
Fairness in Capacitated Networks:
a Polyhedral Approach

Gábor Rétvári, József J. Bíró, Tibor Cinkler

High Speed Networks Laboratory
Department of Telecommunications and Media Informatics

Budapest University of Technology and Economics
H-1117, Magyar Tudósok körútja 2., Budapest, Hungary

E-mail: {retvari, biro, cinkler}@tmit.bme.hu

Abstract—The problem of fair and feasible allocation of user
throughputs in capacitated networks is investigated. The main
contribution of the paper is a novel geometric approach, which
facilitates to generalize several throughput allocation strategies,
most importantly max-min fairness, from the traditional “fixed-
path” model to a more versatile, routing-independent model.
We show that the set of throughput configurations realizable
in a capacitated network makes up a polyhedron, which gives
rise to a max-min fair allocation completely analogous to the
conventional one. An algorithm to compute this polyhedron is
also presented, whose viability is demonstrated by comprehensive
evaluation studies.

I. INTRODUCTION

In this paper we address the problem of allocating scarce
resources in a network so that every user gets a fair share,
for some reasonable definition of fairness. For example, a fair
allocation would be such that every user gets the same share,
and the allocation is maximal in the sense that there does
not exist any larger, even and feasible allocation. We shall
focus on the fair allocation problem that arises most often in
networking: compute a fair rate at which users can send data
in a telecommunications network, whose links are of limited
capacity.

Perhaps the most practical way to understand the context
of this paper is through an example. Consider the simple
directed network of Fig. 1a, and suppose that there are 3
source-destination pairs (or users or commodities): (1, 5),
(2, 5) and (3, 5) (see Fig. 1b). All the edge capacities are
uniformly 1. Now, the task is to compute a transmission rate
(or throughput, for short) for each user that is on the one
hand feasible (so it can be routed in the network without
violating the edge capacities) and, on the other hand, satisfies
some fairness criteria. For example, according to the above
naive interpretation of fairness, we would allocate 1

2 amount
of throughput for each user. This allocation is certainly feasible
and gives even share to each user, and it is also maximal in
this regard.

Amongst the many different definitions of fairness perhaps
the most prevailing one is max-min fairness. A max-min fair
allocation is, roughly speaking, such that we cannot increase
the throughput of any of the users without decreasing the
throughput of some other user, which is already smaller [1].

Max-min fairness is a simple yet powerful fairness criterion,
and consequently it has grown to be an essential ingredient in
diverse fields of networking, like flow control protocols [2],
bandwidth sharing in ATM networks [3], etc. For further anal-
ysis of the related extensive literature, the reader is referred
to [4] and [5]. For some economical aspects, see [6].

Max-min fairness is most easily described in a network
model, where a single path is assigned to each user and this
path remains fixed during the lifetime of the communication.
Here, the task is to compute a rate at which users can send data
to their path, so that the allocation is max-min fair and neither
of the edges gets overloaded. A very useful tool to solve this
problem is the notion of bottlenecks [4]. A bottleneck edge,
with respect to a certain user, is an edge with the properties
that (i) it is filled to capacity and (ii) the user has the maximum
throughput amongst the users whose path traverses the edge.
Bottlenecks are very tightly coupled with max-min fairness,
for it can be shown that an allocation of throughputs is max-
min fair over some fixed single-path routing, if and only if all
the users have a bottleneck edge.

From the practical standpoint, the importance of this bot-
tleneck argumentation is multi-faceted. First, as the name
suggests, bottlenecks point to certain shortages of resources
in the network that, given the selected set of paths, constrain
the fair allocation. Additionally, bottlenecks substantiate a fast
algorithm, the so called water-filling algorithm, to find a max-
min fair allocation [4]: we increase the throughput of the users
at the same pace until an edge gets saturated. Then we fix
the throughput of the users whose path passes through the
saturated edge and keep on increasing others. The procedure
is repeated until eventually a bottleneck is found for each user,
and the allocation obtained is guaranteed to be the max-min
fair allocation.

Assume that, in the sample network of Fig. 1, path 1→ 4→
5 is assigned to user (1, 5), path 2→ 4→ 5 to user (2, 5), and
the direct path 3 → 5 to user (3, 5), respectively. Then, the
edge that first becomes saturated as the water-filling algorithm
proceeds is edge (4, 5), which becomes the bottleneck edge for
users (1, 5) and (2, 5). So the throughput of both of these users
is fixed at 1

2 , and only the throughput of user (3, 5) is increased
any more. This, in turn, gets saturated at a throughput of 1 unit.

(a) topology

Users:
(s1, d1) = (1, 5)
(s2, d2) = (2, 5)
(s3, d3) = (3, 5)

(b) parameters (c) feasible allocations

Figure 1: A sample network and the set of throughputs
realizable in it. All edge capacities are equal to 1. There
are 3 source-destination pairs (1, 5), (2, 5) and (3, 5), whose
throughput is denoted by θ1, θ2 and θ3, respectively.

The final max-min fair allocation is represented by the vector
[12 , 1

2 , 1], using the order of users set out above.
Highlighting its usefulness, several extensions and ramifica-

tions of max-min fairness have come to existence throughout
the years (min-max fairness [7], weighted max-min fairness
[4], max-min utility fairness [8] and various combinations
of these). Since all of these concepts can be traced back to
the unweighted case [7] and a respective bottleneck argu-
mentation, analogous to the one above, can always be made,
we shall not address these concepts hereafter. Furthermore,
the limitation that each user employs one single, fixed path
can also be weakened somewhat without invalidating the
bottleneck argumentation: it is permitted to assign several
paths to each of the users, provided that the splitting ratios
at branching nodes, and the paths themselves, remain fixed.

Curiously, the actual selection of paths influences the emer-
gent max-min fair allocation to a great extent. For example,
if the path of user (3, 5) is changed to 3 → 4 → 5, then the
max-min fair throughput vector turns to [13 , 1

3 , 1
3]. If we assign

both paths 3 → 5 and 3 → 4 → 5 to user (3, 5) with the
restriction that traffic must be split equally between the two
paths, then the max-min fair allocation ends up to be [25 , 2

5 , 2
5].

