
1

A Precomputation Scheme for Minimum
Interference Routing: the Least-Critical-Path-First

Algorithm
Gábor Rétvári, József J. Bíró, Tibor Cinkler, Tamás Henk

High Speed Networks Laboratory
Department of Telecommunications and Media Informatics

Budapest University of Technology and Economics
H-1117, Magyar Tudósok körútja 2., Budapest, Hungary

E-mail: {retvari, biro, cinkler, henk}@tmit.bme.hu

Abstract— This paper focuses on the selection of bandwidth-
guaranteed channels for communication sessions that require it.
The basic idea comes from Minimum Interference Routing: select
a feasible path that puts the least possible restriction on the
available transmission capacity of other communicating parties.
This is achieved by circumventing some critical bottleneck links.
The main contribution of the paper is a novel characterization
of link criticality, the criticality threshold, which can be readily
precomputed for routing dozens of subsequent calls. Based on
this finding we define a generic precomputation framework for
minimum interference routing, the Least-Critical-Path-First rout-
ing algorithm. We show by means of extensive simulations that
efficient route precomputation is possible even in the case, when
accurate resource availability information is not immediately
available.

Index Terms— Graph Theory, QoS routing, traffic engineering,
route precomputation, network flows

I. INTRODUCTION

The question of deliberate, effective and adaptive selection
of dynamic bandwidth-guaranteed paths has gained substantial
research interest recently. Obviously, any service that requires
the transmission of loss and/or delay sensitive data over a
packet switched public network infrastructure obligates the as-
surance of transmission quality guarantees on some prioritized
traffic. This paper deals with the problem of finding a data path
in a network for a traffic instance, which is both feasible and
efficient. A path is feasible if it provides enough dedicated
resources to satisfy pre-declared bandwidth demands. We say
that a path is efficient, if it manifests some efficiency criteria
of the network operator. For example, an efficient path would
be such that the maximum link load is minimized. We assume
that route requests arrive one by one and are fully characterized
by their respective bandwidth demands. However, we do not
presume any knowledge on the volume of present and future
traffic demands.

Nowadays, the omnipresent Shortest-Path-First (SPF) rout-
ing algorithm has gained almost exclusive use in data net-
works. SPF manifests a powerful efficiency criterion, namely,
the selected paths use as few resources as possible. Though,
path feasibility is not guaranteed. Therefore, the ubiquitous
use of SPF in today’s Internet is deemed to be a major

origin of its unreliability. Several proposals have come up to
eliminate the shortcomings of SPF, e.g., widest-shortest-path
routing (WSP) [1] and shortest-widest-path routing (SWP)
[2]. Yet the most promising new technology seems to be
Minimum Interference Routing [3]. The basic idea is to select
bandwidth-guaranteed paths as to ensure that the chosen path
blocks future requests to the least possible extent. Since the
full-fledged minimum-interference routing problem is known
to be NP-hard, a polynomial time approximate algorithm,
the Minimum Interference Routing Algorithm (MIRA) was
proposed.

The rationale behind MIRA lies in the incorporation of ex-
plicit knowledge on the traffic source-destination pairs (called
sessions throughout this paper) to minimize the interference
between them. Interference emerges when the traffic of some
session is routed to a bottleneck link of some other session(s).
MIRA searches these critical links and does its best to avoid
using them in the course of path selection. Several recent
research results have pointed out the potential of MIRA
to improve routing performance while efficiently preserving
resources for future requests at the same time. Various deriv-
atives (e.g., [4], [5]), a treatment of both bandwidth and delay
guarantees ([6]) and schemes for admission control ([7], [8])
have been defined lately.

MIRA was originally designed with the assumption that
the routing algorithm possesses accurate and consistent in-
formation on the topology of the network and the availability
of unreserved bandwidth at the interfaces. However, in an
operational network environment the frequency of link state
updates is basically a trade-off between the consistency of
the network state information and the bandwidth consumption
and processing overhead of routing protocol messages [9],
[10], [11]. Since link criticality in fact reflects the network
state that was valid the last time when a link state update
occurred, hence the need to regenerate it for each and every
connection setup request is invalidated. In [3] the authors
study MIRA performance in the case, when link criticality
is precomputed once, and used multiple times to route several
subsequent requests. The resultant criticality precomputation
scheme is not only more realistic, but also has the potential
to decrease the prohibitive online computational complexity,

2

which is usually pointed out as a weakness of MIRA. In this
paper, we shall show that without some clever modifications,
the performance of MIRA falls well under that of the WSP
algorithm when used with criticality precomputation.

The main result of this paper is the definition of a soph-
isticated measure of link criticality, the so called criticality
threshold. Since the criticality threshold supplies a thorough
characterization of link criticality, we can precompute it for
routing dozens of subsequent calls. The calculation of this
measure turns out to be computationally expensive, therefore,
we show powerful optimization techniques to reduce the
involved efforts to a tolerable level. Based on these findings we
propose a new routing algorithm, the Least-Critical-Path-First
(LCPF) algorithm, and by means of extensive simulations we
show that LCPF performs route precomputation much more
efficiently than either MIRA or WSP. We believe that our
work is not only useful as the first really viable solution for
precomputation in minimum interference routing but it also
provides interesting further insights into this intriguing new
routing technology.

