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ABSTRACT
Many of our computer networks, not the least of which the
Internet, are built upon hop-by-hop routing. At the moment,
it is not clear whether we will be able to scale these networks
into the future economically. In this paper, we propose a
new information-theoretic model to study routing scalability,
we present preliminary analysis suggesting that hop-by-hop
routing tolerates network growth surprisingly efficiently, and
we sketch the scalability map of the Internet which we then
use to make some bold predictions.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design—Store and forward net-
works; E.4 [Coding and Information Theory]: Data
compaction and compression

Keywords
Internet scalability; hop-by-hop routing; forwarding ta-
ble; data compression; entropy

1. INTRODUCTION
Throughout its several decades of history, the Inter-

net has evolved from an experimental academic network
to a full-blown global communications infrastructure.
Most of the architectural transitions that have taken
place in the background, from the ARPANET proto-
cols to IP, from classful addressing to classless, from IP
version 4 to version 6, were (and are) largely fueled by
concerns regarding the ability of the network to accom-
modate future growth. And growth has been anything
but light lately; according to our Internet data plane
measurements, as of Jun, 2014, the size of the routed
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IPv4 address space has grown by more than 7 percent
throughout the last 8 months to over half a million pre-
fixes and counting1.

The Internet control plane, for one, presents its fair
share of scalability matters [1]. Yet, it seems very likely
that we can cope in the long term, by leveraging Moore’s
Law or, say, moving BGP entirely to the cloud [2]. In
reality it is the data plane, with its custom line card
ASICs and SRAM modules and stringent real-time per-
formance requirements, where Internet scalability issues
manifest themselves most markedly [3, 4]. And even
though subject to concentrated research efforts [5] and
heated debates [6,7], there is still no clear answer to the
question as to whether the Internet routing architecture
will scale to the foreseeable future.

In this paper, we argue that we need a fundamen-
tally new model for routing state scalability to settle
this debate. This model must be sufficiently and nec-
essarily rich, omitting just the uninteresting subtleties
while still delivering meaningful answers, and it must
also be amenable to quantitative and qualitative argu-
mentations, admitting large-scale simulations as well as
mathematical analysis providing, say, universal lower
and upper bounds or asymptotic scalability character-
izations. We argue furthermore that the model should
not be of worst-case nature. It has been shown earlier
that on certain instances of graphs some routers must
store prohibitively large amounts of routing informa-
tion and there is no way out of this without forwarding
paths or signaling load going out of control [5,8]. Unfor-
tunately the results do not bring over to the Internet as
these worst-case graphs do not have anything in com-
mon with reality. Instead, the right model should de-
liver correct and verifiable scalability predictions, even
when subjected to concrete topologies and routing poli-
cies. Last but not least the model should also be imple-
mentable, lending itself readily to be deployed on real-
life routers.

After so much ado it should not come as particularly
1We have created a website we dubbed the Internet Rout-
ing Entropy Monitor to publish browsable daily statistics
and downloadable data sets for the community, see http:
//lendulet.tmit.bme.hu/fib_comp.
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surprising that what we offer in this paper is such a
model. Our model lifts network scalability research into
the realm we believe it naturally belongs to: information-
theory. In particular, the model allows to reason about
the scalability of general graph families or particular
networks through analyzing the entropy of certain strings
arising as forwarding tables at network nodes.

Below, we report on some initial results we obtained
with the model. We find that in a broad class of graphs
as well as in the Internet AS-level topology routing ta-
ble entropy is unexpectedly low, allowing to compress
routing state to a fraction of its original size. We further
argue that the key to routing scalability is heterogene-
ity, either topology-wise or policy-wise. We support this
claim by evaluating real routing table traces taken from
operational Internet routers.

Unfortunately, without sufficient data it is impos-
sible to make overall predictions. Thus, we feed the
model into Internet-scale simulations and, surprisingly,
our rudimentary analysis already produces meaningful
results that nicely align with ground truth. We then use
the simulations to sketch the scalability map of the In-
ternet, highlighting the areas worst affected by network
growth and those unlikely to experience any scalability
stress at all, and we attempt to use our insights to make
some actual predictions on the Internet’s future.