Apparently, different routings give rise to different max-min
fair allocations, which is somewhat unnatural since, after all,
it is the network that determines feasible allocations. Accord-
ingly, we should first compute a max-min fair allocation that
is only dependent on the network itself, and only after this we
should pick a routing that realizes it. Below, we shall refer to
this problem as the general max-min fair allocation problem,
and all the former incarnations will be called fixed-path max-
min fairness problems.

Recently, several attempts have been made to address the
general max-min fair allocation problem using lexicographical
optimization [9], [7]. These works are based on the observation
that a max-min fair allocation is lexicographically maximal
above the set of all feasible routings, so successive linear

programming can be invoked to obtain it. The approach
taken in [7] is, however, more general: it not only states the
existence and the uniqueness of a max-min fair allocation over
any compact and convex set, which the set of all possible
routings certainly is, but it also gives an algorithm, called
Max-min Programming, to compute it over any such set.
While these excellent works provide adequate quantitative
treatment, an in-depth qualitative analysis, which would reveal
the intricate relationship between the specifics of a network
and the emergent max-min fair allocation, is still absent in
the literature. For instance, it is still not clear whether or
not the bottleneck argumentation and, consequently, the water-
filling algorithm generalize from the fixed-path model to the
routing-independent, generic model, and if yes, then in what
particular form bottlenecks arise. These questions have gone
mostly unresolved so far, albeit their relevance has been very
clearly pointed out [7, Section “When bottleneck and water-
filling become less obvious”].

In this paper we offer affirmative answers to these important
questions. After a quick roundup on the notation in Section II,
we shall introduce a novel polyhedral description of the
throughput allocations realizable in a network (see Section III).
This polyhedral description is so concise that for simple
networks we can as well easily visualize it (see Fig. 1c)
and it allows us to gain interesting new insights into the
nature of capacitated networks and the throughput allocation
strategies they give rise to. In particular, in Section IV we study
non-dominated and Pareto-efficient allocations, basic concepts
of which more sophisticated ones can be constructed. Then,
we turn to max-min fair allocations and we reveal how the
bottleneck argumentation extends to the routing-independent
case. Finally, some related algorithmic questions are discussed
and then Section V concludes the paper.

Reading this paper requires a minimal understanding of the
theory of network flows and linear programming. To make
it more accessible even to the less mathematically inclined,
all the proofs are deferred to the Appendix. For a good
introductory material on polyhedra, the reader is referred to
[10].

II. PRELIMINARIES

In this section, we present the most important notations and
conventions we shall use throughout this paper. A vector will
be denoted by a lowercase letter. Most of the time, the ith
coordinate of a vector v will be referred to as vi, but in some
cases, to stress that we are dealing with a specific coordinate,
we shall use the notation (v)i. What now follows is a list of
the notation we shall use in the sequel:

• G(V,E): a directed graph, with the set of nodes V (|V | =
n) and the set of directed edges E (|E| = m).

• u: the column m-vector of edge capacities.
• (sk, dk) : k ∈ K, K = {1, . . . ,K}: the set of source-

destination pairs (users or commodities).
Note that the graph G(V,E), the edge capacities u and the set
of source-destination pairs (sk, dk) : k ∈ K together describe a
network, which will be referred to as Gu for brevity. Hereafter,

we shall only deal with networks that satisfy certain, rather
mild, regularity conditions:

Definition 1: A network Gu is regular, if
• a path exists in Gu from sk to dk for each k ∈ K and
• all edge capacities are finite and strictly positive.

It is easy to see that any network can be reduced to a collection
of regular networks by eliminating edges with zero capacity
and fixing the throughput of the un-connected users at zero.
The further notation goes on as follows:

• ei: the canonical unit vector (of proper size implied by
the context) with 1 in the position corresponding to the
ith coordinate and all zero otherwise.

• 1: an all-one vector of proper size.
• Pk: the set of all directed paths from sk to dk in G(V,E)

for some k ∈ K.
• ∆k: an m × |Pk| matrix. The column corresponding to

path P ∈ Pk holds the path-arc incidence vector of P .
• fk: a column vector of path-flows, whose coordinate

corresponding to path P ∈ Pk denotes the amount of
flow sent by user k to path P .

• f : a column-vector of fks: f = [f1, f2, . . . , fK]. In fact,
f represents a routing in Gu.

• θk: the throughput of some user k ∈ K, that is, the
aggregate flow that flows from sk to dk. The vector of
throughputs is a column K-vector θ.

• βθ ≤ b: an inequality constraining the set of throughputs,
where β is a row K-vector and b is a scalar. An inequality
βθ ≤ b is valid for some set T , if ∀θ ∈ T : βθ ≤ b.

• T (Gu): the set of throughputs realizable in the network
Gu, subject to edge capacity constraints.

• S: a separating edge set, that is, a set of edges S ⊆ E

whose removal from the network would destroy all the
directed sk to dk paths for at least one user k ∈ K.

• KS : the set of users disconnected by some separating
edge set S.

III. THE THROUGHPUT POLYTOPE

The central problem we investigate in this paper is to
determine a feasible and fair allocation of user throughputs in a
capacitated network, independently of paths fixed beforehand
in any ways. A plausible way to attack this problem would
be to describe the entire set of possible flow routings f and
throughput allocations θ as a giant set and then search for
the fair allocation in this very set. Consider the following
formulation:

M(Gu) = {[f, θ] :
∑

k∈K
∆kfk ≤ u (1)

1fk = θk ∀k ∈ K (2)
fk ≥ 0, θk ≥ 0 ∀k ∈ K } (3)

Readers more proficient in network flow theory might find this
formulation familiar, since M(Gu) is in fact the set of feasible
solutions of the family of multicommodity flow problems. Here
(1) requires that, for all edges, the sum of all path-flows routed
to the edge does not exceed the capacity of that edge; (2)
produces the throughput for each user by summing up the

flow traveling along each of its paths; and (3) requires the
flows and throughputs to be non-negative.

