
Routing-independent Fairness in Capacitated
Networks

Gábor Rétvári, József J. Bíró, Tibor Cinkler

High Speed Networks Laboratory
Department of Telecommunications and Media Informatics

Budapest University of Technology and Economics
H-1117, Magyar Tudósok körútja 2., Budapest, Hungary

E-mail: {retvari, biro, cinkler}@tmit.bme.hu

Abstract—The problem of fair and feasible allocation of user
throughputs in capacitated networks is investigated. The main
contribution of the paper is an extension of network fairness,
and in particular, max-min fairness from the traditional “fixed-
path” model to a more versatile, routing-independent model. We
show that the set of throughput configurations realizable in a
capacitated network makes up a polyhedron, which gives rise to a
max-min fair allocation completely analogous to the conventional
one.

I. INTRODUCTION

In this paper we address the problem of allocating scarce
resources in a network so that every user gets a fair share,
for some reasonable definition of fairness. For example, a fair
allocation would be such that every user gets the same share,
and the allocation is maximal in the sense that there does
not exist any larger, even and feasible allocation. We shall
focus on the fair allocation problem that arises most often in
networking: compute a fair rate at which users can send data
in a telecommunications network, whose links are of limited
capacity.

Perhaps the most practical way to understand the context of
this paper is through an example. Consider the simple directed
network of Fig. 1a, and suppose that there are 3 source-
destination pairs (or users or commodities): (1, 5), (2, 5) and
(3, 5). All the edge capacities are uniformly 1. Now, the task
is to compute a transmission rate (or throughput, for short) for
each user that is on the one hand feasible (so it can be routed
in the network without violating the edge capacities) and, on
the other hand, satisfies some fairness criteria. For example,
according to the above naive interpretation of fairness, we
would allocate 1

2 amount of throughput for each user. This
allocation is certainly feasible and gives even share to each
user, and it is also maximal in this regard.

Amongst the many different definitions of fairness perhaps
the most prevailing one is max-min fairness. A max-min fair
allocation is, roughly speaking, such that we cannot increase
the throughput of any of the users without decreasing the
throughput of some other user, which is already smaller [1].
Max-min fairness is a simple yet powerful fairness criterion,

∗This work has been done as a part of the European sixth framework
research project IP NOBEL (www.ist-nobel.org).

and consequently it has grown to be an essential ingredient in
diverse fields of networking, like flow control protocols [2],
bandwidth sharing in ATM networks [3], etc.

Max-min fairness is most easily described in a network
model, where a single path is assigned to each user, and this
path remains fixed during the lifetime of the communication.
Here, the task is to compute a rate at which users can send data
to their path, so that the allocation is max-min fair and neither
of the edges gets overloaded. A very useful tool to solve this
problem is the notion of bottlenecks [4]. A bottleneck edge,
with respect to a certain user, is an edge with the properties
that (i) it is filled to capacity and (ii) the user has the maximum
throughput amongst the users whose path traverses the edge.
Bottlenecks are very tightly coupled with max-min fairness,
for it can be shown that an allocation of throughputs is max-
min fair over some fixed single-path routing, if and only if all
the users have a bottleneck edge.

From the practical standpoint, the importance of this bot-
tleneck argumentation is multi-faceted. First, as the name
suggests, bottlenecks point to certain shortages of resources
in the network that, given the selected set of paths, constrain
the fair allocation. Additionally, bottlenecks substantiate a fast
algorithm, the so called water-filling algorithm, to find a max-
min fair allocation [4]: we increase the throughput of the users
at the same pace until an edge gets saturated. Then we fix
the throughput of the users whose path passes through the
saturated edge and keep on increasing others. The procedure
is repeated until eventually a bottleneck is found for each user,
and the allocation obtained is guaranteed to be the max-min
fair allocation.