The model is described in Section 2. We present the
mathematical analysis in Section 3 and the simulation
studies in Section 4, and finally in Section 5 we discuss
our findings some further.

2. THE MODEL
The model is based on the idea that, after omitting

some complicating details, forwarding tables (the data
structures that maintain forwarding state in hop-by-hop
routing and hence shape scalability in the large) even-
tually boil down to simple strings, which can then be
subjected to information-theoretic analysis.

One of the most complicated aspects of Internet rout-
ing is the inherent structure in the IP address space,
whereas hosts are collected on an administrative or ge-
ographical basis into a hierarchy of subnets and super-
nets. For one, it is notoriously difficult to reason about
the information content of such structured data [9]. Sec-
ond, it is not immediately clear how much information
is encoded intrinsically within the address space itself
and what remains to be encoded in the routing state.
But more importantly, even the optimal encoding of
IP forwarding tables ends up separating structure from
flat labels [10]; containing a separate component encod-
ing the prefix hierarchy whose size depends only on the
number of IP prefixes and hence, by and large, constant
across the Internet; and another component, unique to
each router, encoding the association of next-hops to
flat IP prefixes. Correspondingly, we chose to go with

a flat address space, to which structure can be added
back in a separate step.

So we are given an undirected graph G(V,E) on n
nodes, with each node v ∈ V labeled with an id id(v), a
unique integer in [1, n], and each outgoing port (v, u) ∈
E of node v labeled with a locally unique id port(v, u) ∈
[1, δv], where δv denotes the node degree of v. Port
ids are local and hence we are free to permute these
in the range [1, δv]; contrariwise, vertex ids are global
and thereby essentially random from our perspective.
We further assume that routing policies (like shortest-
path or valley-free) for each node have been fixed in
advance and packet forwarding must strictly obey the
paths emerging from these policies, but as far as our
model is concerned we do not assume any particularity
about the routing policies themselves whatsoever.

Packets contain a header with the id of the destina-
tion node, which is then fed to the local routing function
sv of each node v along the forwarding path to deter-
mine the output port to pass the packet on. The routing
function sv : [1, n] 7→ [1, δv] itself maps a destination
node id (as found in the packet header) to the corre-
sponding outgoing port. We suppose that each node
v ∈ V is aware of its own id (this immediately imposes
lg(n) bits2 lower space bound for storing sv) and hence
can identify packets destined to itself, so we shall usu-
ally set the symbol of sv at position id(v) arbitrary. A
simple way to look at sv is to think of it as a string
of length n on the alphabet Σv = [1, δv], so that the
symbol sv(i) at position i ∈ [1, n] gives the output port
to be used to forward packets towards the node with
id i. Then, our task is to find lower and upper bounds
on the number of bits needed to encode this string in
general graphs, like the Internet.

A naïve encoding of the routing function sv at any
node v would require n lg δv bits (n times the number of
bits needed to distinguish the ports of v). This is also a
lower bound on the size of sv when we do not have any
prior knowledge on sv that we could exploit to compress
it (i.e., the distribution of port ids is essentially uni-
form). Hence, we shall view this quantity (the so called
information-theoretic limit) as the uncompressed size of
the routing state. However, if we possess some knowl-
edge on the input, say, we know a zero-order model
(symbols of the input are independent, identically dis-
tributed random variables from a known distribution),
then we can leverage that knowledge to compress be-
yond this limit. We can then give firm lower and upper
bounds on the expected size of an optimal encoding of
the input and, as shown below, this argumentation goes
over to forwarding tables seamlessly.

Definition 1. The zero-order entropy bound for stor-
ing the routing function sv at node v is nH0(v) bits,
2The notation lg x is shorthand for log2(x) (or dlog2(x)e
wherever it makes more sense).
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where

H0(v) =
∑
j∈Σv

pj log2

1

pj

is the Shannon-entropy of the distribution pj : j ∈ Σv
with each pj describing the probability of port j to appear
as a next-hop port in sv.