The rest of this paper is structured as follows. Section II
describes MIRA in more detail. In Section III we show, how
to obtain a good quantity on link criticality and in Section IV
we define the LCPF algorithm that makes heavy use of this
quantity. In Section V, the practical usefulness of LCPF is
evaluated and finally, Section VI concludes our work.

II. THE MIRA ALGORITHM

Experience suggests that in order to achieve efficient routing
it is not enough to simply pick a path from the set of
feasible paths. One has to find a sufficient policy on how to
deliberately select a feasible path that manifests some network-
global traffic engineering goal and define a good algorithm
that implements the policy. The main idea of MIRA is the
recognition that if a network link acts as a bottleneck for
a communication session, then admitting traffic of another
session to that critical link will cause interference. The more
traffic flows through critical links, the higher the interference.
This leads to inefficient routing in the long term. Thus, it is
a plausible network-wide traffic engineering goal to minimize
the interference along the selected paths.

In order to better capture the notion of interference one has
to invoke the elaborated toolset of network flow theory [12],
[13]. Let G(V,E,R) be a digraph. Let V be the set of nodes
(|V | = n), E the set of edges (|E| = m) and R the set of
edge capacities. Source-destination pairs (s, d), all of which
are members of a known set P , are assumed to be known in
advance. Such (s, d) pairs are called sessions for short. Let p =
|P |. Let f be a maximum flow in G for some session (s, d).
Then, FG(s, d) denotes the value of the maximum flow |f |,
f(u, v) denotes the flow traversing a particular edge (u, v) ∈
E, Gf denotes the flow residual graph induced by f and Csd

is a set of edges, which belong to one or more minimum cuts.
Minimum cuts have special role in MIRA. Consider some

session (s, d) and the task is to select a path for some other
session in a way as to minimize the interference along the
selected path. If, after the path selection, the transmission

capacity offered by the network for (s, d), that is, the maxflow
of (s, d) remained intact, then the selected path does not
interfere with (s, d). If, on the other hand, the maxflow
FG(s, d) is decreased, then interference shows up. This is
caused by routing traffic onto some critical bottleneck link,
which has the property that decreasing the capacity of the link
decreases the maximum flow of (s, d). As shall be pointed
out later, this property just equals to the property that the link
is included in the minimum cut set of (s, d). Henceforward,
we shall say that an (u, v) edge is critical for some session
(s, d), if the edge is included in the minimum cut set for
the session, i.e., (u, v) ∈ Csd. Any edge in Csd is subject
to interference. Therefore, for every link MIRA assigns an
additive link weight, which is proportional to the number of
sessions that the link is critical for, and computes the shortest
weighted path over this weight set.

Hence, the path selection for a traffic instance in session
(a, b) ∈ P of demand D units involves the following basic
steps in MIRA:

1) Critical link identification: for each (s, d) ∈ P \ (a, b)
compute the critical link set Csd.

2) Cost assignment: map link criticality to additive link
weights. The weight of link (i, j) is defined as:

w(i, j) =
∑

(s,d):(i,j)∈Csd

αsd , (1)

where αsd represents the relative importance of session
(s, d). In order to force path feasibility, any link (i, j)
of inappropriate capacity (R(i, j) < D) is filtered out.

3) Path selection: find the shortest weighted path over the
cost set defined by w.

In the vast majority of practical cases the computational
complexity of MIRA is dominated by the p − 1 maxflow
computations needed for critical link identification. Therefore,
it is plausible to take this CPU intensive calculation in the
background and only perform it when up-to-date network state
information becomes available. Then, one decision on link
criticality impacts routing of several subsequent requests. So,
it would be of extreme usefulness to somehow detect whether
there is a chance that a link turns to be critical in the near
future. The notion of criticality threshold developed in the
foregoing section serves just this purpose.

III. THE CRITICALITY THRESHOLD

As the first step of route selection, MIRA solves the
following decision question: given an edge and a session, is
it the case that the edge is critical for the session, i.e., is it
included in some minimum cuts for the session? Throughout
this paper, we use the following form of the link criticality
conditions:

Proposition 1: For an edge (i, j) and a session (s, d), (i, j)
is critical for (s, d) if, for some maxflow f of (s, d):

i) f(i, j) > 0 and
ii) FGf

(i, j) = 0
In this context, a link is critical for a session, if for some

maxflow it carries nonzero flow and the endpoints of the link
happen to reside in different cuts of the flow residual graph.

3

Fig. 1. Illustration of the criticality threshold

That is, there is no path from i to j in Gf . This also implies
that (i, j) ∈ Csd. The main contribution of this paper is the
observation that there exists a well-defined threshold on the
capacity of any link, the so called criticality threshold, such
that if the capacity of the link falls beyond this threshold then
the link turns to critical. This idea is captured in the following
definition:

Definition 1: For a session (s, d) and an edge (i, j), the
criticality threshold K is defined as:

i) 0 < R(i, j) ≤ K ⇒ (i, j) ∈ Csd (criticality)
ii) R(i, j) > K ⇒ (i, j) /∈ Csd (non-criticality)
The significance of the criticality threshold is twofold. First,

given a bandwidth demand of size ∆, the criticality threshold
tells whether admitting the demand to any link (i, j) would
render that link critical. This is simply done by checking
R(i, j) − ∆ ≤ K (c.f. [3], ∆-criticality). Furthermore, the
criticality threshold supplies an appealing way to assess the
criticality (or non-criticality) of any link. For example, a good
measure would be K/R(i, j) or K −R(i, j).

