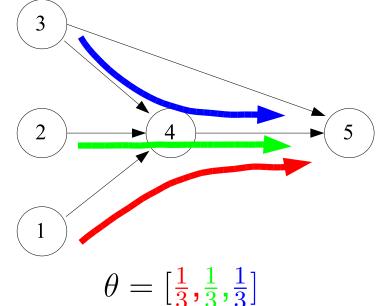


Fairness in capacitated networks

An allocation of user throughputs that is

- realizable
- efficient
- rightful

Challenge: solve this problem without having to fix the paths

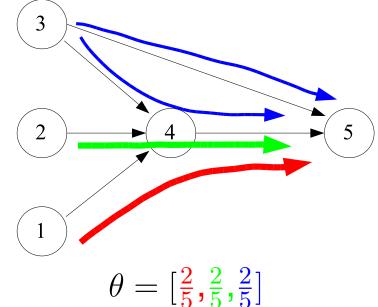


Fairness in capacitated networks

An allocation of user throughputs that is

- realizable
- efficient
- rightful

Challenge: solve this problem without having to fix the paths

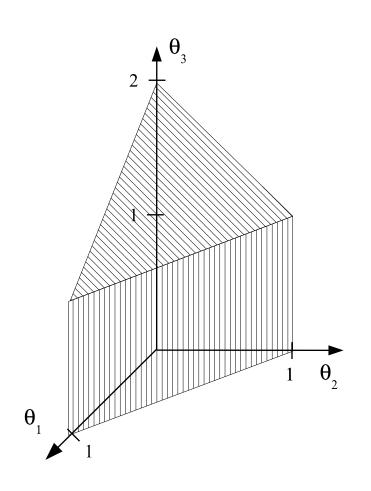


Efficient allocations (Non-dominatedness)

Definition: at least one user is blocked

Location: at the boundary

Problem: too wide a definition

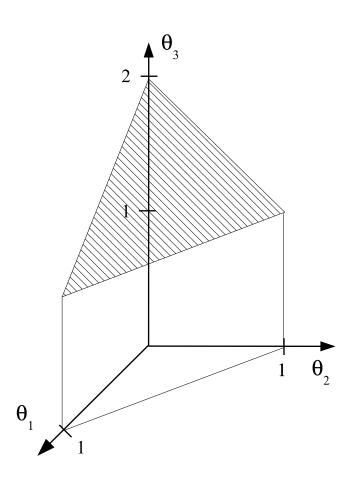


Efficient allocations (Pareto-efficiency)

Definition: no way to make any person better off without hurting anybody else

Location: at certain faces

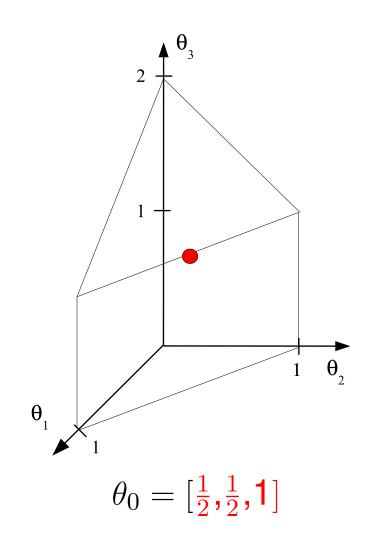
Problem: allows for dictatorship



Max-min fairness

Definition: no way to make anybody better off without hurting someone else who is already poorer

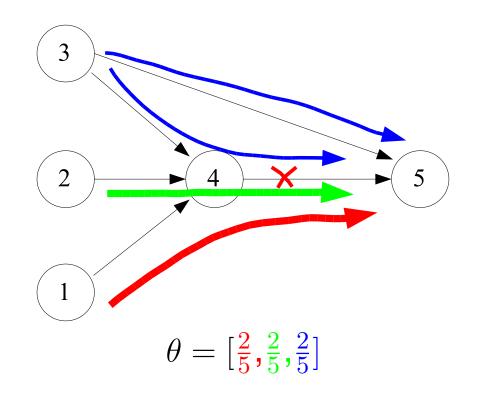
- a unique max-min fair allocation exists over $T(G_u)$
- only depends on G_u
- independent of any routing whatsoever