The significance of the entropy bound is multi-faceted.
First, note that H0(v) ≤ lg δv with equality if and only
if the distribution of port ids in the routing function is
completely uniform. Second, nH0 is an upper bound on
the amount of space needed to encode sv; one could use
Huffman-coding to realize the entropy bound but this
might make fast lookups on the compressed form impos-
sible; to both encode to zero-order entropy and facili-
tate fast lookup one can use for instance wavelet trees
[11], providing O(log n) random access and nH0 + o(n)
bits storage space, or the simple scheme in [11] to get
(roughly) O(1) lookups. But most importantly, the en-
tropy bound is also a firm lower bound for realizing the
routing function, as shown next.

Theorem 1. Given a graph G(V,E) on n nodes with
each node assigned a unique id in [1, n] randomly, any
encoding of the routing function sv : v ∈ V needs at
least nH0(v) bits.

Proof (Sketch). The proof is based on the idea
that any encoding B that could store sv on fewer than
nH0 bits would violate the (noiseless) source coding the-
orem due to Shannon. This is because for any string s
we can construct a graph that reproduces s at some
node as a routing function, whose encoding with B be-
low nH0 bits would now lead to a contradiction.

Observe the generality of this result: for any graph
and any routing policy there is simply no way to encode
the routing function below the entropy bound without
actual information loss (i.e., a violation of the routing
policy). Furthermore, the lower bound remains firm as
long as we do not have control over the allocation of
node ids and thereby the order of symbols in sv is es-
sentially random3. The entropy bound is computable
for any graph at least empirically: we just need to ob-
tain the forwarding functions and then evaluate the en-
tropy over the port id distribution, which can certainly
be done with enough computing power at hand; the re-
sults are verifiable as we can easily evaluate the entropy
on real forwarding table traces from production routers
(see later); and the model is also implementable in ac-
tual router hardware, even though current wavelet tree
implementations’ performance might lag behind a bit
(but see [10] on how to overcome this issue).
3If, on the other hand, we are free to assign node addresses
then we can design some structure into the address space,
which opens the door to higher-order encoders to go beyond
the zero-order entropy bound; such “name-dependent” rout-
ing schemes are, however, beyond the scope of this paper [5].

3. ANALYSIS
Are there networks that admit hop-by-hop routing

without overflowing routers’ memory, even as the un-
derlying network grows larger? And, on the contrary,
are there networks and/or routing policies for which for-
warding state suddenly explodes after a certain point?
Below, we present some rudimentary analysis to answer
(some of) these questions. For simplicity, in the below
analysis we shall fix the routing policy as shortest-path
routing over positive link costs (but we note that the
analysis would go similarly for any routing policy [8]).

Our main scalability measures will be the entropy
bound of nH0(v) bits that, recall, gives the minimum
and maximum amount of information a node v must
store to encode its routing function. We also look for
the compression efficiency η(v) = H0(v)/lg δv, describing
the ratio of the size of the compressed routing function
to the uncompressed one (this is the reciprocal of the
usual compression ratio metric).

We first present the bad news: it is very simple to
construct graphs where sv cannot be encoded efficiently.

Lemma 1. Let Kn be the complete graph on n nodes
with unit cost on each edge. Then, for any node v we
have H0(v) = lg n.

The proof is trivial by observing that each port id
appears exactly once in the routing function (omitting
a node’s own entry). Thusly, the port id distribution is
uniform and the entropy bound matches the information-
theoretic limit. This on the one hand means that hop-
by-hop routing is unscalable on complete graphs (at
least in a zero-order setting, that is, when node ids are
random) as state grows superlinearly with size and, on
the other hand, this is also an example for the case when
sv cannot be compressed at all (i.e., η = 1).

In some sense, the above negative result stems from
the fact that a complete graph with unit link costs is
totally homogeneous, so each port appears in sv with
equal probability. We observe, nevertheless, that if the
network exhibits some form of heterogeneity then the
port id distribution in sv becomes skewed, which tends
to reduce entropy in most cases.

