
Compressing IP Forwarding Tables for Fun and Profit

Gábor Rétvári, Zoltán Csernátony,
Attila Körösi, János Tapolcai

Budapest Univ. of Technology and Economics

Dept. of Telecomm. and Media Informatics

András Császár, Gábor Enyedi,
Gergely Pongrácz

TrafficLab, Ericsson Research

Hungary

ABSTRACT

About what is the smallest size we can compress an IP For-

warding Information Base (FIB) down to, while still guaran-

teeing fast lookup? Is there some notion of FIB entropy that

could serve as a compressibility metric? As an initial step in

answering these questions, we present a FIB data structure,

called Multibit Burrows-Wheeler transform (MBW), that is

fundamentally pointerless, can be built in linear time, guar-

antees theoretically optimal longest prefix match, and com-

presses to higher-order entropy. Measurements on a Linux

prototype provide a first glimpse of the applicability of MBW.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design—Store and forward net-

works; E.4 [Coding and Information Theory]: Data
compaction and compression

General Terms

Algorithms, Performance, Theory

1. INTRODUCTION

There are hardly any data structures in networking
affected as compellingly by the growth of the Internet
as the IP Forwarding Information Base (FIB). Stored
in the line card or ASIC memory of routers, the FIB
maintains an association from every routed IP destina-
tion address prefix to the corresponding next-hop, and
it is queried on a packet-by-packet basis at line speed.
Lookup in FIBs is not trivial either, as IP’s longest pre-
fix match rule requires the most specific entry to be
found for each destination address.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’12, October 29–30, 2012, Seattle, WA, USA.
Copyright 2012 ACM 978-1-4503-1776-4/10/12 ...$10.00.

As of 2012, there are more than 410,000 routed pre-
fixes in the DFZ [1]. Correspondingly, FIBs tend to
grow large both in size and management burden, pre-
senting a crucial bottleneck in the data-plane perfor-
mance of routers and forcing operators into rapid up-
grade cycles [2]. As a quick reality check, the Linux
kernel’s fib_trie data structure [3], when filled with
400,000 prefixes, occupies more than 20 Mbytes of mem-
ory, takes several minutes to download to the forward-
ing plane, and is still heavily debated to scale to multi-
gigabit speeds [4]. Commercial routers suffer similar
troubles, aggravated by the fact that line card memory
is much more difficult to upgrade than software routers.

Several recent studies have identified FIB aggregation

as an effective way to reduce FIB size, thus extend-
ing the lifetime of legacy networking gear and mitigat-
ing the Internet routing scalability problem1 temporar-
ily [2, 5]. FIB aggregation is a technique to transform
some initial FIB representation into an alternative form
that, supposedly, occupies smaller space but still pro-
vides fast lookup. Recent years have seen an impressive
reduction in FIB size: from the initial 24 bytes/prefix
(prefix trees [7]), use of hash-based schemes, path/level-
compressed multibit tries [3], tree-bitmaps, etc., reduced
FIB memory tax to just about 2-5 bytes/prefix [8, 9].
Meanwhile, lookup performance has also improved.

The evident questions “Is there an ultimate limit in
FIB aggregation?” and “Can FIBs be reduced to fit in
CPU cache entirely?” have been asked several times be-
fore [9–12]. In order to answer these questions, we need
to go beyond conventional FIB aggregation and take
a deliberate attempt at encoding FIBs to information-

theoretical entropy bounds, while still providing optimal

worst-case lookup time. We coined the term FIB com-

pression to mark this ambitious undertaking.
Apart from being an intriguing problem in its own

right, FIB compression could bring many additional
benefits. A FIB compressed below 512 Kbytes would
allow to at last truly test the hypothesis whether im-
proved cache friendliness transforms into faster lookups,

1See [6] for an alternative perspective on whether FIB size
poses a real scalability concern.