An illustration of the concept of the criticality threshold
is provided in Fig. 1. One can easily check that if the link
capacities are set as shown in the figure, then the maxflow
for session (1,6) is 15 units and the minimum cut set, that
is, the critical link set of MIRA, is constituted by links (2,4),
(5,4) and (5,6). Now, consider for instance link (1,3). This
link is not critical, however, lessening the capacity from 13
units to 9 units renders it critical. This is because, together
with links (2,3) and (2,4), the link constitutes a minimum
cut (again, of value 15). Further lessening the capacity of
link (1,3) from 9 units to, say, 7 units would decrease the
maxflow to 13 units. This phenomenon is captured in the
criticality threshold, shown in parentheses in the figure. To
put it in another way, one can safely route 4 units of traffic
onto link (1,3) without risking that the maxflow of session
(1,6) decreases. Additionally, both of links (2,4) and (5,6) are
critical in our example, however, link (2,4) would still remain
critical if its capacity was increased by as much as 9 units as
opposed to link (5,6), for which this increase is only 4 units.
This conveys the impression that link (2,4) is “more critical”
in some sense than link (5,6).

The most plausible approach to find the criticality threshold
is to observe the value of the maximum flow while decreasing

the capacity of some network link from infinity to zero. First,
set the capacity of the link to infinity. For a graph G(V,E,R),
the resultant graph GU (V,E,RU) : RU (i, j) = ∞ is the
so called unconstrained graph w.r.t. link (i, j). A maxflow
in GU is called unconstrained maxflow. On the contrary, in
the constrained graph w.r.t. link (i, j) we set RC(i, j) = 0.
A maxflow in GC is called constrained maxflow. One can
characterize the constrained, the original and the unconstrained
maxflows as FGC ≤ FG ≤ FGU .

Consider the real-valued function, which describes the max-
flow FG(s, d) as the function of the capacity R(i, j) of some
link (i, j). An immediate observation is that this function is
non-negative and piece-wise linear on R ∈ [0,∞) and the
partial derivative can be written as:

∂FG(s, d)

∂R(i, j)
=

{

1 if R(i, j) ≤ K

0 if R(i, j) > K
(2)

The reasoning comes from Proposition 1: if (i, j) is critical,
then for any (s, d) maxflow f , (i, j) is filled to capacity by
a non-zero flow. Thus, decreasing R(i, j) creates excess flow
on (i, j) and this excess flow can not be routed around (i, j)
since FGf

(i, j) = 0. Therefore, the maxflow also decreases
by the same amount. In contrary, if R(i, j) > K, that is,
(i, j) is not critical, then either there is no flow on (i, j) (in
which case its capacity can be reduced without affecting the
maxflow) or there is non-zero available capacity from i to j
onto which excess flow can be placed (or both). This yields
that the derivative is zero in this case1. In some respect, (2)
can be thought of as a simple mathematical reformulation of
the definition of link criticality, that is, a link is critical for
a session if decreasing the capacity of the link causes the
reduction of the maxflow of the session.

Since the criticality threshold may be larger than the actual
capacity of the link, it is more useful to examine maxflows
in the unconstrained graph rather than the original graph. We
define the feasible maxflow set w.r.t. link (i, j) and session
(s, d) as the set of all unconstrained maxflows:

Fsd
ij = {f : f is a (s, d) maxflow in GU} . (3)

Any flow f in the feasible maxflow set generates a candidate
for the criticality threshold. What we need to do is to create
a new graph G for each f ∈ Fsd

ij and set R(i, j) = f(i, j).
Then, obviously, the flow on (i, j) is strictly positive and the
residual capacity is zero. If, furthermore, all augmenting paths
from i to j are saturated in the flow residual graph, then all
conditions in Proposition 1 are satisfied and (i, j) is critical
in G. Since, as easily checked, (i, j) is not critical for any
R(i, j) > f(i, j) in this case, the current flow f generates
the criticality threshold, that is, K = f(i, j). In other words,
criticality is achieved when no flow can be relocated from
(i, j) to other flow paths, which would decrease the flow on
the link. This implies that the flow generating criticality sends
a minimum flow onto (i, j) in some sense. This idea is captured
in the following definition.

1We note that the derivative is not defined at R(i, j) = K. Thus, (2) in
fact gives the lower derivative. Nevertheless, for the sake of notational con-
venience, we shall use (2) in the generic sense in the foregoing developments.