We first break the symmetry by introducing a slight
random link cost variation into our complete graphs.
That is, instead of a uniform cost model we turn to
a model where link costs are chosen randomly from a
known distribution.

Lemma 2. Let Kn be the complete graph on n nodes
and let the cost on each edge be an i.i.d. random vari-
able chosen from Exp(1). Then, for a randomly picked
node v we have E(H0(v)) = lg e as n grows to infinity.

The proof is based on the observation that under this
random graph model the size of the branches of the
shortest path tree is described by the Chinese restaurant
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model [12]. Note also that the result remains true for a
wide variety of i.i.d. link cost distributions.

What is remarkable in this finding is that the slight
diversity introduced by random link costs already re-
duces the entropy of the routing function to lg e ≈ 1.44
bits. This is not even dependent on the network size,
even though the size of the alphabet that underlies the
routing function (i.e., the number of ports) grows with-
out limit. This is despite that the expected value of the
link costs is still 1 like above and also despite that lo-
cally the graph is completely homogeneous. Also note
that the information-theoretic limit remains lg n, so sv
in this case is infinitely compressible (η → 0).

What if we go the other way around and we alter the
topology instead of the link costs? The natural proces-
sion of the above line of thought would be to fix link
costs at unit and this time let the randomness shape the
existence of edges, i.e., to go with an Erdős-Rényi ran-
dom graph model. Unfortunately, this model has this
far resisted our analytical efforts. Instead, we go with
another uniform cost random topology that is, similarly
to an Erdős-Rényi graph, locally completely homoge-
neous: the hypercube.

Lemma 3. Let Gd be the hypercube graph in d dimen-
sions with unit cost on each edge and suppose there is
a strict order on the ports for each node to break ties
between equal cost shortest paths. Then, for any node v
we have H0(v) ≤ 2.

The proof is based on the observation that, under the
above conditions, the next-hop distribution in the rout-
ing function forms a geometric sequence with common
ratio 1/2, and so H0 =

∑
i 2−i lg(2i) =

∑
i i2
−i < 2.

So it seems that there is something very interesting
going on here. Intuitively, one would not expect hop-
by-hop routing to scale particularly well: why would
certain next-hops concentrate more traffic than others,
after all? This is indeed the case for completely homo-
geneous networks, like the complete graph, that exhibit
uniform next-hop distribution and therefore maximum
entropy. However, if we introduce heterogeneity either
topology-wise or policy-wise then dominant next-hops
begin to emerge, producing highly skewed next-hop dis-
tributions and very small forwarding state entropy, all
in all, excellent scalability and infinite compressibility.

4. SIMULATIONS
A compelling question now arises: Does the mathe-

matical analysis apply to the Internet in some way?
So, we set out to simulate the Internet! Rather an

ambitious undertaking, given that we do not know the
router-level Internet topology, let alone the routing poli-
cies deployed by service providers. Thus, we went with a
gravely simplified simulation methodology: we used the
valley-free policy routing model over the Autonomous

System (AS) level Internet graph topology with inferred
AS policies. Our goals were likewise modest, in that we
merely asked how much information would any routing
protocol need (not necessarily BGP) to store at Internet
routers to encode the inter-domain path system. Con-
sequently, our conclusions only remotely apply to full-
fledged Internet routing, complete with more-specifics,
unannounced addresses, etc. Or perhaps they do, but
we shall certainly need a reality check to see this.

Our simulation methodology was as follows: take the
CAIDA AS-graph with inferred AS-AS business rela-
tionships [13]; calculate all the valid inter-domain paths
for each AS-pair according to the valley-free routing
model; select the best path according to the Gao-Rexford
conditions (prefer customer paths over peer paths over
provider paths) with ties broken by shortest AS-path
length; create a “per-AS” routing function for each AS
(with one entry per destination AS) by writing down
the port id corresponding to the best paths one after the
other4; convert this to a per-prefix routing function (one
entry per IP address prefix) with repeating the next-hop
entry for each AS as many times as the number of pre-
fixes that AS announces into the inter-domain routing
system [14]; and finally take the resultant strings and
calculate the entropy as of Definition 1.