Bottlenecks (in the traditional sense)

A bottleneck edge (of some user *k*) is

- filled to capacity
- θ_k is maximal at the edge
- Water-filling algorithm

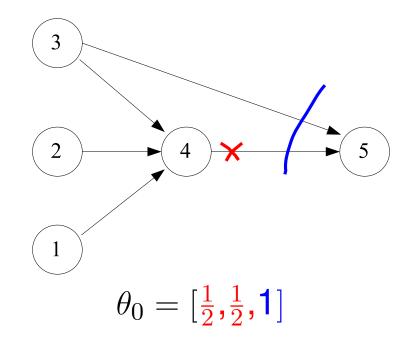


Generic bottlenecks

Geometrically: bottlenecks \equiv valid inequalities

Graph-theoretically: bottlenecks \equiv separating edge sets

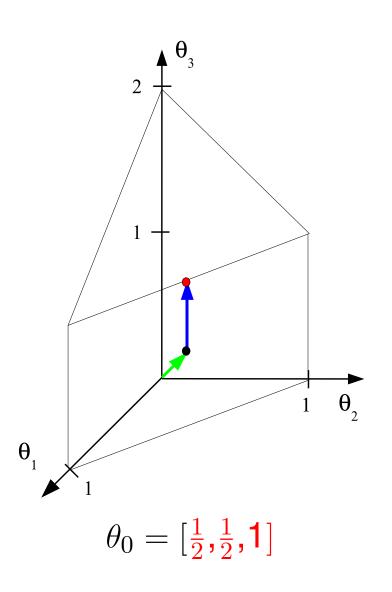
- filled to capacity by any routing
- θ_k is maximal



Water-filling

Find at least one bottleneck in each iteration

- start along the ray $\theta = [1, 1, 1]$
- proceed until blocked
- continue along non-blocked users



Conclusions

Geometry of Networking

- flow-theoretic reasoning
- geometric argumentation

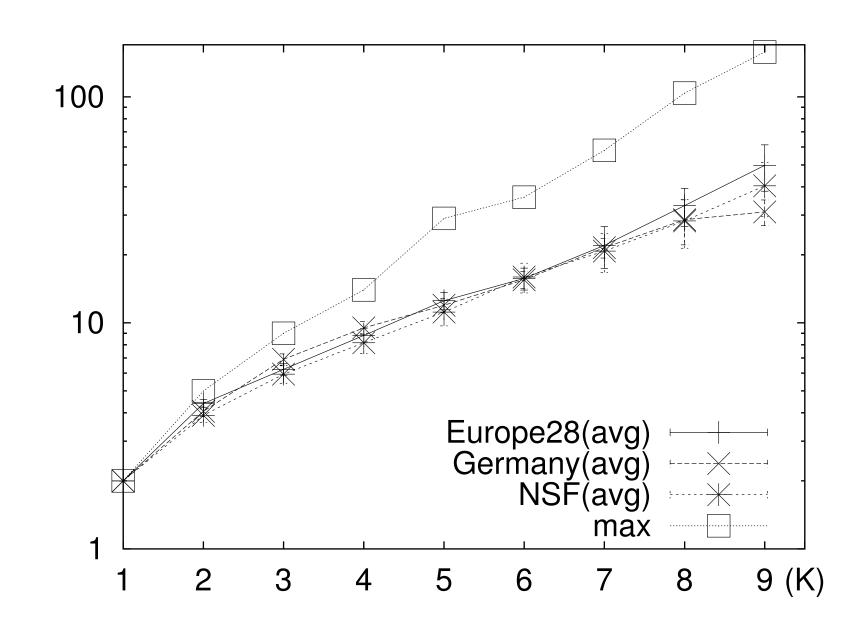
Network fairness: a side-product

- routing-independent max-min fair allocation
- exists and unique
- a bottleneck argumentation (in fact, 2 ones)
- water-filling

How to compute $T(G_u)$?

ray-shooting

Limitations



State aggregation for inter-domain traffic engineering

- hides topological information
- reveals just enough detail

Admission control

Routing

Network decomposition