1

Addr/plen label
-/0 2
0/1 3

00/2 3
001/3 2
01/2 2

011/3 1
(a)

2 1

3 2

3

2

(b)
3 2 2 1

2

(c)

3 1

2

(d)

3 2 2 1

2

(e)

Figure 1: Different representations of an IP routing table: (a) tabular form (address in binary format, prefix length
and next-hop address label), (b) prefix tree, (c) leaf-pushed binary trie, (d) ORTC-compressed prefix tree, and (e)
stride-optimized multibit trie. Empty labels are omitted.

open the door for full-BGP routing to memory con-
strained virtual routers and embedded devices (think of
doing full BGP with an OpenWrt router of <8MB mem-
ory), improve the control plane to data plane roundtrip
for FIB resets (a true bottleneck in today’s routers [13]),
or could serve as a queryable FIB archive format for
historic analysis. Or, if nothing else, it could fix a the-
oretically justified benchmark for FIB designers.

In this paper, we report on the preliminary results of a
systematic quest towards FIB compression, in the course
of which we identify and eliminate different sources of
redundancy in FIBs. The resultant FIB encoder com-
presses a contemporary FIB to well below 512 Kbytes,
fully preserves forwarding semantics, attains information-
theoretical as well as k-th order entropy bounds and, at
the same time, provides longest prefix match in optimal
time. And, even though it was not our stated goal, we
find in a rudimentary Linux-prototype that the com-
pressed FIB is already applicable at modest data rates.

2. REDUNDANCY IN IP FIBS

Consider the sample IP routing table in Fig. 1(a),
storing address-prefix-to-next-hop associations in the
form of an index into a so called neighbor table. This
table maintains neighbor specific information, like next-
hop IP address, aliases, ARP info, etc. Let the neigh-
bors be identified by an integer label in [1,K] and let
N denote the total number of entries in the FIB. As
an ordinary IP router does not need to maintain an
adjacency with every other router in the Internet, we
have K ≪ N . Specifically, we shall assume that K is
O(log(N))2 or O(1). Finally, let W denote the address
length (e.g., W = 32 for IPv4).

To actually forward a packet, we need to find the en-
try that matches the destination address in the packet
on the greatest number of bits, starting from the MSB.
For the address 0111, each of the entries −/0 (the de-
fault route), 0/1, 01/2, and 011/3 match. As the most
specific entry is the last one, the lookup operation yields
next-hop label 1. This is then used as an index into the

2Note that logarithms are of base 2.

neighbor table and the packet is forwarded on the line-
card interface facing that neighbor. This tabular repre-
sentation is not particularly efficient, as a single lookup
operation requires looping through each entry, taking
O(N) time. The storage size is O((log(K)+W)N) bits.

Binary search trees (or prefix trees, or tries [7]), sup-
port lookups much more efficiently (see Fig. 1(b)). Each
W bit of the address space corresponds to a level in the
tree and lookup is guided by the bits in the destination
address: if the next bit is 0 proceed to the left sub-tree,
otherwise proceed to the right, and if the correspond-
ing child is missing return the last label encountered
along the way. Prefix trees can also contain unlabeled
nodes. We allocate the special empty label 0 to mark
such nodes, yielding the label space Σ = [0,K] of cardi-
nality K + 1. If a lookup returns the empty label, that
means that the corresponding packet is to be dropped.
Prefix trees generally improve lookup time from linear
to O(W), although memory size increases somewhat.

Our aim in this paper is to pinpoint the origins of
redundancy in this simple prefix tree representation (if
any), and systematically eliminate them. We shall say
that some information in a FIB is redundant, if remov-

ing it does not alter the forwarding association main-
tained by the FIB in any ways, assuming that each query

is for complete W bit long addresses.

2.1 Semantic Redundancy

Our first culprit is redundant labels in the tree. For
example, the association 0/1 → 3 is superfluous, as the
more specific entries 00/2 → 3 and 01/2 → 2 override
it. Such redundancy, stemming from the very nature of
longest prefix match, is called semantic redundancy.