While using M(Gu) to deduce a routing-independent fair
allocation is clearly viable (see e.g. [9]), it is unfortunate in
many regards, most notably because M(Gu) usually has a
plethora of problem variables, the majority of which com-
pletely redundant. This is because, at the moment, we are
only interested in a fair throughput allocation but not in the
way this allocation is accommodated in the network, apart
from the requirement that the allocation must be realizable
by some legitimate routing. Therefore, instead of studying the
full-fledged set M(Gu) one might rather choose to eliminate
the path-flow variables f all together from the description.
The emergent set, denoted hereafter by T (Gu), contains all
the possible throughput allocations feasible in Gu:

Definition 2: T (Gu) = {θ : ∃f so that [f, θ] ∈M(Gu)}.
For the sample network of Fig. 1a, the corresponding set of

feasible throughput allocations is depicted in Fig. 1c. To obtain
it, we reason as follows. Let θ1 denote the throughput of user
(1, 5), θ2 of user (2, 5) and θ3 of user (3, 5), respectively. Since
we can not push more flow than 1 via the edge (4, 5), which is
traversed by all the potential paths of user (1, 5) and (2, 5), we
have that θ1+θ2 ≤ 1. Furthermore, after routing 1 unit of flow
of user (3, 5) along the edge (3, 5), every additional ε units of
flow of this user have to traverse edge (4, 5), decreasing the
aggregate throughput remaining available to user (1, 5) and
(2, 5) by exactly ε units. So, θ1 + θ2 + θ3 ≤ 2. It can be
shown that these inequalities, together with the restriction that
the throughputs are non-negative, give rise to a complete and
irredundant description of the set of throughputs realizable in
the network of Fig. 1a:

T (Gu) = {[θ1, θ2, θ3] : θ1 + θ2 ≤ 1 (4)
θ1 + θ2 + θ3 ≤ 2 (5)

θ1, θ2, θ3 ≥ 0 } (6)

Observe how all the constraints turned out to be linear. Sets
of similar kind are called polyhedra, which might be familiar
as these are exactly the geometric objects that underlie linear
programming [10]. A polyhedron is basically an intersection
of finitely many halfspaces, and as such, closed and convex.
Additionally, a bounded polyhedron is called a polytope. The
result below reveals that the set T (Gu) is not coincidentally
polyhedral in our example.

Proposition 1: T (Gu) is a polyhedron. Provided that Gu is
regular, T (Gu) is a polytope.

Henceforward, we shall only deal with regular networks,
and so we shall refer to T (Gu) as the throughput polytope.
But not just that T (Gu) is a polytope with “nice” properties
like convexity and compactness, it has yet another interesting
quality that makes it even more attractive to work with:
observe that in the formulation (4)–(6), every coefficient and
also the right-hand-side of all the inequalities are non-negative.
This, as the next result claims, is again not coincidental,
but instead a very important general property of throughput
polytopes, one that we shall exploit in the sequel to study fair

(a) topology (edge capacity is marked in parentheses)

Users:
(s1, d1) = (1, 6)
(s2, d2) = (7, 8)
(s3, d3) = (7, 5)

Max-min fair allocation:
[θ1, θ2, θ3] = [43 , 5

3 , 4
3]

(b) parameters (c) T (Gu)

Figure 2: Another sample network and the associated set of feasible throughputs. All edge capacities are equal to 1 except for
edge (7, 8), whose capacity is 3. Pareto-efficient allocations are marked by bold lines, while the max-min fair point is denoted
by a small circle.

allocations arising in T (Gu).
Proposition 2: For a regular network Gu, the corresponding

throughput polytope can always be transformed to the follow-
ing standard form:

T (Gu) = {θ ≥ 0 : βiθ ≤ bi, ∀i ∈ I} ,

where I is a (finite) index set and for each i ∈ I it holds that
βi ≥ 0 and bi is a positive scalar.

Since the network of Fig. 1a is not complex enough to
demonstrate anything but the most basic ideas, next we in-
troduce a bit more complicated sample network (see Fig. 2).
The users are as follows: let (s1, d1) = (1, 6), (s2, d2) = (7, 8)
and (s3, d3) = (7, 5). Computing the throughput polytope by
hand, while doable, is a bit more involving for such nontrivial
networks, therefore we shall discuss an algorithm to automate
this process in Section IV-D. Running this algorithm on the
network of Fig. 2a yields the standard form of its throughput
polytope:

T (Gu) = {[θ1, θ2, θ3] : θ1 ≤ 2 (7)
θ2 + θ3 ≤ 3 (8)
θ1 + 2θ3 ≤ 4 (9)
θ1, θ2, θ3 ≥ 0 } (10)

IV. THROUGHPUT ALLOCATION STRATEGIES

In the previous section, we introduced the throughput poly-
tope as the lower-dimensional projection of the set of all
feasible routings and throughput allocations, with the path-
flow variables eliminated. In this section, we shall study
efficient and fair allocation strategies arising in a network by
means of the corresponding throughput polytope.

A. Efficient throughput allocations
When deciding which particular throughput allocation to

offer for the users, the first requirement one has to consider is
that the allocation must be feasible. Feasibility is, however,
easy to assure in our model: one might choose whatever
θ ∈ T (Gu) and the construct then automatically assures that
this θ will be realizable by some legitimate routing. The second
requirement is that θ must be efficient. By efficiency we mean

that the throughput allocation, or more precisely the routing
that realizes it, must utilize the valuable network resources
in an effective way. While there are many different notions
of efficiency, below we concentrate only on the two most
prevalent ones: non-dominated and Pareto-efficient allocations.

A user, say, k, is non-dominated at some allocation θ0 ∈
T (Gu), if either it is not possible to increase its throughput
from (θ0)k without violating edge capacities, or increasing it
is only possible at the cost of decreasing the throughput of
some other user [6]. More formally:

Definition 3: A user k ∈ K is dominated at θ0 ∈ T (Gu),
if ∃ε > 0 so that θ0 + εek ∈ T (Gu). Otherwise, k is non-
dominated at θ0. Furthermore, an allocation of throughputs θ0

is non-dominated, if at least one user is non-dominated at θ0.
Otherwise, θ0 is dominated.