4

Definition 2 (Committed flow): The committed flow for a
session (s, d) and a link (i, j) is defined as:

ψsd
ij = min{f(i, j) : f ∈ Fsd

ij } . (4)
The notion of committed flow insists that there are various

ways to accommodate the maxflow in a graph, however, there
is a certain amount of flow committed to a particular link in all
cases2. Following, we show that the above intuitive reasoning
is correct and the choice K = ψsd

ij indeed yields the criticality
threshold:

Theorem 1: For an edge (i, j) and a session (s, d) the
criticality threshold is identical to the committed flow:

0 < R(i, j) ≤ ψsd
ij ⇒ (i, j) ∈ Csd (5)

R(i, j) > ψsd
ij ⇒ (i, j) /∈ Csd (6)

Proof: First we prove that in case of R(i, j) = ψsd
ij > 0,

all conditions in Proposition 1 hold, therefore (i, j) is critical
in this case. Let f be the unconstrained maxflow, which
generated ψsd

ij , that is, f ∈ Fsd
ij , such that f(i, j) = ψsd

ij .
Clearly, one can always find such f . Furthermore, create a
modified graph G out of GU by decreasing the capacity
of (i, j) from infinity to ψsd

ij , that is, create G(V,E,R) :
R(i, j) = ψsd

ij . Then, f is feasible in G (i.e., it does not
violate the link capacities and satisfies the flow conservation
constraints), because it is feasible in GU and, although filling
up (i, j) to capacity, it is feasible on (i, j) as well. Therefore,
f is also a maxflow for G. Now, consider the conditions in
Proposition 1:

i) f(i, j) > 0 holds, since, by our assumption on f ,
f(i, j) = ψsd

ij > 0.
ii) We need to see that (a) Rf (i, j) = 0 and (b) there are

no i → j feasible paths in the flow residual graph. (a)
holds, because Rf (i, j) = R(i, j)−ψsd

ij = 0. (b) is also
true, because if an i → j alternative path happens to
exist in Gf , then some flow can be shifted from (i, j)
to the alternative path, which yields a maxflow f ′. But,
as easily checked, f ′ is also an unconstrained maxflow.
Accordingly, f ′(i, j) < f(i, j) = ψsd

ij would contradict
our assumption that f is minimal.

It is also true that reducing the capacity of a critical link both
reduces the maxflow and leaves it critical (c.f. (2)). This proves
(5). On the other hand, for any G(V,E,R) : R(i, j) > ψsd

ij ,
(i, j) is not critical. This is because the above f remains to
be a maxflow in G and f leaves non-zero residual capacity
on (i, j), since R(i, j) − ψsd

ij > 0. Thus, (i, j) is not critical,
which completes the proof of (6).

A naive way to find the criticality threshold would be to
search through all feasible unconstrained maxflows and find
the one that commits the minimum flow to the selected link.
Though, this method would not be too effective. Another
approach would be to use linear programming Parametric
Analysis [13], however, it would mandate the use of a full-
fledged linear program solver. The following fundamental flow
theory result gives an easy way to compute the criticality
threshold:

2If there exists a direct (s, d) link in G, that is, (s, d) ∈ E, then the com-
mitted flow is infinite. This does not cause theoretical difficulties, however,
special care must be taken when implementing the resultant algorithms.

Theorem 2: For a graph G, an edge (i, j) and a session
(s, d), the committed flow for (i, j) is the difference of the
unconstrained and the constrained maxflow:

ψsd
ij = FGU (s, d) − FGC (s, d) . (7)

Proof: Consider a maxflow f in the constrained graph
GC . Put (i, j) back to GC and increase its capacity in
infinitesimally small steps. Then, the maxflow in the resultant
graph G can be written as:

FG(s, d) = FGC (s, d) +

∫ R(i,j)

0

∂FG(s, d)

∂R
dR . (8)

Applying (2) and using Theorem 1, (8) can be given for any
R(i, j) ≥ 0. Since R(i, j) = ∞ yields the unconstrained
maxflow we have that FGU (s, d) = FGC (s, d) + ψsd

ij , which
proves the theorem.

Given a link and a session, one has to perform two maxflow
computations to obtain the committed flow: one, when the
capacity of the link is set to infinity and another one when
its capacity is zero. The difference gives the threshold. The
worst case complexity of this method is O(n2

√
m) using the

Goldberg-Tarjan highest-label preflow-push algorithm [12]. In
the rest of this section we show that in general, it is enough
to perform only one maxflow computation. Additionally, the
average case complexity can further be reduced by detecting
some special cases, when the committed flow is automatically
zero.

Definition 3: Let Gf be a flow residual graph induced by
a (s, d) maxflow f . Then, the source set S is the set of nodes
which are reachable from the source in Gf and the sink set T
is the set of nodes, from which the destination d is reachable
[3].

Consider the following theorem:
Theorem 3: For some session (s, d) and some link (i, j) 6=

(s, d), the committed flow ψsd
ij can be computed as follows:

i) ψsd
ij = 0 immediately holds if either:
1) f(i, j) = 0 or
2) i /∈ S and j ∈ S or
3) i ∈ T and j /∈ T or
4) i = d or
5) j = s .

ii) If i ∈ S and j ∈ T , then create a modified residual graph
G′

f by removing all links (u, v) : u ∈ T and v /∈ T and
add a new (d, s) link of infinite capacity. Hence:

ψsd
ij = R(i, j) + FG′

f
(j, i) (9)

iii) If f(i, j) ≥ FGf
(i, j), then

ψsd
ij = f(i, j) − FGf

(i, j) (10)

Otherwise, ψsd
ij = 0.

