
Compressing IP Forwarding

Tables for Fun and Profit

Gábor Rétvári, Zoltán Csernátony, Attila Körösi,

János Tapolcai

András Császár, Gábor Enyedi, Gergely Pongrácz

Budapest Univ. of Technology and Economics
Dept. of Telecomm. and Media Informatics

{retvari,csernatony,korosi,tapolcai}@tmit.bme.hu

TrafficLab, Ericsson Research, Hungary
{andras.csaszar,gabor.sandor.enyedi,gergely.pongracz}@ericsson.com

{retvari,csernatony,korosi,tapolcai}@tmit.bme.hu
{andras.csaszar,gabor.sandor.enyedi,gergely.pongracz}@ericsson.com


A Router in the DFZ

• Holds info on the whereabouts of every single IP address

• That ought to be a huge amount of information



A Router in the DFZ

• Holds info on the whereabouts of every single IP address

• That ought to be a huge amount of information

• So a DFZ router must be huuuuuge

Cisco CRS-3 line card

up to 8 Gbyte memory

533 MHz DDR2

>300 Watt

http://www.cisco.com/en/US/docs/routers/
crs/crs1/4_slot/system_description/

reference/guide/10805.pdf

http://www.cisco.com/en/US/docs/routers/
crs/crs1/4_slot/system_description/
reference/guide/10805.pdf


A Router in the DFZ

• Holds info on the whereabouts of every single IP address

• That ought to be a huge amount of information

• So a DFZ router must be huuuuuge

• Or must it?

ASUS WL 500G Deluxe

32 Mbyte memory

4 Mbyte flash

200 MHz CPU

10 Watt



IP Forwarding Information Base

• A real FIB taken from taz.bme.hu (univ. access)

• Stores more than 410K IP-prefix-to-nexthop mappings

• Consulted on a packet-by-packet basis at line speed

◦ Longest prefix match

• Takes several Mbytes of fast line card memory

• Some people argue that’s a scalability barrier
Report from the IAB Workshop on Routing and Addressing, RFC 4984, 2007.

Zhao et al. Routing scalability: an operator’s view, JSAC, 2010.

• Some people disagree
Fall et al. Routing tables: Is smaller really much better?, HotNets, 2009.

• Don’t want to make this a debate on Internet routing

scalability



How much information does a FIB actually

need to store?

Can we achieve the storage size lower
bound, retaining fast lookup?



Towards Compressed IP FIBs

• Store an IP FIB in as small space as possible

◦ below 256–512 Kbyte

◦ fit FIB into fast memory (SRAM/CPU cache)

◦ maintain full forwarding equivalence

◦ retain fast lookup!

