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Agenda

Model: the Geometry of Networking
Application: fair throughput allocations in
capacitated networks
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A network

A graph G(V, E)
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A network

A graph G(V, E)

Edge capacities u
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A network

(s1, d1) = (1, 3)
(s2, d2) = (2, 3)

A graph G(V, E)

Edge capacities u

Source-destination pairs (sk, dk) : k ∈ K
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How does geometry come into the picture?

Given a network Gu
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How does geometry come into the picture?

Given a network Gu

The flow polytope M(Gu) describes all the
routable path-flows
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Polytopes

intersection of half-
spaces
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Polytopes

intersection of half-
spaces

convex combination of
points
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The throughput polytope

Gu
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The throughput polytope

Gu

M(Gu)
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The throughput polytope

Gu

M(Gu)

θ1 = f1 + f2

θ2 = f3

T (Gu)
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Properties of T (Gu)

“The set of traffic matrices realizable in Gu”
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Properties of T (Gu)

“The set of traffic matrices realizable in Gu”
Polytope

– p. 7



Properties of T (Gu)

“The set of traffic matrices realizable in Gu”
Polytope
Full-dimensional
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Properties of T (Gu)

“The set of traffic matrices realizable in Gu”
Polytope
Full-dimensional
Down-monotone
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Another network

(s1, d1) = (1, 5)

(s2, d2) = (2, 5)

(s3, d3) = (3, 5)

Gu T (Gu)
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Minimum cuts (in the Ford-Fulkerson-sense)

(s2, d2) = (2, 5)

maximum flow =
minimum capacity cut

θ2 ≤ 1
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Minimum cuts (in the multicommodity-sense)

separating edges of
minimal capacity

θ1 + θ2 ≤ 1
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Fairness in capacitated networks

An allocation of user throughputs that is
– realizable
– efficient
– rightful
Challenge: solve this problem without having to
fix the paths

θ = [1
2
,1

2
,1] – p. 11
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Fairness in capacitated networks

An allocation of user throughputs that is
– realizable
– efficient
– rightful
Challenge: solve this problem without having to
fix the paths
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Efficient allocations (Non-dominatedness)

Definition: at least
one user is blocked
Location: at the
boundary
Problem: too wide a
definition
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Efficient allocations (Pareto-efficiency)

Definition: no way to
make any person
better off without
hurting anybody else
Location: at certain
faces
Problem: allows for
dictatorship
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Max-min fairness

Definition: no way to
make anybody better
off without hurting
someone else who is
already poorer

– a unique max-min fair
allocation exists over
T (Gu)

– only depends on Gu

– independent of any
routing whatsoever

θ0 = [1
2
,1

2
,1]
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Bottlenecks (in the traditional sense)

A bottleneck edge (of some user k) is
– filled to capacity
– θk is maximal at the edge
Water-filling algorithm

θ = [2
5
,2

5
,2

5
]
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Generic bottlenecks

Geometrically: bottlenecks ≡ valid inequalities

Graph-theoretically:
bottlenecks ≡ separating
edge sets
– filled to capacity by

any routing
– θk is maximal

θ0 = [1
2
,1

2
,1]
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Water-filling

Find at least one
bottleneck in each
iteration
– start along the ray

θ = [1, 1, 1]

– proceed until blocked
– continue along

non-blocked users
θ0 = [1

2
,1

2
,1]
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Conclusions

Geometry of Networking
– flow-theoretic reasoning
– geometric argumentation
Network fairness: a side-product
– routing-independent max-min fair allocation
– exists and unique
– a bottleneck argumentation (in fact, 2 ones)
– water-filling
How to compute T (Gu)?
– ray-shooting
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Limitations
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Further applications

State aggregation for inter-domain traffic
engineering
– hides topological information
– reveals just enough detail
Admission control
Routing
Network decomposition
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