Herein, we do not give a detailed proof of the Theorem.
Most of the above statements are obvious consequences of
our previous findings and some basic flow theory. Probably,
only items ii) and iii) deserve more explanation. Clearly, one
cannot increase the maxflow by increasing R(i, j) unless there
is a path from s to i and from j to d in Gf . This can only
occur if i ∈ S and j ∈ T . Additionally the maxflow from

5

j to i in G′
f of item ii) determines the upper limit of this

augmentation. In turn, item iii) is a formal manifestation of
our previous idea that (i, j) is not critical as long as flow can
be shifted down from it.

Observe that only one maxflow computation per link is
necessary to calculate the criticality threshold (and another
one to obtain Gf , but this is common to all links). While
this does not improve the theoretical worst case complexity,
in practice this is a significant gain. Additionally, for a huge
number of links in a realistic network one of the conditions in
i) holds true, in which case the committed flow can be given by
virtually zero computational effort. As our simulations suggest
(see later), this reduces the average case complexity of the
above method substantially.

IV. THE LEAST-CRITICAL-PATH-FIRST ROUTING
ALGORITHM

In the previous section we introduced the notion of the
criticality threshold and showed that it is not particularly hard
to calculate this threshold. The importance of this finding is
that the criticality threshold provides impressing means to
characterize the actual extent of link criticality. Building on
this observation, in this section we develop a new precompu-
tation scheme for minimum interference routing, the Least-
Critical-Path-First (LCPF) algorithm. The basic idea is to
precompute the criticality threshold and use that sophisticated
piece of information to select bandwidth-guaranteed paths for
several subsequent connection requests.

In order to manifest the criticality of a link in the link
weight that is used to calculate the least interfering path,
MIRA applies a binary decision: a link is either critical or
not. While this simple mapping efficiently transforms the
momentary link criticality to link weights, it is not very well
suited for precomputation. For the purposes of LCPF, we
introduce a generic treatment of this mapping, the so called
cost contribution profile. This profile describes the contribution
of a session to the weight of a link as the function of the
link capacity and criticality and potentially other components.
Throughout this paper we use the following intuitive cost
contribution profile for LCPF:

κsd
ij =

ψsd
ij +D

R(i, j)
, (11)

where D units of bandwidth are requested from node a to node
b. This cost contribution profile is called to implement both
path feasibility and efficiency. We chose the unit contribution
at the point, where sending D units of flow to the link would
drive it right at the edge of criticality. This choice is called
to represent effectiveness: any link with contribution less than
1 is able to tolerate the request without the risk of turning
to critical. On the other hand, as the link capacity converges
to zero, the contribution increases dramatically to force path
feasibility. Without the loss of generality, we can assume that
αsd factors add up to 1, thus, for the link cost we get:

w(i, j) =
∑

(s,d)∈P\(a,b)

αsdκ
sd
ij =

Ψ(i, j) +D

R(i, j)
, (12)

The Least-Critical-Path-First routing algorithm
(LCPF)

INPUT: A graph G(V,E,R) with the set of link capa-
cities R, a set of sessions P , a source node a and a
destination node b between which a flow of D units has
to be routed.
OUTPUT: The least critical path between a and b.
ALGORITHM:

1) For all (s, d) ∈ P \ (a, b) and for all (i, j) ∈
E compute the constrained maxflow FGC (s, d)
and the unconstrained maxflow FGU (s, d). This
yields the criticality threshold in the form ψsd

ij =
FGU (s, d) − FGC (s, d).

2) For all (i, j) ∈ E compute the committed load
Ψ(i, j) and execute the cost assignment w(i, j) =
Ψ(i,j)+D

R(i,j) .
3) Compute the shortest weighted path over the link

weight set defined by w and route the demand of
D units along that path.

Fig. 2. The Least-Critical-Path-First routing algorithm (LCPF)

where the so called committed load is defined as Ψ(i, j) =
∑

αsdψ
sd
ij and the summation is over all (s, d) sessions in P \

(a, b). In its simplest form the committed load is the average
of the committed flows over the set of sessions. Otherwise,
it reflects the relative importance of sessions through the αsd

factors. What remained is, similarly to MIRA, to calculate the
shortest weighted path over w. This path is the least critical
path from a to b (hence the name). A detailed description of
the LCPF algorithm is given in Fig. 2.

Remarks:
Flow priorization: LCPF provides an easy way to reflect the

precedence of sessions in the course of path selection. If for
some important sessions the αsd factor is set to a high value,
then the critical links of that session will be given large link
weight. This makes these links less probable to be selected
during the shortest path computation.

Complexity: LCPF is a strictly polynomial algorithm. The
computational complexity is dominated by the 2pm maxflow
computations: 2 for every session and every link. This can
be reduced to 1 maxflow computation in average using the
method described in Theorem 3. The worst-case complexity
is therefore O(pn2m3/2), which is m times as high as that of
MIRA.

Criticality precomputation: in the context of this paper,
real-time computations that must be accomplished upon the
reception of every connection setup request are called online
calculations. If these calculations take a long time, this may in-
troduce unbearable latency in the process of connection setup
in a highly dynamic routing environment. On the contrary,
offline computations are performed in the background and
can be scheduled without stringent real-time requirements.
Criticality precomputation implies that the CPU intensive

6

1

2

4

8

10

6

5

13

14

12

15

11

9

7

3
s1 1

s 2

2

s

3

3

s4

4

D

D

D

D

Fig. 3. The KL graph

criticality calculations (Step 1 in Fig. 2) are performed only
after the arrival of every kth connection request. This converts
the majority of the complexity of LCPF to offline complexity.
Hence, the actual path selection for a connection setup request
reduces to the calculation of w and one piece of shortest path
computation in the average case.