In the network of Fig. 2, the point θ0 = [2, 0, 1] is for
instance non-dominated, since user (1, 6) is at its maximum
flow. In other words, as we try to increase the throughput
of (1, 6) from θ0, a constraint in T (Gu) becomes active (in
this case this constraint is θ1 ≤ 2), which inhibits any further
increase. Besides user (1, 6), (7, 5) is also non-dominated at
θ0, since its throughput can only be increased at the cost of
decreasing the throughput of (1, 6). Here, a constraint causing
non-dominatedness is for example θ1 + 2θ3 ≤ 4. Finally, we
see that user (7, 8) is dominated at θ0, since we can by no
means find a valid inequality that would block it at θ0. This
suggests that θ0 is only partially efficient, since there exist
other feasible allocations in the network delivering strictly
higher throughput to at least one user and, at the same time,
not decreasing the throughput received by anyone else. Such
a more efficient allocation is for instance θ = [2, 2, 1]

The above reasoning helps identify where exactly dominated
and non-dominated allocations are located in the throughput
polytope. Since at least one constraint is binding at any non-
dominated point, these allocations are exactly those residing
at any one of the facets of T (Gu) (note that, for simplicity,
we do not count the constraints θk ≥ 0 as facets here). In
contrast, dominated throughput vectors lie in the interior of
T (Gu).

The following important result, which we shall often put to

use in the sequel, relates a non-dominated allocation to a very
special inequality (and a dominated one to the lack thereof).

Theorem 1: Let θ0 ∈ T (Gu) be non-dominated. Now, some
set of users N ⊆ K is non-dominated, and K\N is dominated
at θ0, if and only if there exists an inequality βθ ≤ b so that:

i) βθ ≤ b is valid for T (Gu) and β ≥ 0
ii) βθ0 = b

iii) (β)k > 0 if and only if k ∈ N

The proof of the theorem (see the Appendix) is based on the
observation that if one sums up all the constraints of T (Gu)
that are binding at θ0, then a valid inequality is obtained that
satisfies all the requirements of the theorem. In the case of
the non-dominated point θ0 = [2, 0, 1], this valid inequality
would be the sum of the two binding constraints (7) and (9):
θ1 + θ3 ≤ 3.

In their own right, non-dominated allocations do not make
really much sense. Why we still discuss them is because non-
dominatedness is exactly the essential building block of which
we can construct more complex and more efficient allocation
strategies. The first such concept we discuss here is Pareto-
efficiency.

A Pareto-efficient allocation is such that “there is no way
to make any person better off without hurting anybody else”
[6]. That is, for a Pareto-efficient allocation of throughputs
it holds that any user is either at its maximum flow, so the
throughput can not be increased at all, or otherwise increasing
it is only possible at the expense of decreasing the throughput
of some other user. It is then easy to dissect Pareto-efficiency
to non-dominatedness.

Definition 4: An allocation of throughputs θ0 ∈ T (Gu) is
(strictly) Pareto-efficient if all the users are non-dominated at
θ0.

To identify the faces of T (Gu) that contain Pareto-efficient
allocations, we reason as follows. Being non-dominated, a
Pareto-efficient vector must reside at some facet of T (Gu). In
fact, we expect it to reside at certain intersections of the facets,
since Pareto-efficiency is generally a stronger property than
non-dominatedness. And indeed, applying directly Theorem 1
yields the following characterization:

Corollary 1: Some θ0 ∈ T (Gu) is Pareto-efficient, if and
only if there exists an inequality βθ ≤ b, so that:

i) βθ ≤ b is valid for T (Gu) and β ≥ 0
ii) βθ0 = b

iii) ∀k ∈ K : (β)k > 0

Corollary 1 suggests a simple algorithm to search for a
Pareto-efficient allocation in T (Gu): taking some random
ordering of the users, increase the throughput of the users one
by one as long as it is possible. Eventually, all the users will be
blocked so a valid inequality βθ ≤ b with all strictly positive
(β)k coordinates must be binding at the resultant point. In
the case of the network of Fig. 2a, the two line segments
joining the points [2, 3, 0] and [2, 2, 1], respectively [2, 2, 1]
and [0, 1, 2], contain all the Pareto-efficient points (see the
bold line segments in Fig. 2c).

B. Max-min fair allocations
Besides ensuring feasibility and efficiency, a throughput

allocation strategy must also guarantee that network resources
are arbitrated between the users in an equitable and rightful
manner or, in other words, it must be fair. From the aspect of
fairness, Pareto-efficiency is a somewhat weak, though clearly
desirable criterion. Desirable, because it avoids the wastage
of resources non-dominatedness generally allows for. Weak,
because Pareto-efficiency permits allocations where one user
gets everything, which is not really fair (observe for instance
that the allocation [0, 0, 2] is Pareto-efficient in the network of
Fig. 1). The concept of max-min fairness is based on the idea
to pick the “fairest” Pareto-efficient allocation. Here, fairness
means that any throughput increase must be at the cost of a
decrease of some already smaller throughput. Formally:

Definition 5: Some θ0 ∈ T (Gu) is max-min fair, if ∀θ ∈
T (Gu) : (θ)k > (θ0)k ⇒ ∃l ∈ K \ {k}, so that (θ)l < (θ0)l

and (θ0)l ≤ (θ0)k.
It is by far not evident whether or not this definition makes

sense in the case of T (Gu) or, in fact, how many max-min fair
allocations it yields. Though, the following claim states that
the notion of max-min fairness over T (Gu) is well-defined:

Proposition 3: Let Gu be a regular network. Then there
exists a max-min fair allocation over T (Gu), and it is unique.

Being now safe that the general max-min fair allocation
problem is soluble, we now move on to investigate how to ac-
tually compute that solution. In the case of non-dominated and
Pareto-efficient allocations, it turned out really beneficial to
characterize the conforming vectors in terms of valid inequal-
ities. This characterization helped localize non-dominated and
Pareto-efficient allocations in T (Gu), and also suggested a
simple algorithm to compute one. Below we again take this
route, however our characterization now involves not just one
but exactly K valid inequalities (one for each user).