Assume that, in the sample network of Fig. 1, path 1 → 4 →
5 is assigned to user (1, 5), path 2 → 4 → 5 to user (2, 5), and
the direct path 3 → 5 to user (3, 5), respectively. Then, the
edge that first becomes saturated as the water-filling algorithm
proceeds is edge (4, 5), which becomes the bottleneck edge for
users (1, 5) and (2, 5). So the throughput of both of these users
is fixed at 1

2 , and only the throughput of user (3, 5) is increased
any more. This, in turn, gets saturated at a throughput of 1 unit.
The final max-min fair allocation is represented by the vector
[12 , 1

2 , 1], using the order of users set out above.
Curiously, the actual selection of paths influences the emer-

(a) Topology (b) T (Gu)

Figure 1: A sample network and the set of throughputs realiz-
able in it. All edge capacities equal to 1. There are 3 source-
destination pairs (1, 5), (2, 5) and (3, 5), whose throughput is
denoted by θ1, θ2 and θ3, respectively.

gent max-min fair allocation to a great extent. For example,
if the path of user (3, 5) is changed to 3 → 4 → 5, then the
max-min fair throughput vector turns to [13 , 1

3 , 1
3]. If we assign

both paths 3 → 5 and 3 → 4 → 5 to user (3, 5) with the
restriction that traffic must be split equally between the two
paths (using multiple forwarding paths with preset splitting
ratio is permitted by the fixed-path model), then the max-min
fair allocation ends up to be [25 , 2

5 , 2
5]. Apparently, different

routings give rise to different max-min fair allocations, which
is somewhat unnatural since, after all, it is the network that
determines feasible allocations. Accordingly, we should first
compute a max-min fair allocation that is only dependent on
the network itself, and only after this we should pick a routing
that realizes it.

Recently, several attempts have been made to address this
general max-min fair allocation problem using lexicographical
optimization [5], [6]. These works are based on the observation
that a max-min fair allocation is lexicographically maximal
above the set of all feasible routings, so successive linear
programming can be invoked to obtain it. The approach
taken in [6] is, however, more general: it not only states the
existence and the uniqueness of a max-min fair allocation over
any compact and convex set, which the set of all possible
routings certainly is, but it also gives an algorithm, called
Max-min Programming, to compute it over any such set.
While these excellent works provide adequate quantitative
treatment, an in-depth qualitative analysis, which would reveal
the intricate relationship between the specifics of a network
and the emergent max-min fair allocation, is still absent in
the literature. For instance, it is still not clear whether or
not the bottleneck argumentation and, consequently, the water-
filling algorithm generalize from the fixed-path model to the
routing-independent, generic model, and if yes, then in what
particular form bottlenecks arise. These questions have gone
mostly unresolved so far, albeit their relevance has been very
clearly pointed out [6, Section “When bottleneck and water-
filling become less obvious”].

In this paper, we offer affirmative answers to these important
questions. After a quick roundup on the notation in Section II,
we shall introduce a novel polyhedral description of the
throughput allocations realizable in a network (see Section III).
This polyhedral description is so concise that for simple
networks we can as well easily visualize it (see Fig. 1b) and
it allows us to gain interesting new insights into the general
max-min fair allocation problem. In Section IV we present
our treatment and then, in Section V, we reveal how the
bottleneck argumentation extends to the routing-independent
case. Finally, in Section VI we summarize our contributions.

Reading this paper requires a minimal understanding of the
theory of network flows and linear programming. To make it
more readable even to the less mathematically inclined, all the
proofs are deferred to the Appendix. For a good introductory
material on polyhedra the reader is referred to [7].

II. PRELIMINARIES

In this section, we present the most important notations and
conventions we shall use throughout this paper. A vector will
be denoted by a lowercase letter. Most of the time, the ith
coordinate of a vector v will be referred to as vi, but in some
cases, to stress that we are dealing with a specific coordinate,
we shall use the notation (v)i. What now follows is a list of
the notation we shall use in the sequel:

• G(V,E): a directed graph, with the set of nodes V (|V | =
n) and the set of directed edges E (|E| = m).

• u: the column m-vector of edge capacities.
• (sk, dk) : k ∈ K,K = {1, . . . ,K}: the set of source-

destination pairs (users or commodities).
Note that the graph G(V,E), the edge capacities u and the set
of source-destination pairs (sk, dk) : k ∈ K together describe a
network, which will be referred to as Gu for brevity. Hereafter,
we shall only deal with networks that satisfy certain, rather
mild, regularity conditions:

Definition 1: A network Gu is regular, if
• a path exists in Gu from sk to dk for each k ∈ K and
• all edge capacities are finite and strictly positive.

