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• Holds info on the whereabouts of every single IP address
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A Router in the DFZ

• Holds info on the whereabouts of every single IP address

• That ought to be a huge amount of information

• So a DFZ router must be huuuuuge

Cisco CRS-3 line card

up to 8 Gbyte memory

533 MHz DDR2

>300 Watt

http://www.cisco.com/en/US/docs/routers/
crs/crs1/4_slot/system_description/

reference/guide/10805.pdf

http://www.cisco.com/en/US/docs/routers/
crs/crs1/4_slot/system_description/
reference/guide/10805.pdf


A Router in the DFZ

• Holds info on the whereabouts of every single IP address

• That ought to be a huge amount of information

• So a DFZ router must be huuuuuge

• Or must it?

ASUS WL 500G Deluxe

32 Mbyte memory

4 Mbyte flash

200 MHz CPU

10 Watt



IP Forwarding Information Base

• A real FIB taken from taz.bme.hu (univ. access)

• Stores more than 410K IP-prefix-to-nexthop mappings

• Consulted on a packet-by-packet basis at line speed

◦ Longest prefix match

• Takes several Mbytes of fast line card memory

• Some people argue that’s a scalability barrier
Report from the IAB Workshop on Routing and Addressing, RFC 4984, 2007.

Zhao et al. Routing scalability: an operator’s view, JSAC, 2010.

• Some people disagree
Fall et al. Routing tables: Is smaller really much better?, HotNets, 2009.

• Don’t want to make this a debate on Internet routing

scalability



How much information does a FIB actually

need to store?

Can we achieve the storage size lower
bound, retaining fast lookup?



Towards Compressed IP FIBs

• Store an IP FIB in as small space as possible

◦ below 256–512 Kbyte

◦ fit FIB into fast memory (SRAM/CPU cache)

◦ maintain full forwarding equivalence

◦ retain fast lookup!

• Our approach is systematic

◦ identify redundancy in common FIB representations

◦ eliminate it

◦ attain entropy bounds

◦ prototype and test on real traffic



Conventional FIB Representations

• Next-hops indexed on the alphabet Σ = [0,K ], K ≪ N

• FIB table: lookup needs looping through all N entries

• Memory size is ~20 Mbytes on taz

Address/prefix length Label

-/0 2

0/1 3

00/2 3

001/3 2

01/2 2

011/3 1



Conventional FIB Representations

• Next-hops indexed on the alphabet Σ = [0,K ], K ≪ N

• FIB table: lookup needs looping through all N entries

• Memory size is ~20 Mbytes on taz

Address/prefix length Label

-/0 2

0/1 3

00/2 3

001/3 2

01/2 2

011/3 1 2 1

3 2

3
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• Binary trie: search tree over the address space

• Lookup improves to optimal O(W ) for W bit address size

• ~4 Mbyte on taz



Redundancy in Binary Tries

• Semantic redundancy: entries superfluous due to longest

prefix match
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Redundancy in Binary Tries

• Semantic redundancy: entries superfluous due to longest

prefix match
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3
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• Leaf-pushing: push interior labels down to leaves

◦ ~1.3 Mbytes on taz

• Structural redundancy: remove excess levels

◦ multibit tries have nice structure

◦ <1 Mbytes



Information-theoretical Redundancy

• Certain labels appear frequently, encode these on fewer

bits like Huffman-coding
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Information-theoretical Redundancy

• Certain labels appear frequently, encode these on fewer

bits like Huffman-coding

3 2 2 1
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i Slast Sα

1 1 0
}

level 0

2 0 0
}

level 1
3 1 2

4 0 3














level 2
5 0 2

6 0 2

7 1 1

• Multibit Burrows-Wheeler transform: serialize the trie in
breadth-first-search order into two strings

◦ Slast: bitstring encoding the tree structure

◦ Sα: string encoding the labels

• Compress Slast and Sα to attain entropy bounds



Navigating MBW

• String self-indexing: a revolution is going around in TCS

• It is now possible to encode a string to higher-order entropy

• And provide O(1) operations on the compressed form!

◦ the encoder supports simple navigational primitives in O(1)

◦ lookup on MBW can be implemented in terms of these

• We use RRR on Slast and Wavelet trees on Sα

• Size is optimal in terms of the FIB entropy

H0(pc) =
∑

c∈Σ

pc log
1

pc

• pc is the empirical probability of next-hop labels in the FIB

• In fact, we can even attain higher-order entropy



Experiments on a Linux Prototype

• User space FIB compression, kernel module does lookup

◦ could acquire only two real FIBs from the DFZ

◦ rest is from collectors that obscure next-hop info

◦ contain more than 410K entries



We need your help!
We need your FIBs!

Please, upload any FIB you can put your hands on to
http://lendulet.tmit.bme.hu/fib_comp

Output of show ip bgp or show ip route from a production

DFZ router is preferred (but basically anything flies)

http://lendulet.tmit.bme.hu/fib_comp


Experiments on a Linux Prototype

• User space FIB compression, kernel module does lookup

◦ could acquire only two real FIBs from the DFZ

◦ rest is from collectors that obscure next-hop info

◦ contain more than 410K entries

• MBW compresses beyond zero-order entropy

◦ 60–120 Kbytes (!) on FIBs with few next-hops

◦ 256–400 Kbytes on FIBs with several hundred next-hops

◦ 2–6 bits per prefix

• 3–10 complete rebuilds per second

• Churn out ~100 MBit/sec at 30-50 Kpps/sec



Demo



Discussion

• Contemporary FIBs can be encoded to 256–512 Kbytes
with pointerless data structures

◦ this is optimal, up to lower order terms

◦ well below SRAM/cache size bounds of today

• And lookup is still theoretically optimal

◦ in practice, two orders of magnitude worse than required

◦ but this is only a proof-of-concept



Future?

• Entropy-compressed FIBs with linespeed lookup?

◦ can we trade optimized HW away for optimized SW?

◦ that is, better FIB compression algorithms in SW



Future?

• Entropy-compressed FIBs with linespeed lookup?

◦ can we trade optimized HW away for optimized SW?

◦ that is, better FIB compression algorithms in SW

• FIBs contain vast redundancy

◦ why?

◦ how to get rid of it from the outset?



Future?

• Entropy-compressed FIBs with linespeed lookup?

◦ can we trade optimized HW away for optimized SW?

◦ that is, better FIB compression algorithms in SW

• FIBs contain vast redundancy

◦ why?

◦ how to get rid of it from the outset?

• Historic analysis of FIBs entropy

◦ how has entropy changed throughout the years?

◦ hard to do without real data

http://lendulet.tmit.bme.hu/fib_comp

http://lendulet.tmit.bme.hu/fib_comp