Corollary 2: Some θ0 ∈ T (Gu) is max-min fair, if and only
if for each k ∈ K there exists an inequality βθ ≤ b, the so
called bottleneck inequality, such that:

i) βθ ≤ b is valid for T (Gu) and β ≥ 0
ii) βθ0 = b

iii) ∀l ∈ K : (β)l > 0 if and only if (θ0)l ≤ (θ0)k

Again, consult the Appendix for the proof.
What is remarkable in this result is that bottleneck in-

equalities work very much like bottleneck edges in the fixed-
path model (hence the name). With this analogy in mind we
could rephrase Corollary 2 as: an allocation of throughputs
is max-min fair in the generic sense, if and only if all users
have a bottleneck (inequality). This formulation is exactly the
same as the one given for the fixed-path model, only the
definition of bottlenecks differs somewhat. Interestingly, the
analogy goes even further, since not just bottlenecks but the
water-filling algorithm too extends to the general max-min fair
allocation problem. Recall that the water-filling algorithm is
based on the idea to generate a bottleneck for at least one
user in every iteration, no matter in which form bottlenecks
are defined. Provided that the bottlenecks arise in the form

of a bottleneck inequality, Corollary 2 guarantees that what
we eventually obtain by running the water-filling algorithm on
the throughput polytope is exactly the max-min fair allocation.
Thus, the second important consequence of this theorem is that
the water-filling algorithm is correct to search for a max-min
fair allocation over T (Gu).

Consider the network of Fig. 2 and execute the water-filling
algorithm. As the first step, increase the throughput of all the
users at the same pace. This amounts to, starting from the
origin, moving along the direction [1, 1, 1] as long as some
of the users gets blocked. This occurs at the point [43 , 4

3 , 4
3],

where the constraint θ1+2θ3 ≤ 4 becomes active. As a matter
of fact, this constraint will be the bottleneck inequality for
users (1, 6) and (7, 5). The only user that remains dominated
at this point is (7, 8), whose throughput can be increased to
5
3 . The resultant allocation, θ0 = [43 , 5

3 , 4
3] is max-min fair. To

obtain the bottleneck for the last user, (7, 8), sum up the two
constraints binding at θ0, which yields θ1 + θ2 + 3θ3 ≤ 7.

The final question that remained to be answered is that,
once we computed the max-min fair allocation θ0, how to
obtain a routing that realizes it. That is, we need to find
path-flows f : [θ0, f] ∈ M(Gu). This amounts to solving a
multicommodity flow problem over the constraint set (1)–(3)
with the throughput variables fixed at θ0, which can be done
in polynomial time [11]. The computed path-flows will then
supply a set of forwarding paths and a rate at which users
have to distribute their traffic to those paths. In the case of
Fig. 2, user (1, 6) must split its traffic evenly between the
paths 1 → 2 → 3 → 6 and 1 → 4 → 5 → 6; user (7, 8)
must transmit over the direct link; while user (7, 5) has to
realize a traffic splitting ratio of 1 : 3 between the paths
7 → 8 → 2 → 3 → 4 → 5 and 7 → 8 → 5. This routing,
once established in the network, will automatically realize the
max-min fair throughput allocation θ0 using the exact same
distributed flow control and queuing techniques as in the fixed-
path model [5].

C. A bottleneck argumentation
So far, we have shown how the concept of bottlenecks

extend from the fixed-path max-min fairness problem to the
generic case. Analogously to the traditional model, we could
obtain an “if and only if” relation between the existence of
bottlenecks for each user and max-min fairness, which also
guaranteed the correctness of the water-filling algorithm. Quite
regrettably, however, our bottlenecks are currently defined in
terms of valid inequalities, which, being more of a polyhedral
concept than a network theoretical one, is not really descrip-
tive. In this section, we translate this bottleneck argumentation
to the more palpable concept of separating edge sets, whose
properties show remarkable similarity to the properties of
“bottleneck edges” in the fixed-path model.

In the heart of the fixed-path model there lies the notion
of bottleneck edges. A bottleneck edge is one that blocks any
increase in the throughput of the user it belongs to. This is
because (i) it is filled up to capacity when we realize the
max-min fair allocation, and (ii) the corresponding user has

the maximum throughput amongst the users that might want
to use that edge. This conventional interpretation fails in the
generic model, since neither the set of paths nor the users of
a particular edge are fixed.

A bottleneck edge blocks one particular, fixed path of some
user. To block all paths we have to treat an entire set of edges,
a so called separating edge set, which, when removed from the
network, destroys all directed paths connecting the source to
the destination node. This suggests the idea to search for the
generalization of bottleneck edges in the form of bottleneck
separating edge sets. What remained to be done is to translate
the defining properties of bottleneck edges to separating edge
sets.

Let θ0 be max-min fair in a regular network Gu and
choose some user k ∈ K. Additionally, suppose that we have
somehow found the corresponding bottleneck separating edge
set Sk and let KSk

⊆ K denote the set of users, whose source
node is separated away from the respective destination node by
Sk. First, we reformulate the following property of bottleneck
edges: a user’s throughput is maximal at its bottleneck edge
amongst the ones that utilize that edge. But “utilizers” of
separating edge sets are exactly the users that are separated
away by it, so for Sk it must hold that:

Property 1: l ∈ KSk
⇔ (θ0)l ≤ (θ0)k.

The second defining property of bottleneck edges is that
they are always filled to capacity when we realize the max-min
fair allocation and, furthermore, in the fixed-path model there
is no way for the traffic of the blocked users to circumvent
this bottleneck. We translate this property to separating edge
sets as follows:

Property 2: For any routing f that realizes θ0, it holds that

∀ (i, j) ∈ Sk :
∑

l∈KSk

∑

P∈Pl:(i,j)∈P

(fl)P = uij

In words, Property 2 insists that a bottleneck separating edge
set is always saturated by the flow of the users separated away
by it, no matter how we route the max-min fair allocation
in the network. Therefore, any increase in the throughput
of some user would decrease the throughput of some other
user that utilizes the same (bottleneck) separating edge set,
and consequently, whose throughput is already smaller (by
Property 1), and this property is independent of the actual
routing. Interestingly, these properties give rise to a bottleneck
argumentation completely analogous to the conventional one:

Theorem 2: An allocation of throughputs θ0 ∈ T (Gu)
is max-min fair, if and only if each user has a bottleneck
separating edge set exhibiting both Property 1 and Property 2.