It is easy to see that any network can be reduced to a collection
of regular networks by eliminating edges with zero capacity
and fixing the throughput of the un-connected users at zero.
The further notation goes on as follows:

• ei: the canonical unit vector (of proper size implied by
the context) with 1 in the position corresponding to the
ith coordinate and all zero otherwise.

• 1: an all-one vector of proper size.
• Pk: the set of all directed paths from sk to dk in G(V,E)

for some k ∈ K.
• ∆k: an m × |Pk| matrix. The column corresponding to

path P ∈ Pk holds the path-arc incidence vector of P .
• fk: a column vector of path-flows, whose coordinate

corresponding to path P ∈ Pk denotes the amount of
flow sent by user k to path P .

• f : a column-vector of fks: f = [f1, f2, . . . , fK]. In fact,
f represents a routing in Gu.

• θk: the throughput of some user k ∈ K, that is, the
aggregate flow that flows from sk to dk. The vector of
throughputs is a column K-vector θ.

• βθ ≤ b: an inequality constraining the set of throughputs,
where β is a row K-vector and b is a scalar. An βθ ≤ b
is valid for some set T , if ∀θ ∈ T : βθ ≤ b.

• T (Gu): the set of throughputs realizable in the network
Gu, subject to edge capacity constraints.

• S: a separating edge set, that is, a set of edges S ⊆ E
whose removal from the network would destroy all the
directed sk to dk paths for at least one user k ∈ K.

• KS : the set of users disconnected by some separating
edge set S.

III. THE THROUGHPUT POLYTOPE

The central problem we investigate in this paper is to
determine a feasible and fair allocation of user throughputs in a
capacitated network, independently of paths fixed beforehand
in any ways. A plausible way to attack this problem would
be to describe the entire set of possible flow routings f and
throughput allocations θ as a giant set and then search for
the fair allocation in this very set. Consider the following
formulation:

M(Gu) = {[f, θ] :
∑

k∈K
∆kfk ≤ u (1)

1fk = θk ∀k ∈ K (2)
fk ≥ 0, θk ≥ 0 ∀k ∈ K } (3)

Readers more proficient in network flow theory might find this
formulation familiar, since M(Gu) is in fact the set of feasible
solutions of the family of multicommodity flow problems. Here
(1) requires that, for all edges, the sum of all path-flows routed
to the edge does not exceed the capacity of that edge; (2)
produces the throughput for each user by summing up the
flow traveling along each of its paths; and (3) requires the
flows and throughputs to be non-negative.

While using M(Gu) to deduce a routing-independent fair
allocation is clearly viable (see e.g. [5]), it is unfortunate in
many regards, most notably because M(Gu) usually has a
plethora of problem variables, the majority of which com-
pletely redundant. This is because, at the moment, we are
only interested in a fair throughput allocation but not in the
way this allocation is accommodated in the network, apart
from the requirement that the allocation must be realizable
by some legitimate routing. Therefore, instead of studying the
full-fledged set M(Gu) one might rather choose to eliminate
the path-flow variables f all together from the description.
The emergent set, denoted hereafter by T (Gu), contains all
the possible throughput allocations feasible in Gu:

Definition 2: T (Gu) = {θ : ∃f so that [f, θ] ∈ M(Gu)}.
For the sample network of Fig. 1a, the corresponding set of
feasible throughput allocations is depicted in Fig. 1b. To obtain
it, we reason as follows. Let θ1 denote the throughput of user
(1, 5), θ2 of user (2, 5) and θ3 of user (3, 5), respectively. Since
we can not push more flow than 1 via the edge (4, 5), which is
traversed by all the potential paths of user (1, 5) and (2, 5), we

have that θ1+θ2 ≤ 1. Furthermore, after routing 1 unit of flow
of user (3, 5) along the edge (3, 5), every additional ε units of
flow of this user have to traverse edge (4, 5), decreasing the
aggregate throughput remaining available to user (1, 5) and
(2, 5) by exactly ε units. So, θ1 + θ2 + θ3 ≤ 2. It can be
shown that these inequalities, together with the restriction that
the throughputs are non-negative, give rise to a complete and
irredundant description of the set of throughputs realizable in
the network of Fig. 1a:

T (Gu) = {[θ1, θ2, θ3] : θ1 + θ2 ≤ 1 (4)
θ1 + θ2 + θ3 ≤ 2 (5)

θ1, θ2, θ3 ≥ 0 } (6)

Observe how all the constraints turned out to be linear.
Sets of similar kind are called polyhedra, which might be
familiar as these are exactly the geometric objects that underlie
linear programming. A polyhedron is basically an intersection
of finitely many halfspaces, and as such, closed and convex.
Additionally, a bounded polyhedron is called a polytope. The
result below reveals that the set T (Gu) is not coincidentally
polyhedral in our example.

Proposition 1: T (Gu) is a polyhedron. Provided that Gu is
regular, T (Gu) is a polytope.

Henceforward, we shall only deal with regular networks,
and so we shall refer to T (Gu) as the throughput polytope.
But not just that T (Gu) is a polytope with “nice” properties
like convexity and compactness, it has yet another interesting
quality that makes it even more attractive to work with:
observe that in the formulation (4)–(6), every coefficient and
also the right-hand-side of all the inequalities are non-negative.
This, as the next result claims, is again not coincidental,
but instead a very important general property of throughput
polytopes, one that we shall exploit in the next section when
we shall discuss fair allocations arising in T (Gu).

Proposition 2: For a regular network Gu, the corresponding
throughput polytope can always be transformed to the follow-
ing standard form:

T (Gu) = {θ ≥ 0 : βiθ ≤ bi, ∀i ∈ I} ,

where I is a (finite) index set and for each i ∈ I it holds that
βi is a row K-vector with βi ≥ 0 and bi is a positive scalar.

IV. MAX-MIN FAIR ALLOCATIONS

In the previous section, we introduced the throughput poly-
tope as the lower-dimensional projection of the set of all
feasible routings and throughput allocations, with the path-
flow variables eliminated. In this section, we shall study
various sorts of fair allocations arising in a network by means
of the corresponding throughput polytope.

When deciding which particular throughput allocation to
offer for the users, the first requirement one has to consider
is that the allocation must be feasible. Feasibility is, however,
easy to assure in our model: one might choose whatever θ ∈
T (Gu) and the construct then automatically assures that this θ
will be realizable by some legitimate routing. The second re-
quirement is the allocation must preclude unnecessary wastage

of network resources. A way to achieve this would be to select
an allocation that is maximal in the sense that “allocating more
to some user is only possible at the expense of allocating
less to some other user”. Such “maximal” allocations are
called Pareto-efficient. Unfortunately, Pareto-efficiency allows
for allocations where one user gets everything, which is not
really fair (observe for instance that the allocation [0, 0, 2]
is Pareto-efficient in the network of Fig. 1a). Therefore, we
must choose one particular θ0 that is on the one hand feasible
and (Pareto) efficient and, on the other hand, offers some
sorts of fair treatment to the users. Max-min fairness has
become the allocation strategy of choice in many areas of
networking thanks to the remarkably simple fairness rule it
implements: “there is no way to make anybody better off
without hurting somebody else, who is already poorer”. In
the case of throughput allocations in capacitated networks, the
formal definition is as follows:

Definition 3: An allocation of throughputs θ0 is max-min
fair, if it is feasible and ∀θ ∈ T (Gu) : (θ)k > (θ0)k ⇒ ∃l ∈
K \ {k}, so that (θ)l < (θ0)l and (θ0)l ≤ (θ0)k.

It is by far not evident whether or not this definition makes
sense in the case of T (Gu) or, in fact, how many max-min fair
allocations it yields. Though, the following claim states that
the notion of max-min fairness over T (Gu) is well-defined:

Proposition 3: Let Gu be a regular network. Then there
exists a max-min fair allocation over T (Gu), and it is unique.