A way to (partially) eliminate semantic redundancy
is leaf-pushing [11]: first, in a preorder traversal labels
are pushed from the parents towards the children, and
then in a postorder traversal each parent with identi-
cally labeled leaves is substituted with a leaf with the
children’s label (see Fig. 1(c)). Leaf-pushing usually
eliminates many redundant entries, reducing semantic
redundancy. On the other hand, it also creates a so
called proper binary tree with nice structure; for a leaf-

2

pushed trie the invariant holds that “a node either has
two children or it is labeled with nonzero label”.

To eliminate all of semantic redundancy, we need to
relabel the tree completely. The prefix tree in Fig. 1(d)
has the exact same forwarding semantics as the one in
Fig. 1(b), yet contains only 3 labeled nodes instead of
7. The ORTC algorithm of Draves et al. [12] yields such
a representation in linear time, with provably minimal
number of labeled nodes. Unfortunately, the resultant
trees lack the nice structure of leaf-pushed tries.

2.2 Structural Redundancy

Binary trees are not necessarily ideal to implement
FIBs, as they often contain vast numbers of interior
nodes increasing storage size and introducing unneces-
sary intermediate steps in lookups. This adds struc-

tural redundancy, loosely defined as excess information
needed to store the very tree structure.

The most prominent example of structural redun-
dancy is the nodes at level 2 in Fig. 1(c); removing
this level completely we obtain the so called (proper)
multibit trie in Fig. 1(e). Multibit tries share the ap-
pealing properties of leaf-pushed tries, with the gener-
alization that each interior node now has power of two
children (this is called the stride of the node). To obtain
the multibit structure yielding the fewest interior nodes,
one can use the linear time variable-stride optimization

algorithm in [11].

2.3 Information-theoretical Redundancy

The multibit trie in Fig. 1(e) still contains hidden
redundancy. In particular, there are three nodes with
label 2, but only one node with label 1 or 3. Thus, we
could save space by representing label 2 on fewer bits,
similarly to Huffman-coding for strings. Exploiting this
information-theoretical redundancy promises with huge
reductions in storage size and, as shall be seen, opens
up the intriguing possibility of associating some notion
of entropy with our FIB as well.

But exploiting contextual information one could com-
press FIBs even further. For instance, labels 1 and 3
only appear at level 3, while the empty label never ap-
pears at this level; thus, knowing some context, say, the
level of some node, we can effectively predict its label.
In the next section, we show that making some context
available to the FIB encoder allows to strengthen our
zero-order entropy bounds to arbitrary k-th order en-
tropy while, strikingly, still maintaining full forwarding
equivalence and optimal O(W) time lookup.

3. MULTIBIT BURROWS-WHEELER

Our FIB encoder, called Multibit Burrows-Wheeler

(MBW) for reasons to be made clear shortly, is essen-
tially a mix of the succinct level-indexed binary trees
of Jacobson [14], succinct k-ary trees, and, most impor-

3 2 2 1

2

i Slast Sα

1 1 0
}

level 0
2 0 0

}

level 1
3 1 2
4 0 3

level 2
5 0 2
6 0 2
7 1 1

Figure 2: Multibit trie and MBW transform.

tantly, the XBW transform due to Ferragina et al. [15],
with some FIB-specific twists.

We chose multibit-tries as the basis for the MBW
transform. Even though it is not optimal in terms of
semantic redundancy, we found that the nice structure
simplifies the encoder substantially. Let T be a proper
multibit trie, let n be some node in T , let l be a mapping
T 7→ Σ specifying for a node n the corresponding label
l(n) ∈ Σ, let L be the set of leaves, and let t denote the
number of nodes in T .

A multibit trie T enjoys the following properties.

P1: Either n ∈ L, or n has 2k children for k > 0.

P2: l(n) 6= 0 ⇔ n ∈ L.

The main idea in MBW (on the traces of XBW) is
to serialize T into a bitstring Slast encoding the struc-
ture and a string Sα encoding the labels, and then using
a sophisticated lossless string compressor to obtain the
storage size bounds. The trick is in making just the
right amount of context available to the string com-
pressors, and doing this all with guaranteeing optimal
lookup on the compressed transform.