For brevity, we do not detail here how to derive the bottle-
neck separating edge set from the bottleneck inequalities (the
precise relation is revealed in the proof of Theorem 2 in the
Appendix). It suffices to know that with users (1, 6) and (7, 5)
we can associate the edge set S1 = S3 = {(2, 3), (4, 5), (8, 5)}
as a bottleneck. This edge set remarkably demonstrates the
essence of our bottleneck argumentation: it separates away
exactly users (1, 6) and (7, 5), and it is always saturated by the

flow of these users no matter how we accommodate the max-
min fair allocation in the network (in fact, there is only one
option to choose from). Finally, the bottleneck separating edge
set of user (7, 8) is S2 = {(7, 8)} ∪ S3. We kindly encourage
the reader to verify that both Property 1 and Property 2 hold
true for this edge set.

As a final remark, we note that the above bottleneck
argumentation is valid for any arbitrary regular network, not
just the simple and, coincidentally, acyclic ones we cited as
examples. Additionally, it is noteworthy to mention that our
bottleneck argumentation contains the conventional one as a
special case. To see this, it is enough to restrict each user to
one single path and observe that bottleneck separating edge
sets degrade to the conventional bottleneck edges in this case.

D. An algorithm to compute the throughput polytope
As it turns out, the throughput polytope is a remarkably use-

ful tool in solving the general max-min fair allocation problem.
It can be used for computing the proportional fair or the utility
fair allocations as well, but we might need to deploy non-
linear programming [5]. In this case, its low-dimensionality
and “nice” properties make the use of the throughput polytope
appealing. Unfortunately, no viable algorithm to compute this
construct is known for the authors at the moment. Moreover,
we are not aware of any reasonable upper bound on the number
of constraints that define T (Gu) in the generic case. Therefore,
the problem appears difficult since there is no real hope for
a polynomially sized description of the output. The following
algorithm implements the most plausible way to attack this
problem: generate all the valid inequalities one by one until
we finally obtain T (Gu).

1) Initialize the algorithm with an empty set X that will
hold the valid inequalities we find. Let j = 1 and D =
{0, 1}K .

2) For all β ∈ D whose elements are relative primes,
generate a valid inequality βθ ≤ b. For a particular β

this is done by solving the linear program:

min{wu : w∆k ≥ 1(β)k ∀k ∈ K, w ≥ 0 }

Add the resultant inequalities βθ ≤ wu to X .
3) After eliminating redundancy from X , our current esti-

mation of the throughput polytope is

T̂ (Gu) = {θ ≥ 0 : βiθ ≤ wiu [βi, wi] ∈ X} .

Now, we check if T̂ (Gu) = T (Gu). In fact, it is enough
to check T̂ (Gu) ⊆ T (Gu), as T̂ (Gu) ⊂ T (Gu) is
impossible because all the inequalities in X are valid.
So we verify whether all extreme points of T̂ (Gu) are
feasible in Gu by using the double-description method
[12] to compute the set of extreme points V (T̂ (Gu))
and then checking:

∀θe ∈ V (T̂ (Gu)) : ∃fe so that [fe, θe] ∈M(Gu) .

This amounts to solving a linear program for each
extreme point. If every extreme point is feasible, then
terminate the algorithm since T̂ (Gu) = T (Gu).

4) Extend D: let j ← j + 1 and D ← {0, . . . , j}K \ D.
Make a new iteration by proceeding with Step 2.

Theorem 3: The above algorithm is guaranteed to terminate
in finite, albeit exponentially many, steps.

Unfortunately, the theoretical upper bound on the number
of inequalities this brute-force algorithm needs to generate
can be astronomically large, especially as the number of users
(K) increases. Quite amazingly, however, in the course of our
evaluation studies the algorithm generally terminated in much
less iterations than its theoretical properties would suggest.

We implemented the algorithm as a bunch of Perl scripts
gluing together the GNU Linear Programming Kit, the LEMON
graph library and cddlib [12], a library for polyhedral
computation1. First, we systematically constructed networks
for which the algorithm displays the worst case behavior.
Therefore, we generated a sequence of increasing sized, di-
rected complete graphs and, for a complete graph GN of
size N , we set exactly N users: (1, 2), (2, 3), . . . , (N, 1). The
number of facets of the resultant throughput polytope T (GN)
as the function of N is given in Fig. 3. The consequence is
that one can easily construct graphs for which the size of the
corresponding throughput polytope quickly grows intractable.
However, in real network scenarios the situation seems a bit
more promising, as demonstrated by the second round of
our evaluation studies. We took a real-life network topology,
placed an increasing number of users in it selecting the source
and destination nodes randomly, fed the resultant network
to the algorithm to compute the corresponding throughput
polytope, repeated this process 30 times, and averaged the
results. The network topologies were the 28 node European
and the German reference networks used extensively in recent
EU projects [13] and the ubiquitous US NSF network topology
[14]. The capacity of the links was uniformly 10 units in
the first 2 cases and 100 units in the third. Fig. 4 shows the
maximum and average number of the facets of the throughput
polytope. The level of significance is 95%. These results sug-
gest that, despite of the intractable growth observed in artificial
networks, in real networks a reasonable sized description of the
throughput polytope and modest computational requirements
of the algorithm are expectable as long as K does not grow
beyond about a dozen. We found that the algorithm performed
relatively few iterations (see Fig. 5): as a rule of thumb,
2 ≤ B ≤ 4 seems plausible for the number of necessary
iterations B, which is still quite large but much less than the
theoretical limit, and looks tolerable when K remains low.