Being now safe that the general max-min fair allocation
problem is soluble, we now move on to investigate how to
actually compute that solution. In this process the following
result, which relates the max-min fair allocation θ0 to certain
inequalities holding with strict equality at θ0, will be of great
help:

Theorem 1: Some θ0 ∈ T (Gu) is max-min fair, if and only
if for each k ∈ K there exists an inequality βθ ≤ b, the so
called bottleneck inequality, such that:

i) β ≥ 0
ii) ∀θ ∈ T (Gu) : βθ ≤ b (so the inequality is valid)

iii) βθ0 = b
iv) ∀l ∈ K : (β)l > 0 if and only if (θ0)l ≤ (θ0)k

What is remarkable in this result is that bottleneck in-
equalities work very much like bottleneck edges in the fixed-
path model (hence the name). With this analogy in mind we
could rephrase Theorem 1 as: an allocation of throughputs
is max-min fair in the generic sense, if and only if all users
have a bottleneck (inequality). This formulation is exactly the
same as the one given for the fixed-path model, only the
definition of bottlenecks differs somewhat. Interestingly, the
analogy goes even further since not just bottlenecks but the
water-filling algorithm too extends to the general max-min fair
allocation problem. Recall that the water-filling algorithm is
based on the idea to generate a bottleneck for at least one
user in every iteration, no matter in which form bottlenecks
are defined. Provided that the bottlenecks arise in the form
of a bottleneck inequality, Theorem 1 guarantees that what
we eventually obtain by running the water-filling algorithm on
the throughput polytope is exactly the max-min fair allocation.

Thus, the second important consequence of this theorem is that
the water-filling algorithm is correct to search for a max-min
fair allocation over T (Gu).

Consider the network of Fig. 1a, and execute the water-
filling algorithm using the throughput polytope (4)–(6) de-
picted in Fig. 1b. As the first step, increase the throughput of
all the users at the same pace. This amounts to, starting from
the origin, moving along the direction [1, 1, 1] as long as some
of the users gets blocked. This occurs at the point [12 , 1

2 , 1
2],

where the constraint (4) becomes active. As a matter of fact,
this constraint will be the bottleneck for users (1, 5) and (2, 5).
The only user not yet blocked is (3, 5), whose throughput can
be increased to 1. The resultant allocation θ0 = [12 , 1

2 , 1] is
max-min fair, and the bottleneck inequality of the last user
turns out to be constraint (5) (note that it is generally not true
that the bottleneck inequalities correspond to the constraints
of T (Gu)).

The final question that remained to be answered is that,
once we computed the max-min fair allocation θ0, how to
actually obtain a routing that realizes it. That is, we need
to find path-flows f : [θ0, f] ∈ M(Gu). This amounts to
solving a multicommodity flow problem, which can be done
in polynomial time [8]. The computed path-flows will then
supply a rate at which users have to distribute their traffic
to their paths and an actual routing, which, once established
in the network, will automatically realize the max-min fair
throughput allocation θ0 using the exact same distributed flow
control and queuing techniques as in the fixed-path model [9].

V. A BOTTLENECK ARGUMENTATION

So far, we have shown how the concept of bottlenecks
extends from the fixed-path max-min fairness problem to the
generic case. Analogously to the traditional model, we could
obtain an “if and only if” relation between the existence of
bottlenecks for each user and max-min fairness, which also
guaranteed the correctness of the water-filling algorithm. Quite
regrettably, however, our bottlenecks are currently defined in
terms of valid inequalities, which, being more of a polyhedral
concept than a network theoretical one, is not really descrip-
tive. In this section, we translate this bottleneck argumentation
to the more palpable concept of separating edge sets, whose
properties show remarkable similarity to the properties of
“bottleneck edges” in the fixed-path model.

In the heart of the fixed-path model there lies the notion
of bottleneck edges. A bottleneck edge is one that blocks any
increase in the throughput of the user it belongs to. This is
because (i) it is filled up to capacity when we realize the
max-min fair allocation, and (ii) the corresponding user has
the maximum throughput amongst the users that might want
to use that edge. This conventional interpretation fails in the
generic model, since neither the set of paths nor the users of
a particular edge are fixed.