Feasibility: one may argue that while MIRA returns a
feasible path as long as such a path exists in the graph, LCPF
does not. MIRA omits all links with inappropriate resources
(R < D) before the path selection takes place. On the contrary,
LCPF represents path feasibility in the contribution profile:
LCPF orders high contribution to infeasible links probably
yielding a path that consists of feasible edges exclusively. We
can say that LCPF applies “soft feasibility” on path selection.
However, since the accuracy of link state information can
become doubtful, MIRA might blindly omit feasible links
based on outdated knowledge on resource availability. In turn,
soft feasibility may transform into better call acceptance in the
presence of huge inaccuracy in network state.

Universality: it is important to emphasize that with LCPF,
one is completely free to decide, which particular cost con-
tribution profile to use. Alternative profiles may manifest
different traffic engineering goals. Therefore, LCPF can be
thought of as a generic framework for minimum interference
routing. For example, MIRA boils down to a special case of
LCPF, when used with the simple cost contribution profile:

κsd
ij =

{

1 if R(i, j) ≤ ψsd
ij

0 otherwise

The investigation of alternative cost contribution profiles and
their influence on the efficiency of routing is currently an open
research problem.

V. SIMULATION RESULTS

It is widely accepted that some sort of precomputation is
inevitable in a realistic QoS routing environment. On the one
hand, precomputation helps to reduce the online complexity of

path selection. On the other hand, precomputation is a straight
consequence of the nature of the underlying protocol archi-
tecture, which makes up-to-date network state information
available only in discrete time intervals [9], [10], [11]. Accord-
ingly, the frequency of link state updates induces a profound
impact on the performance of minimum interference routing.
First, as the network operator increases the frequency of link
state updates in an attempt to reduce the implied protocol
overhead, the accuracy of the routing algorithm’s perception of
network state becomes dubious. Secondly, it imposes a natural
limitation on the frequency of link criticality computations.
To manifest these effects in our simulations we defined the
precomputation period k, which describes the number of sub-
sequent calls that were processed without updating the routing
algorithm’s knowledge on network state and re-applying link
criticality precomputation. In our simulation studies our main
goal was to observe the effect of increasing precomputation
periods on the performance of LCPF, MIRA, WSP3 and SPF.
Since currently there is no viable precomputation scheme for
shortest-widest path routing, we omitted this algorithm in our
simulations.

In the scientific literature related to MIRA the so called
KL graph (Fig. 3) has slowly become the de facto simulation
topology [3], [5], [7]. In the illustrative example, the capacity
of the light links is 12K units and the thick links is 48K
units and each link is bidirectional. In all the simulation
experiments described in this paper, connection requests of
uniformly distributed request size arrive and leave randomly,
following an exponential-distribution.

Preserving the available transmission capacity of all sessions
is the key objective of minimum interference routing. Fig.
4 shows that LCPF is indeed able to bring this policy into
effect even in the presence of criticality precomputation. In
the figure, the maxflow for session S1-D1 is depicted after
setting up long-lived connections one by one in the KL graph.
All requests are of equal size (10 units). Precomputation was
not applied to MIRA and WSP, however, LCPF is run at
precomputation period k = 16 and k = 128. The diagram
implies that LCPF is, almost irrespective of the precomputa-
tion period, able to preserve the transmission potential of the
S1-D1 session in this case.

Now we show that the deliberate criticality detection of
LCPF transforms into better call acceptance in the presence
of precomputation. First, we experienced how many unit-
sized, long-lived connections a particular algorithm is able to
accommodate in the KL graph until all sessions are blocked.
Fig. 5 depicts the result of this experiment as the function of
the precomputation period. Both MIRA and LCPF are able to
fill up the network to the theoretical maximum (84000 units of
traffic) when precomputation is not applied. Nonetheless, as
the precomputation period increases MIRA (and WSP) suffers
significant performance degradation but remains better than
SPF (which is, by nature, not sensitive to the precomputation
period). The graph also shows that both LCPF and MIRA are
superior to WSP in the case of on-demand routing (k = 1),

3Note that WSP readily lends itself to precomputation (see the QoS
extensions to OSPF routing protocol, QoSPF, [1, Appendices]).

7

10K

15K

20K

25K

30K

35K

 0 1000 2000 3000 4000 5000 6000

M
ax

Fl
ow

 fo
r s

es
si

on
 S

1D
1

#Connection

MIRA
LCPF(16)

LCPF(128)
WSP
SPF

Fig. 4. Maxflow of session S1-D1 while gradually filling up the KL graph.
LCPF is used with precomputation, for which the period is indicated in
parentheses

30K

40K

50K

60K

70K

80K

90K

 1 4 16 64 256 1024

#A
cc

ep
te

d
ca

lls

Precomputation period (logarithmic scale)

LCPF
MIRA
WSP
SPF

Fig. 5. Number of successfully routed connections as the function of the
precomputation period

however, LCPF is able to retain the precedence as long as the
precomputation period remains reasonable (take note of the
logarithmic scale on the x axis).