Our experiences showed that the difficulty in computing the
throughput polytope stems from the sensitivity to the number
of users, and to a lesser degree from the raw size of the
network. For smaller networks, up to about a dozen users, even
our brute-force algorithm looks viable and it is our belief that
an improved algorithm could scale to the range of a few dozen
users. An appealing optimization would be for instance to
exploit the algorithm’s inherent aptitude to parallel execution.

1See the Math::GLPK and Lemon::Graph project pages at http://qosip.
tmit.bme.hu/~retvari.

 0

 100

 200

 300

 400

 500

 600

765432

Figure 3: Number of facets of through-
put polytope in complete graphs, as the
function of the number of nodes.

 1

 10

 100

(K)987654321

Europe28(avg)
Germany(avg)

NSF(avg)
max

Figure 4: Average and maximal number
of facets of T (Gu) as the function of the
number of users.

 0

 1

 2

 3

 4

 5

 6

 7

(K)987654321

Europe28(avg)
Germany(avg)

NSF(avg)
max

Figure 5: The average and the maximal
number of iterations of running the algo-
rithm on real networks.

V. CONCLUSIONS

Traditionally, fair allocation of user throughputs has been
considered in the case when the path of the users is fixed for
the lifetime of the communication. In this model, users get
whatever “fair” share of network resources the actual routing
allows them to receive. However, a user might ask rightfully:
“Why has exactly this routing been implemented in the net-
work instead of another one, which would be more beneficial
for me within the current throughput allocation strategy?”
This argumentation holds some merit, because in the fixed-
path model the throughput allocated to a user depends quite
heavily on the route taken by the traffic of that user, which,
within the network architectures of our days, the user is not
quite empowered to affect. In this paper we argued that it is
much more natural to make throughput allocation strategies
independent of routing, and we have extended the most
commonly used fairness criterion, max-min fairness, to this
generic case. If the throughput was determined independently
of the actual routing, then no one would have the right to
complain since it was the network, a given entity, that decided
which particular share of network resources a user gets.

Our solution of the general, routing-independent throughput
allocation problem was based on a polyhedral description of
the range of throughput configurations realizable in a capac-
itated network. This throughput polytope is notable, not only
because it helped us to characterize max-min fair allocations
in the generic, routing-independent model, but also because it
can easily help to do the same with other notions of fairness,
like proportional fairness or utility fairness. Additionally, our
polyhedral approach allowed us to extend the conventional
bottleneck argumentation and the water-filling algorithm to
the generalized setting in an illustrative manner. Unfortunately,
the evaluations showed that the throughput polytope might be
notoriously hard to calculate depending on the specifics of the
network at hand. In such cases, Max-min Programming seems
a better fit to obtain the max-min fair allocation.

ACKNOWLEDGEMENTS

The authors wish to thank the anonymous reviewers for
their careful reading of the manuscript, for their criticism and
suggestions. The first author would like to thank I. K. for the

inspiration. This work was partially supported by the European
IP NOBEL Project (www.ist-nobel.org).

REFERENCES

[1] J. M. Jaffe, “Bottleneck flow control,” IEEE Transactions on Commu-
nications, vol. 29, pp. 954–962, July 1981.

[2] E. L. Hahne, “Round-robin scheduling for max-min fairness in data
networks,” IEEE Journal on Selected Areas of Communication, vol. 9,
pp. 1024–1039, Sept. 1991.

[3] A. F. T. Committee, “Traffic Management Specification - Version 4.0.”
ATM Forum/95-0013R13, Feb 1996.

[4] D. P. Bertsekas and R. Gallager, Data Networks. Englewood Cliffs, New
Jersey: Prentice-Hall, 1987.

[5] J. Le Boudec, “Rate adaptation, congestion control and fairness: a
tutorial.” available online: http://ica1www.epfl.ch/PS_files/LEB3132.pdf,
Feb 2005.

[6] R. Denda, “The fairness challenge in computer networks,” Tech. Rep.
TR-00-006, Department for Mathematics and Computer Science, Uni-
versity of Mannheim, 2000.

[7] J. Le Boudec and B. Radunovic, “A unified framework for max-min
and min-max fairness with applications,” in Proceedings of 40th Annual
Allerton Conference on Communication, Control, and Computing, Oct
2002.

[8] Z. Cao and E. W. Zegura, “Utility max-min: an application-oriented
bandwidth allocation scheme,” in Proceedings of INFOCOM 1999,
vol. 2, pp. 793–801, March 1999.

[9] D. Nace and L. Doan, “A polynomial approach to the fair multi-flow
problem.” Tech. Rep., Heudiasyc, UTC, available online: http://www.
hds.utc.fr/~dnace/recherche/Publication/TR-MMF.pdf, 2002.

[10] G. Ziegler, Lectures on Polytopes, vol. 152 of Graduate Texts in
Mathematics. New York: Springer, 1998.

[11] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear Programming and
Network Flows. New York: John Wiley & Sons, second ed., 1990.

[12] K. Fukuda and A. Prodon, “Double description method revisited,” in
Combinatorics and Computer Science, 8th Franco-Japanese and 4th
Franco-Chinese Conference, Brest, France, July 3-5, 1995, Selected
Papers (M. Deza, R. Euler, and Y. Manoussakis, eds.), vol. 1120 of
Lecture Notes in Computer Science, pp. 91–111, Springer-Verlag, Berlin,
1996.

[13] M. L. Garcia-Osma, “TID scenarios for advanced resilience.” Tech.
Rep., The NOBEL Project, Work Package 2, Activity A.2.1, Advanced
Resilience Study Group, Sep 2005.

[14] B. Chinoy and H. W. Braun, “The national science foundation network.”
Tech. Rep., CAIDA, available online: http://www.caida.org/outreach/
papers/1992/nsfn/nsfnet-t1-technology.pdf, Sep 1992.

[15] M. Iri, “On an extension of the maximum-flow minimum-cut theorem
to multicommodity flows,” Journal of the Operations Research Society
of Japan, vol. 13, no. 3, pp. 129–135, 1971.

[16] K. Onaga and O. Kakusho, “On feasibility conditions of multicommodity
flows in networks,” IEEE Transactions on Circuit Theory, vol. 18, no. 4,
pp. 425–429, 1971.