Essentially every single aspect of this methodology is
arguable, ranging from using an AS-level graph to esti-
mate a router-level measure (the routing function), to
the inherent imprecision of the AS-graph [15], the in-
ferred routing policies, and the Gao-Rexford conditions
(but see also [16]), all the way to the fact that our model
is for a continuous unstructured address space while the
IP address space is fundamentally hierarchical and con-
tains “holes”.

Even so, it turns out that the results still match
ground truth to some extent, in the sense that the rout-
ing function entropy produced by the simulations is in
the same order of magnitude as that of real IP forward-
ing tables (FIBs) measured in terms of the FIB-entropy
metric of [10]. As of June 1, 2014, on a set of 10 IP
FIBs downloaded from the Internet2 (AS11537) entropy
is varying between 1.3 and 1.7 bits (with a mean of 1.45
bits) and our simulations yield 1.72 bits; for a set of 10
FIBs obtained from the HBONE (AS1955) we get 1.28–
2.56 bits of entropy (mean: 2.16) in contrast to our
simulation results of 1.55 bits. Most of these FIBs, how-
ever, contain default gateways and hence are not quite
representative for inter-domain routing; for a restricted
set of 3 full-BGP FIB instances from the HBONE (con-
taining on average 502, 060 entries) the mean entropy
is 1.28 bits. Strikingly, our simulations quite precisely
reproduce this result; we get 1.26 bits of entropy for

4Note that in a zero-order model like ours the order of next-
hop ports within the routing function does not matter, only
their relative frequency counts.
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Figure 1: Entropy and compression efficiency by tier.

the HBONE after manually correcting the CAIDA AS-
graph using the routing policies published at the Rout-
ing Arbiter Database. The simulations are robust across
a wide range of input parameters and local preference
settings, and even compensating for blackhole routes
(“holes” in the IP address space) do not alter the re-
sults substantially.

Easily, this close match is more probably an acciden-
tal simulation artifact than tangible proof: after all, we
didn’t expect the simulations to deliver quantitatively
correct results. Until we manage to collect enough IP
FIBs and we validate the results comprehensively, all
further conclusions drawn from the simulations should
be taken with a certain (large) grain of salt.

Fig. 1 gives a visualization of the simulation results,
depicting the routing function entropy and compression
efficiency per AS tier. Here, Tier 1 means the topmost
clique of 16 ASes (as of the CAIDA AS graph) con-
nected into a peering mesh without upstream provider,
and subsequent tiers mark ASes located in increasing
distance from this top tier. Note that the Internet2
and the HBONE are Tier 2 in this tier-based classi-
fication. In addition, we collected all the results into
a giant Internet scalability map, rendering the Inter-
net inter-domain routing system within an illustrative
hyperbolic layout (taken from [17]), with smaller blue
vertices marking the ASes of low entropy (0–2 bits) and
bigger red vertices marking the ASes that suffer high
routing table entropy. See Fig. 2.

The conclusions stand out. ASes in the Internet Tier
1 experience consistently higher entropy than those at
lower tiers (most of the red nodes on the map are Tier
1), with values as high as 7–8 bits. What is worse,
the routing state at the Tier 1 does not seem really
compressible; the uncompressed size is only about twice
as large as the compressed one, indicating a close to
uniform next-hop distribution in the forwarding tables.
The reason appears to be that from the top tier we see a

vastly homogeneous Internet, with no second tier ASes
attracting significantly more prefixes than others.

In contrast, below the Tier 1, that is, at essentially
99.9% of all ASes the entropy of routing state is be-
low 1 bit and compression efficiency is much better.
This means that forwarding tables at lower tiers may
be more regular and more compressible (to the point
that a single-homed AS’s routing state is compressible
to zero bits in theory), suggesting that these ASes suffer
way lower scalability stress than those at top tiers. In
other words, from the lower tiers we see a much more
heterogeneous Internet, with most of the prefixes avail-
able via only a few primary upstream providers (which
therefore concentrate lot of prefixes, introducing a huge
bias into the next-hop distribution in the routing func-
tion) and customer and peer ASes contributing very
little to the entropy.