Similar behavior can be deduced from Fig. 6, which shows
the average call blocking ratio (CBR) as the function of the
Poisson request arrival intensity at a precomputation period of
k = 20. The request size was uniformly distributed between 10
and 30 units. Notably, MIRA produces non-zero call blocking
even at a request arrival intensity, where WSP does not (for
on-demand routing MIRA was reported to be superior to
WSP [3]). Additionally, LCPF performs better than any other
algorithms at all request arrival rates.

One may argue that the performance benefits implied by
LCPF (and MIRA) are limited to the scope of the KL graph,
and in other scenarios minimum interference routing may not
prove so prosperous. Therefore, we conducted simulations on
realistic random graphs generated by the BRITE tool [14] with
the router-level Waxman-model (α = 0.15, β = 0.2). Per-
session Poisson request generation intensity (λi), exponential
holding time (µi) and mean request size (Bi) is set as to assure
that the average load is kept at a constant rate (

∑p
i=1Bi

λi

µi
=

const). Fig. 7 depicts the average call blocking ratio as the
function of increasing precomputation period averaged in 40
random graphs of 15 nodes, 45 bidirectional links and 4
sessions. Fig 8 gives the call blocking for graphs of 23 nodes,
44 links and 9 sessions. The main observations are as follows.
First, when criticality precomputation is not applied WSP,
MIRA and LCPF produce virtually zero blocking. In fact,
MIRA generally performs slightly better than LCPF, which
seems to be a consequence of the “soft feasibility” approach
of LCPF. However, as the interval between subsequent link
state updates and precomputations increases, MIRA loses
precedence over WSP. This performance degradation may on
the one hand be attributed to the inferior criticality concept
implemented by MIRA. On the other hand, MIRA’s undue
dependency on the accuracy of link state information (recall
that links deemed to be infeasible are filtered out before path
selection takes place) also prove to be adverse as the consist-

ency of network state information becomes more and more
dubious. Nonetheless, with the increase of k the revenues of
sophisticated criticality detection and soft feasibility of LCPF
gradually emerge (SPF produces roughly 40% average call
blocking ratio in both cases). For k > 2, LCPF outperforms
all the other algorithms and preserves the same good efficiency
at modest precomputation periods. Only at the extreme case
of k = 1024, LCPF performance falls into the range of WSP
and MIRA.

As the last phase of our simulation studies, we compared the
online and offline complexity of WSP, MIRA and LCPF. We
note that the processing requirements of these algorithms are
strongly dependent on the actual topology of the network, the
number of links and sessions and other factors. Furthermore,
our implementation is far from being optimized and our home-
grown profiler – yet, being of sub-millisecond accuracy –
measures real-processing time instead of process virtual time.
Therefore, the results are provided solely for informational
purposes without the intention to be an exhaustive performance
evaluation. We used a laptop equipped with a Mobile PIII 850
MHz processor for the experiments.

In the case of SPF and WSP, online computations basically
mean to walk through the precomputed routing table, which
is hardly measurable by our tools (for an in-depth evaluation
of the complexity of precomputed WSP, see [15]). The same
applies to precomputed MIRA and LCPF: even for the largest
graphs the processing time needed to assemble the link weights
and execute Dijkstra’s algorithm (used for computing the
shortest weighted path) remained well below the precision of
our profiling tool. Thus, we decided to measure the average
running time of the criticality computations in the case of
MIRA and LCPF, and the calculation of the QoS routing table
in the case of WSP. On the one hand, these parameters de-
termine the offline complexity of the algorithms. Furthermore,
these parameters immediately transform to online complexity,
if one decides to ignore precomputation and precisely calculate
a unique route for each connection setup request. The meas-
urements were conducted in 15 sequences of increasing sized

8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

2 4 6 8 10 12 14 16 18 20 22 24

A
ve

ra
ge

 C
al

l B
lo

ck
in

g
R

at
io

Lambda [1/sec]

LCPF
MIRA
WSP
SPF

Fig. 6. Average CBR as the function of request arrival intensity. Precompu-
tation period is 20

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 4 16 64 256 1024

A
ve

ra
ge

 C
al

l B
lo

ck
in

g
R

at
io

Precomputation Period (logarithmic scale)

LCPF
MIRA
WSP

Fig. 7. Average CBR as the function of the precomputation period averaged
in 40 random graphs of 15 nodes, 45 edges and 4 sessions

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 4 16 64 256 1024

A
ve

ra
ge

 C
al

l B
lo

ck
in

g
R

at
io

Precomputation Period (logarithmic scale)

LCPF
MIRA
WSP

Fig. 8. Average CBR as the function of the precomputation period averaged
in 40 random graphs of 23 nodes, 44 edges and 9 sessions

0.1

1

10

100

1K

10K

100K

1M

 8 16 32 64

E
xe

cu
tio

n
Ti

m
e

[m
s]

#Node (Logarithmic scale)

LCPF
MIRA

LCPF_OPT
WSP

Fig. 9. Offline computational requirements of WSP, MIRA and LCPF as the
function of the number of nodes in the random graphs

realistic random graphs. The number of edges was always
twice the number of nodes with the number of sessions being
the half. Fig. 9 shows the results (in milliseconds and in log-
log space) as the function of the network size. For LCPF,
we indicated the results with both the simple algorithm of
Fig. 2 (LCPF) and the optimized form using Theorem 3
(LCPF_OPT).