• Our approach is systematic

◦ identify redundancy in common FIB representations

◦ eliminate it

◦ attain entropy bounds

◦ prototype and test on real traffic



Conventional FIB Representations

• Next-hops indexed on the alphabet Σ = [0,K ], K ≪ N

• FIB table: lookup needs looping through all N entries

• Memory size is ~20 Mbytes on taz

Address/prefix length Label

-/0 2

0/1 3

00/2 3

001/3 2

01/2 2

011/3 1



Conventional FIB Representations

• Next-hops indexed on the alphabet Σ = [0,K ], K ≪ N

• FIB table: lookup needs looping through all N entries

• Memory size is ~20 Mbytes on taz

Address/prefix length Label

-/0 2

0/1 3

00/2 3

001/3 2

01/2 2

011/3 1 2 1

3 2

3

2

• Binary trie: search tree over the address space

• Lookup improves to optimal O(W ) for W bit address size

• ~4 Mbyte on taz



Redundancy in Binary Tries

• Semantic redundancy: entries superfluous due to longest

prefix match

2 1

3 2

3

2



Redundancy in Binary Tries

• Semantic redundancy: entries superfluous due to longest

prefix match

2 1

3 2

3

2

3 2 2 1

2

• Leaf-pushing: push interior labels down to leaves

◦ ~1.3 Mbytes on taz



Redundancy in Binary Tries

• Semantic redundancy: entries superfluous due to longest

prefix match

2 1

3 2

3

2

3 2 2 1

2

3 2 2 1

2

• Leaf-pushing: push interior labels down to leaves

◦ ~1.3 Mbytes on taz

• Structural redundancy: remove excess levels

◦ multibit tries have nice structure

◦ <1 Mbytes



Information-theoretical Redundancy

• Certain labels appear frequently, encode these on fewer

bits like Huffman-coding

3 2 2 1

2



Information-theoretical Redundancy

• Certain labels appear frequently, encode these on fewer

bits like Huffman-coding

3 2 2 1

2

i Slast Sα

1 1 0
}

level 0

2 0 0
}

level 1
3 1 2

4 0 3














level 2
5 0 2

6 0 2

7 1 1

• Multibit Burrows-Wheeler transform: serialize the trie in
breadth-first-search order into two strings

◦ Slast: bitstring encoding the tree structure

◦ Sα: string encoding the labels

• Compress Slast and Sα to attain entropy bounds



Navigating MBW

• String self-indexing: a revolution is going around in TCS

• It is now possible to encode a string to higher-order entropy

• And provide O(1) operations on the compressed form!

◦ the encoder supports simple navigational primitives in O(1)

◦ lookup on MBW can be implemented in terms of these

• We use RRR on Slast and Wavelet trees on Sα

• Size is optimal in terms of the FIB entropy

H0(pc) =
∑

c∈Σ

pc log
1

pc

• pc is the empirical probability of next-hop labels in the FIB

• In fact, we can even attain higher-order entropy



Experiments on a Linux Prototype

• User space FIB compression, kernel module does lookup

◦ could acquire only two real FIBs from the DFZ

◦ rest is from collectors that obscure next-hop info

◦ contain more than 410K entries



We need your help!
We need your FIBs!

Please, upload any FIB you can put your hands on to
http://lendulet.tmit.bme.hu/fib_comp

Output of show ip bgp or show ip route from a production

DFZ router is preferred (but basically anything flies)

http://lendulet.tmit.bme.hu/fib_comp


Experiments on a Linux Prototype

• User space FIB compression, kernel module does lookup

◦ could acquire only two real FIBs from the DFZ

◦ rest is from collectors that obscure next-hop info

◦ contain more than 410K entries

• MBW compresses beyond zero-order entropy

◦ 60–120 Kbytes (!) on FIBs with few next-hops

◦ 256–400 Kbytes on FIBs with several hundred next-hops

◦ 2–6 bits per prefix

• 3–10 complete rebuilds per second

• Churn out ~100 MBit/sec at 30-50 Kpps/sec



Demo



Discussion

• Contemporary FIBs can be encoded to 256–512 Kbytes
with pointerless data structures

◦ this is optimal, up to lower order terms

◦ well below SRAM/cache size bounds of today

• And lookup is still theoretically optimal

◦ in practice, two orders of magnitude worse than required

◦ but this is only a proof-of-concept



Future?

• Entropy-compressed FIBs with linespeed lookup?

◦ can we trade optimized HW away for optimized SW?

◦ that is, better FIB compression algorithms in SW



Future?

• Entropy-compressed FIBs with linespeed lookup?

◦ can we trade optimized HW away for optimized SW?

◦ that is, better FIB compression algorithms in SW

• FIBs contain vast redundancy

◦ why?

◦ how to get rid of it from the outset?



Future?

• Entropy-compressed FIBs with linespeed lookup?

◦ can we trade optimized HW away for optimized SW?

◦ that is, better FIB compression algorithms in SW

• FIBs contain vast redundancy

◦ why?

◦ how to get rid of it from the outset?

• Historic analysis of FIBs entropy

◦ how has entropy changed throughout the years?

◦ hard to do without real data

http://lendulet.tmit.bme.hu/fib_comp

http://lendulet.tmit.bme.hu/fib_comp