5. DISCUSSION
So, does the Internet routing system scale after all?

We would say that the answer is generally affirmative,
at least as long as our analysis goes.

It seems that we do not need that much informa-
tion to encode the current inter-domain routing state
of the Internet. For the roughly half million prefixes
announced into the routing system today, the simula-
tions provide entropy bounds (which, recall, indicate
the absolute lower and upper bound on the information
content of ASes’ forwarding state) ranging from 50–70
Kbytes at lower tiers to about half a megabyte at the
Tier 1. For the Internet2 forwarding tables (note that
these contain only about 14,000 entries) the simulations
give an entropy bound of 20 Kbytes (15 Kbytes empiri-
cally), and for the HBONE the bound is 80 Kbytes (70
Kbyte on the real data).

But is 80 Kbytes, an equivalent of answering about
600, 000 yes-or-no questions, a lot to encode the route
to every single host on the Internet? After all, this is
barely as large as any average PDF document, low res-
olution photo image, or small novel, and way smaller
than any computer encoded music file, photo of reason-
able resolution, or most of the executable files on your
PC for that matter. And this is well within the reach
of the first ARPANET IMPs (which later evolved to In-
ternet routers) or popular home computers of the 80s.
And still, this much information is enough to know the
whereabouts of about half a million IP prefixes we see
in the routed Internet from the HBONE today. Note
also that there are actual working FIB encoders capa-
ble to attain this (or a small multiple of this) size near
reasonable lookup and update performance [10].

If we extrapolate from the results to the near-future,
we do not see too much reason to ring the alarm bells
either. It seems likely that we will be able scale our
routers to the foreseeable future, provided that current
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Figure 2: The Internet scalability map: routing function entropy visualized in a hyperbolic layout of the AS graph,
with vertex size and color (from blue to red) varying proportionally with entropy.

growth trends continue, i.e., the appearance of new pre-
fixes follows a linear or slow quadratic trend [18].

But what if things go really wrong all of a sudden?
What if the secondary IPv4 address market goes berserk,
what if /26-s and /28-s begin to appear en masse in
the Default Free Zone, what if IPv6 really catches on
and every home and small enterprise network obtains its
provider independent multi-homed /48 or /64, all in all,
what if, say, 10 million IP prefixes show up in the inter-
domain routing system overnight? Then again, this is
only 10 Mbytes worth of memory (at the Tier 1), which
would fit into the line card memory of basically every
off-the-shelf WAN router marketed today. And even
if we were to announce every single IPv4 address into
the routing system, this still would impose only about
4 Gbytes of routing state at the Tier1, which is again
within the reach of modern data plane technologies [19].

There are, however, certain worrying trends worth
being aware of. For instance, it seems that ASes at top
tiers are the ones who really pay the price for Internet
growth, with Tier 1 ASes paying one order of magnitude
more (roughly 1 byte per prefix) than those at low tiers
(less than 1 bit per prefix) for the addition of every
single new prefix to the inter-domain routing system.
This can concentrate scalability stress to a few large
ASes, which may cause new tussles between Internet
stakeholders [20].

Easily, all this is true only as long as we can extrapo-
late from the simulation results. We believe that some
simple refinements to the methodology would could go a
long way to increase our confidence in these results; for
instance address space structure could be re-introduced
easily by transitioning to the corresponding FIB-entropy
notion of [10]; and we could also get more realistic rout-
ing table size estimates by observing that, as far as the
information-theoretic model is concerned, it is enough
to take router-level topology into account only locally,
while the remote portion of the Internet can still be
represented by its aggregate AS-level map.

Even so, the single most intriguing conclusion from
the above seems to be that regularity somehow tends
to miraculously emerge in the forwarding state associ-
ated with large-scale hop-by-hop routing. The reasons,
emergence, and the characterization of this vast regu-
larity, and the role network heterogeneity plays in this,
are for interesting further study.
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