First, WSP confirms its good record of being a lightweight
algorithm: even for networks as large as 64 nodes it took less
than 200 ms to compute the QoS routing table for all sessions.
Second, in our specific examples, the running time of MIRA
always remained under 1 second. As of LCPF, even for a
small network of 16 nodes the precomputation lasts more than
1 second and the running time grows dramatically to more
than 5 minutes in our largest sample configuration. This is
hardly tolerable in a real network environment. However, the
optimized algorithm reduces the running time to 20 ms in
the 16 node graphs and to less than 10 seconds in the 64
node networks. As a rough estimation, in our experiments it
took about 5 to 10 times more processing power to compute
criticality with LCPF_OPT than with MIRA. Thus, when the

precomputation period is increased over 10, LCPF_OPT turns
to be more economical than MIRA, while at the same time, the
routing performance remains on par even without up-to-date
knowledge on resource availability.

VI. CONCLUDING REMARKS

Minimum interference routing was originally designed with
the assumption that network state information is always up-
to-date, accurate and consistent. Though, in a reality this
is generally not the case, because the frequency of routing
information re-synchronizations is tied up by practical lim-
itations. Furthermore, the real-time requirements placed on
path selection makes on-demand link criticality computations
less appealing. In order to overcome these problems we
developed a generic precomputation framework for minimum
interference routing. The underlying theoretical foundations
were provided by the notion of the criticality threshold, which
not only gives a thorough characterization of criticality but
also provides interesting new views in network flow theory. By
extensive simulation studies we showed that the Least-Critical-
Path-First routing algorithm exhibits unprecedented routing

9

performance owing to the sophisticated proactive criticality
detection and soft feasibility. We found that LCPF success-
fully converts the online complexity of MIRA to an offline
complexity of tolerable level while remaining more efficient
even in the case of large precomputation periods.

REFERENCES

[1] R. Guerin, A. Orda, and D. Williams, “QoS routing mechanisms and
OSPF extensions.” IETF RFC 2676, 1999.

[2] Z. Wang and J. Crowcroft, “Quality of Service routing for supporting
multimedia applications,” IEEE Journal on Selected Areas in Commu-
nications, vol. 14, pp. 1228–1234, 1996.

[3] K. Kar, M. Kodialam, and T. Lakshman, “Minimum interference routing
of bandwidth guaranteed tunnels with MPLS traffic engineering applic-
ations,” IEEE Journal on Selected Areas in Communications, vol. 18,
December 2000.

[4] I. Iliadis and D. Bauer, “A new class of online minimum-interference
routing algorithms,” in Networking 2002, Proceedings of Second the
International IFIP-TC6 Networking Conference, p. 959 ff., May 19-24
2002.

[5] K. Kar, M. Kodialam, and T. V. Lakshman, “MPLS traffic engineering
using enhanced minimum interference routing: An approach based on
lexicographic max-flow.” Proceedings of Eighth International Workshop
on Quality of Service (IWQoS), Pittsburgh, USA, June 2000.

[6] K. Gopalan, T. cker Chiueh, and Y.-J. Lin, “Load balancing routing with
bandwidth-delay guarantees,” IEEE Communications Magazine, vol. 42,
pp. 108–113, June 2004.

[7] S. Suri, M. Waldvogel, D. Bauer, and P. R. Warkhede, “Profile-based
routing and traffic engineering,” Computer Communications, vol. 26,
pp. 351–365, 2003.

[8] S.-W. Tan, S.-W. Lee, and B. Vaillaint, “Non-greedy minimum inter-
ference routing algorithm for bandwidth-guaranteed flows,” Computer
Communications Journal, vol. 25, pp. 1640–1652, November 2002.

[9] A. Orda and A. Sprintson, “QoS routing: the precomputation perspect-
ive,” in INFOCOM (1), pp. 128–136, 2000.

[10] G. Apostolopoulos, R. Guerin, S. Kamat, and S. K. Tripathi, “Quality
of service based routing: A performance perspective,” in SIGCOMM,
pp. 17–28, 1998.

[11] H. Alnuweiri, L. Wong, and T. Al-Khasib, “Performance of new link
state advertisement mechanisms in routing protocols with traffic engin-
eering extensions,” IEEE Communications Magazine, vol. 42, pp. 151–
162, May 2004.

[12] R. K. A. snd T. L. Magnanti and J. B. Orlin, Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, Englewood Cliffs, NJ,
1993.

[13] M. S. Bazaraa, J. J. J., and H. D. Sherali, Linear Programming and
Network Flows. John Wiley & Sons, January 1990.

[14] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: Universal
topology generation from a user’s perspective,” Tech. Rep. 2001-003,
1 2001.

[15] G. Apostolopoulos, R. Guerin, and S. Kamat, “Implementation and
performance measurements of QoS routing extensions to OSPF,” in
INFOCOM (2), pp. 680–688, 1999.