A bottleneck edge blocks one particular, fixed path of some
user. To block all paths we have to treat an entire set of edges,
a so called separating edge set, which, when removed from the
network, destroys all directed paths connecting the source to

the destination node. This suggests the idea to search for the
generalization of bottleneck edges in the form of bottleneck
separating edge sets. What remained to be done is to translate
the defining properties of bottleneck edges to separating edge
sets.

Let θ0 be max-min fair in a regular network Gu and
choose some user k ∈ K. Additionally, suppose that we have
somehow found the corresponding bottleneck separating edge
set Sk and let KSk

⊆ K denote the set of users, whose source
node is separated away from the respective destination node by
Sk. First, we reformulate the following property of bottleneck
edges: a user’s throughput is maximal at its bottleneck edge
amongst the ones that utilize that edge. But “utilizers” of
separating edge sets are exactly the users that are separated
away by it, so for Sk it must hold that:

Property 1: l ∈ KSk
⇔ (θ0)l ≤ (θ0)k.

The second defining property of bottleneck edges is that
they are always filled to capacity when we realize the max-min
fair allocation and, furthermore, in the fixed-path model there
is no way for the traffic of the blocked users to circumvent
this bottleneck. We translate this property to separating edge
sets as follows:

Property 2: For any routing f that realizes θ0, it holds that

∀ (i, j) ∈ Sk :
∑

l∈KSk

∑

P∈Pl:(i,j)∈P

(fl)P = uij

In words, Property 2 insists that a bottleneck separating edge
set is always saturated by the flow of the users separated away
by it, no matter how we route the max-min fair allocation
in the network. Therefore, any increase in the throughput
of some user would decrease the throughput of some other
user that utilizes the same (bottleneck) separating edge set,
and consequently, whose throughput is already smaller (by
Property 1), and this property is independent of the actual
routing. Interestingly, these properties give rise to a bottleneck
argumentation completely analogous to the conventional one:

Theorem 2: An allocation of throughputs θ0 ∈ T (Gu)
is max-min fair, if and only if each user has a bottleneck
separating edge set exhibiting both Property 1 and Property 2.

It is now fairly easy to find the bottleneck separating edge
sets corresponding to the network of Fig. 1a. User (1, 5) and
(2, 5) have the same bottleneck separating edge set constituted
by the single edge (4, 5). Observe that i) removing this edge
would cut away the endpoints of these users, ii) the throughput
of these users is maximal amongst the set of users separated
away by the edge and finally iii) this edge will always be
filled to capacity no matter how we route the max-min fair
allocation θ0 = [12 , 1

2 , 1] in the network (in fact, we have only
one option to choose from). We kindly encourage the reader to
check that these three properties readily apply to the bottleneck
separating edge set of user (3, 5): {(3, 5), (4, 5)}.

As a final remark, we note that our bottleneck argumentation
contains the conventional one as a special case. To see this,
it is enough to restrict each user to use one single path and
observe that bottleneck separating edge sets degrade to the
conventional bottleneck edges in this case.

VI. CONTRIBUTIONS

Traditionally, fair allocation of user throughputs has been
considered in the case when the path of the users is fixed for
the lifetime of the communication. In this model, users get
whatever “fair” share of network resources the actual routing
allows them to receive. However, a user might ask rightfully:
“Why has exactly this routing been implemented in the net-
work instead of another one, which would be more beneficial
for me within the current throughput allocation strategy?”
This argumentation holds some merit, because in the fixed-
path model the throughput allocated to a user depends quite
heavily on the route taken by the traffic of that user, which,
within the network architectures of our days, the user is not
quite empowered to affect. In this paper we argued that it is
much more natural to make throughput allocation strategies
independent of routing, and we have extended the most
commonly used fairness criterion, max-min fairness, to this
generic case. If the throughput was determined independently
of the actual routing, then no one would have the right to
complain since it was the network, a given entity, that decided
which particular share of network resources a user receives.

