An Information-Theoretic Approach to Routing Scalability

<u>Gábor Rétvári</u>, Dávid Szabó, András Gulyás, Attila Kőrösi, János Tapolcai

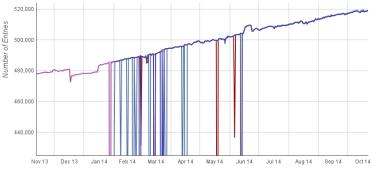
Budapest Univ. of Technology and Economics Dept. of Telecomm. and Media Informatics {retvari,szabod,gulyas,korosi,tapolcai}@tmit.bme.hu *Hotnets XIII, October 27–28 2014, Los Angeles, CA, USA*

- Take the IPv4 forwarding table of some Internet router
 - orders next-hops to address prefixes
- Represent each distinct next-hop with a unique label
- Take individual IPv4 addresses and write down the corresponding next-hop labels one by one
 - result is a string of $2^{32} = 4G$ symbols
 - naive representation of our forwarding table
- Compress this string

Dest. IP Address	Next-hop IP address	Next-hop label
0.0.0.0	blackhole	0
0.0.0.1	blackhole	0
:	:	:
80.92.12.254	149.11.10.9	17
80.92.12.255	149.11.10.9	17
80.92.13.0	213.248.79.185	18
:	:	:
152.66.244.111	195.111.97.83	41
152.66.244.112	195.111.97.83	41
152.66.244.113	195.111.97.83	41
:	:	:
255.255.255.255	blackhole	0

• For a real router in the HBONE (AS1955)

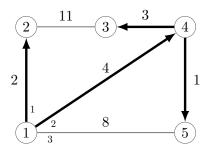
```
$ fib2str hbone.fib.dump > hbone.bin
$ ls -hs hbone.bin
4.0G hbone.bin
$ bzip2 hbone.bin
$ ls -hs hbone.bin.bz2
???
```



• For a real router in the HBONE (AS1955)

```
$ fib2str hbone.fib.dump > hbone.bin
$ ls -hs hbone.bin
4.0G hbone.bin
$ bzip2 hbone.bin
$ ls -hs hbone.bin.bz2
???
```

- $\bullet\,$ The compressed size is $116\ {\rm Kbytes}$
- That's over 37,000-fold reduction!!

Does hop-by-hop routing scale?


- The key to data plane scalability is forwarding tables
 - involved in every packet lookup
 - routed address space is growing rapidly
- Can we model forwarding tables and reason about size?

Taken from the Internet Routing Entropy Monitor, see http://lendulet.tmit.bme.hu/fib_comp

The model

- $\bullet\ {\rm Graph}\ {\rm of}\ n\ {\rm nodes}$
- No address space structure: each node has a random id
- Routing policy (arbitrary) orders each destination node to an outgoing port
- Forwarding table at node v is a string s_v , so that the entry at position u is the next-hop port towards u

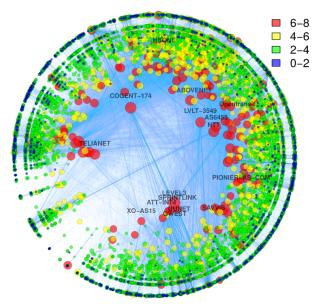
$$s_1 = < -, 1, 2, 2, 2 >$$

Modeling power

- How much information **must** be stored at a node to guarantee correct (as of the routing policy) forwarding?
- We can use s_v to answer this question
- **Theorem:** if node ids are assigned randomly, **any** routing scheme must store at least $nH_0(v)$ bits at any node v, where $H_0(v)$ is the Shannon-entropy of the next-hop distribution in s_v
- $nH_0(v)$ bits is attainable, subject to a small error term, with very fast random access [Ferragina et al., SODA'07]
- Routing scalability depends in $H_0(v)$!

Analysis

- Shortest path routing over the complete graph K_n
- Bad news: uniform link weights induce maximal forwarding table entropy: $H_0(v) = \lg(n) \rightarrow \infty$ bits
- Good news: random i.i.d. link weights induce constant forwarding table entropy: $\mathbb{E}(H_0(v)) = \lg e \approx 1.44$ bits
- It seems that heterogeneity is the key to routing scalability, either topology-wise or policy-wise


Simulations

- CAIDA AS-level Internet graph with inferred AS-AS business relationships
- Valley-free routing with Gao-Rexford conditions
- Ties broken by shortest AS-path length
- Obtain the per-IP-prefix forwarding table for each AS
- Result is a string of $\sim 500,000~{\rm entries}$
- Calculate entropy

Validation

- Downloaded IPv4 forwarding tables from two ASes
- Internet2 (AS11537): couple of thousand prefixes
 - Reality: $H_0 = 1.3 \dots 1.7$ bits
 - Simulations: $H_0 = 1.72$ bits
- HBONE (AS1955): full-BGP tables with > 500,000 prefixes
 - Reality: $H_0 = 1.28$ bits
 - Simulations: $H_0 = 1.26$ bits
- Such a precision is at least suspicious

The Internet scalability map

Discussion

- Forwarding table entropy is surprisingly low
 - below $1 \mbox{ bit at } 99 \mbox{ of ASes }$
 - results $50\text{--}70~\mathrm{Kbytes}$ forwarding tables at lower tiers
 - about half a megabyte at the Tier 1
 - $10 \ {\rm million} \ {\rm IP}$ prefixes would still yield only $10 \ {\rm Mbytes}$ forwarding tables
- And this is with disregarding address space structure!
- Tier1 pays the price for Internet growth (in terms of entropy)
- Regularity emerges somehow in large-scale forwarding tables

Acknowledgement

- Thanks to Internet2 and HBONE for allowing access to their IP FIBs
- Visit the the Internet Routing Entropy Monitor at http://lendulet.tmit.bme.hu/fib_comp for daily
 statistics
- Please, contribute data!