APPENDIX

Proof of Proposition 1: M(Gu) is, by definition (1)–(3),
an intersection of finitely many halfspaces, so it is a polyhe-
dron. By Definition 2, T (Gu) is the orthogonal projection of
M(Gu) to the space spanned by θ, therefore it is itself too a
polyhedron [10]. Finally, compactness for regular networks is
straightforward.

Proof of Proposition 2: Applying Černikov’s block-
elimination method [10] to M(Gu), we have that row K-
vectors β and row m-vectors w lying in the projection cone

W (Gu) = {[β,w] :
∑

(i,j)∈P wij ≥ βk ∀k ∈ K,∀P ∈ Pk

w ≥ 0 }

generate all the inequalities of T (Gu): T (Gu) = {θ ≥ 0 :
βθ ≤ wu, ∀[β,w] ∈ W (Gu)}. In fact, it is enough to take
the inequalities generated by the extreme rays of W (Gu), so
I is finite. Observe that here, vectors w can be thought of as
non-negative edge weights, while the kth coordinate of β, βk,
is less than, or equal to the length of the shortest path from
sk to dk over the edge weights w. (Note that in all practically
important cases (β)k in fact attains the length of the shortest
path.) Hence, β is non-negative and, for a regular Gu, wu is
strictly positive. See alternative proofs in [15] and [16] (the
Japanese Theorem).

Proof of Theorem 1: Let T (Gu) = {θ ≥ 0 : βiθ ≤
bi, i ∈ I} and let B be the set of constraints binding at
θ0: B = {i ∈ I : βiθ0 = bi} 6= ∅. Let β =

∑

i∈B
βi and

b =
∑

i∈B
bi. Obviously, βθ ≤ b is valid for T (Gu), β ≥ 0

and βθ0 = b, so the first two claims immediately apply. To see
that the last one also does, it is enough to show that (β)k = 0
if and only if k is dominated at θ0. Since βi ≥ 0 for each
i ∈ I, so (β)k = 0 if and only if (βi)k = 0 for all constraints
binding at θ0. This means that ∃ε > 0 and small enough,
so that θ0 + εek ∈ T (Gu), so k is dominated. The reverse
direction of the proof comes similarly.

Proof of Proposition 3: Since T (Gu) is a polytope, it
is, by nature, convex and compact. Then the existence and
uniqueness of the max-min fair vector is guaranteed by [7,
Theorem 1].

Proof of Corollary 2: For each k ∈ K construct the
vector θ′, whose coordinates are defined as

(θ′)l =

{

(θ0)k if (θ0)l > (θ0)k

(θ0)l otherwise

Observe that, by definition, exactly those users l are non-
dominated at θ′ for which (θ0)l ≤ (θ0)k. All the other users
are dominated. Now, simply apply Theorem 1 to θ′ to prove
the Corollary.

Proof of Theorem 2: We have already seen that some
θ0 ∈ T (Gu) is max-min fair, if and only if each k ∈ K has
a bottleneck inequality βθ ≤ b = wu conforming to (i)–(iii)
in Corollary 2. Here, w can be thought of as edge weights
and (β)k as the length of the shortest path from sk to dk

over the weights w. Now, define the corresponding bottleneck

separating edge set as

Sk = {(i, j) ∈ E : wij > 0} . (11)

This implies that KSk
= {l ∈ K : (β)l > 0} = {l ∈ K :

(θ0)l ≤ (θ0)k}, using (iii) in Corollary 2. So Sk as defined by
(11) immediately satisfies Property 1. To prove the theorem,
we only need to show that it fulfills Property 2 too. For this,
first we observe that vector [β,w] taken from the bottleneck
inequality of k solve the following linear program defined over
the separating edge set Sk as defined by (11), with optimal
objective function value zero:

0 = min wu− βθ0

w∆l ≥ 1(β)l ∀l ∈ K

βl ≥ 1 ∀l ∈ KSk

βl = 0 ∀l ∈ K \ KSk

wij ≥ 1 ∀(i, j) ∈ Sk

wij ≥ 0 ∀(i, j) ∈ E \ Sk

Now, by the strong duality theorem of linear programming,
the dual linear program below is also soluble and the optimal
objective function value is zero:

0 = max
∑

(i,j)∈Sk
λij +

∑

l∈KSk

µl
∑

l∈K
∆lfl + λ = u

1fl − µ = (θ0)l ∀l ∈ K

µl ≥ 0 ∀l ∈ KSk

fl ≥ 0, λ ≥ 0 ∀l ∈ K

Let [f, λ, µ] be any optimal feasible solution. Now, the objec-
tive function value is zero, if and only if ∀l ∈ KSk

: µl = 0 and
∀(i, j) ∈ Sk : λij = 0, which exactly reproduces Property 2
and the proof is complete.

Remark: in the network of Fig. 2, we associated the inequal-
ity θ1 + 2θ3 ≤ 4 with users (1, 6) and (7, 5) as bottleneck.
By the Japanese Theorem, this inequality is generated by
the shortest path lengths [β1, β2, β3] = [1, 0, 2] and the edge
weights w(2,3) = w(4,5) = 1, w(8,5) = 2 and all zero
otherwise. So, according to (11), the edges of nonzero weight
make up the bottleneck separating edge set for these two users:
S1 = S3 = {(2, 3), (4, 5), (8, 5)}. Finally, the bottleneck
inequality of user (7, 8) is θ1+θ2+3θ3 ≤ 7, which is generated
by the shortest path lengths [β1, β2, β3] = [1, 1, 3] and edge
weights w(2,3) = w(4,5) = w(7,8) = 1, w(8,5) = 2 and all zero
otherwise, so the corresponding bottleneck separating edge set
is S2 = {(2, 3), (4, 5), (7, 8), (8, 5)}.

Theorem 3: Iri showed that edge weights no greater than
Km are enough to obtain a complete description of T (Gu)
[15]. Since (β)k is the length of the shortest sk → dk path
for user k over those edge weights, we have that it is enough
to go up to at most (β)k ≤ mKm, which is an upper bound
on the elements in D and hence on the number of iterations
the algorithm performs.