To solve this general throughput allocation problem, first we
introduced the throughput polytope, a polyhedral description
of the range of throughput configurations realizable in a ca-
pacitated network. This construct is notable, not only because
it helped us to characterize max-min fair allocations in the
generic, routing-independent model, but also because it can
easily help to do the same with other notions of fairness,
like proportional fairness or utility fairness. For instance, our
treatment is almost straightforward to extend to the case for
weighted max-min fairness or min-max fairness.

Next, we showed that there always exists a unique routing-
independent max-min fair throughput allocation in a regular
network and it can be obtained by the water-filling algorithm.
Although this algorithm is faster than the ones available in
the literature [5], its practical utility for solving the generic
max-min fair allocation problem is limited, because it ne-
cessitates the throughput polytope to have been computed
in advance, which itself requires substantial computational
efforts and might very well turn out to be intractable in large
networks [10]. Finally, exploiting the special structure of the
throughput polytope we extended the well-known bottleneck
argumentation from the fixed-path model to the generic one.
Note that this result is more universal than one might think at
the first glance, because our proofs remain valid for any other
down-monotone polyhedron that satisfies the non-negativity
requirements in Proposition 2.

REFERENCES

[1] J. M. Jaffe, “Bottleneck flow control,” IEEE Transactions on Commu-
nications, vol. 29, pp. 954–962, July 1981.

[2] E. L. Hahne, “Round-robin scheduling for max-min fairness in data
networks,” IEEE Journal on Selected Areas of Communication, vol. 9,
pp. 1024–1039, Sept. 1991.

[3] A. F. T. Committee, “Traffic Management Specification - Version 4.0.”
ATM Forum/95-0013R13, Feb 1996.

[4] D. P. Bertsekas and R. Gallager, Data Networks. Englewood Cliffs, New
Jersey: Prentice-Hall, 1987.

[5] D. Nace and L. Doan, “A polynomial approach to the fair multi-flow
problem.” Tech. Rep., Heudiasyc, UTC, available online: http://www.
hds.utc.fr/~dnace/recherche/Publication/TR-MMF.pdf, 2002.

[6] J. Y. Le Boudec and B. Radunovic, “A unified framework for max-min
and min-max fairness with applications,” in Proceedings of 40th Annual
Allerton Conference on Communication, Control, and Computing, Oct
2002.

[7] G. Ziegler, Lectures on Polytopes, vol. 152 of Graduate Texts in
Mathematics. New York: Springer, 1998.

[8] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear Programming and
Network Flows. New York: John Wiley & Sons, second ed., 1990.

[9] J. Le Boudec, “Rate adaptation, congestion control and fairness: a
tutorial.” available online: http://ica1www.epfl.ch/PS_files/LEB3132.pdf,
Feb 2005.

[10] G. Rétvári, J. J. Bíró, and T. Cinkler, “Fairness in capacitated networks:
a polyhedral approach.” in Proceedings of INFOCOM’07, May 2007.

[11] M. Iri, “On an extension of the maximum-flow minimum-cut theorem
to multicommodity flows,” Journal of the Operations Research Society
of Japan, vol. 13, no. 3, pp. 129–135, 1971.

[12] K. Onaga and O. Kakusho, “On feasibility conditions of multicommodity
flows in networks,” IEEE Transactions on Circuit Theory, vol. 18, no. 4,
pp. 425–429, 1971.

APPENDIX

Proof of Proposition 1: M(Gu) is, by definition (1)–(3),
an intersection of finitely many halfspaces, so it is a polyhe-
dron. By Definition 2, T (Gu) is the orthogonal projection of
M(Gu) to the space spanned by θ, therefore it is itself too a
polyhedron [7]. Finally, compactness for regular networks is
straightforward.

Proof of Proposition 2: Applying Černikov’s block-
elimination method [7] to M(Gu), we have that row K-vectors
β and row m-vectors w lying in the projection cone

W (Gu) = {[β,w] :
∑

(i,j)∈P wij ≥ βk ∀k ∈ K,∀P ∈ Pk

w ≥ 0 }

generate all the inequalities of T (Gu): T (Gu) = {θ ≥ 0 :
βθ ≤ wu, ∀[β,w] ∈ W (Gu)}. In fact, it is enough to take
the inequalities generated by the extreme rays of W (Gu), so
I is finite. Observe that here, vectors w can be thought of as
non-negative edge weights, while the kth coordinate of β, βk,
is less than, or equal to the length of the shortest path from
sk to dk over the edge weights w. (Note that in all practically
important cases (β)k in fact attains the length of the shortest
path.) Hence, β is non-negative and, for a regular Gu, wu is
strictly positive. See alternative proofs in [11] and [12] (the
Japanese Theorem).

Proof of Proposition 3: Since T (Gu) is a polytope, it
is, by nature, convex and compact. Then the existence and
uniqueness of the max-min fair vector is guaranteed by [6,
Theorem 1 and Proposition 1].

Proof of Theorem 1: Let θ0 be max-min fair and, for
each k ∈ K, construct the vector θ′ so that

(θ′)l =

{

(θ0)k if (θ0)l > (θ0)k

(θ0)l otherwise
(7)

We prove that the sum of the constraints of T (Gu) binding at
θ′ satisfies all the requirements of the theorem.

Let T (Gu) = {θ ≥ 0 : βiθ ≤ bi, i ∈ I} and let B be the set
of constraints binding at θ′: B = {i ∈ I : βiθ

′ = bi} 6= ∅. Let

β =
∑

i∈B
βi and b =

∑

i∈B
bi. Obviously, βθ ≤ b is valid for

T (Gu) and β ≥ 0, so the first two claims immediately apply.
To see that the latter two claims also apply, it is enough to
show that (β)l > 0 ⇔ (θ0)l ≤ (θ0)k and the rest follows from
β ≥ 0. Now, θ0 is max-min fair ⇔ increasing (θ0)k is only
possible at the expense of decreasing some (θ0)l with (θ0)l ≤
(θ0)k ⇔ ∀l ∈ K with (θ0)l ≤ (θ0)k : θ′ + εel /∈ T (Gu) for
each ε > 0 ⇔ ∀l ∈ K with (θ0)l ≤ (θ0)k : (β)l > 0. The
reverse direction of the proof comes similarly.

Proof of Theorem 2: We have already seen that some
θ0 ∈ T (Gu) is max-min fair, if and only if each k ∈ K
has a bottleneck inequality βθ ≤ wu conforming to (i)–(iv)
in Theorem 1. Here, w can be thought of as edge weights
and (β)k as the length of the shortest path from sk to dk

over the weights w. Now, define the corresponding bottleneck
separating edge set as

Sk = {(i, j) ∈ E : wij > 0} . (8)

This implies that KSk
= {l ∈ K : (β)l > 0} = {l ∈ K :

(θ0)l ≤ (θ0)k}, using item (iv) in Theorem 1. So Sk as defined
by (8) immediately satisfies Property 1. To prove the theorem,
we only need to show that it fulfills Property 2 too. For this,
first we observe that vector [β,w] taken from the bottleneck
inequality of k solve the following linear program defined over
the separating edge set Sk as defined by (8), with optimal
objective function value zero:

0 = min wu − βθ0

w∆l ≥ 1(β)l ∀l ∈ K

βl ≥ 1 ∀l ∈ KSk

βl = 0 ∀l ∈ K \ KSk

wij ≥ 1 ∀(i, j) ∈ Sk

wij ≥ 0 ∀(i, j) ∈ E \ Sk

Now, by the strong duality theorem of linear programming,
the dual linear program below is also soluble and the optimal
objective function value is zero:

0 = max
∑

(i,j)∈Sk
λij +

∑

l∈KSk

µl
∑

l∈K
∆lfl + λ = u

1fl − µ = (θ0)l ∀l ∈ K

µl ≥ 0 ∀l ∈ KSk

fl ≥ 0, λ ≥ 0 ∀l ∈ K

Let [f, λ, µ] be any optimal feasible solution. Now, the objec-
tive function value is zero, if and only if ∀l ∈ KSk

: µl = 0 and
∀(i, j) ∈ Sk : λij = 0, which exactly reproduces Property 2
and the proof is complete.