Given a multibit trie T , MBW first performs a breadth-
first-search traversal of T , along which it sequentially
fills up the strings Slast and Sα.

bfs-traversal (node n, integer i)
Sα[i]← l(n)
if n is the last child of its parent then

Slast[i]← 1 else Slast[i]← 0
i← i+ 1

We assume that the root is “last”: Slast[0] = 1. Then,
the MBW transform is essentially the tuple mbw(T) =
(Slast, Sα). The following statement is now obvious.

Claim 1. Given a multibit trie T on t nodes, mbw(T)
can be built in optimal O(t) time.

The transform mbw(T) has some appealing proper-
ties (see Fig. 2). For instance, the children of some
node, if exist, are stored on consecutive indices in Slast

and Sα. In addition, nodes on the same level of T are
also mapped to consecutive indices in mbw(T).

An obvious next-step would be to apply some stan-
dard string compressor (like the venerable gzip tool)
on Slast and Sα to obtain something of, supposedly,

3

small size. However, we want our transform to retain
fast navigability, that is, admit queries like “get all chil-
dren of a node” without first decompressing the string.
We use string indexers for this, which, in addition to
lossless compression, also support certain navigational
primitives in optimal O(1) time in-place. Given a string
S[1, t] on alphabet Σ, c ∈ Σ, and q ∈ [1, t], the usual
primitives are as follows [14,15]:

• access(S, q): return the symbol stored at position
q in S,

• rankc(S, q): return the number of times symbol c
occurs in the prefix S[1, q], and

• selectc(S, q): return the position of the q-th occur-
rence of symbol c in S.

Curiously, these simple primitives admit strikingly
complex queries to be implemented and supported in
optimal time. For example, the get_children opera-
tion, which returns the position of the first and last child
of some interior node n mapped to index i in mbw(T),
takes the following simple form.

get_children (integer i)
r ← rank0(Sα, i)
first ← select1(Slast, r) + 1
last ← select1(Slast, r + 1)
return (first, last)

Here, r tells how many interior nodes, identified with
the empty label 0, were found before n in the course of
the bfs-traversal, first will get the index of the last
child of the previous node plus 1, and last gets the
label of n’s last child. Using this primitive, IP lookup
on mbw(T) is as follows.

lookup (address a)
p← 0, i← 0
while p < W do

if access(S, i) 6= 0 then return access(S, i)
(f, l)← get_children(i)
j ← get_bits(a, p, p+ log(l− f + 1)− 1)
i← f + j, p← p+ log(l− f + 1)

First, we ask if the current node n at position i is
a leaf node. If it is, we return its label (recall P2),
otherwise we ask for the children. Esaily, l−f +1 gives
the number of children of n, and the logarithm (by P1)
tells how many bits to read from a, starting at position
p, to obtain the index j of the child to be visited next.
Finally, we set the current index to f + j and carry on
with the recursion.

Claim 2. MBW lookup terminates in O(W) time.

4. MEMORY SIZE BOUNDS

The first verifiable cornerstone of a data compres-
sion algorithm is whether it encodes to information-

theoretical minimum. In our case, this corresponds to

the minimum number of bits needed to differentiate be-
tween any two FIBs. As there are Ft =

(

2t+1

t

)

/(2t+ 1)
binary trees on t nodes (note that our trees are not bi-
nary and are of bounded height, but we disregard these
nuisances here), and storing the label map requires an
additional t⌈log(K)⌉ bits, the information-theoretical
minimum ends up at roughly logFt + t log(K) = 2t −
Θ(log t) + t log(K).

Curiously, even the trivial encoding of mbw(T) re-
produces this bound. Store the bitstring Slast on t bits,
store an additional bitstring for marking internal nodes
again on t bits, and finally store Sα on t log(K) bits (for
more details, see [15]).

Claim 3. For mutlibit trie T , mbw(T) can be stored

on optimal 2t+ t log(K) bits.

As such, MBW qualifies as a succinct FIB data struc-
ture [14], similarly to, e.g., [8]. The real test is, however,
whether we can go down below information-theoretical
minimum and attain entropy bounds, for some suitable
definition of FIB entropy.

That a prefix tree should have some sorts of entropy
associated with it, and that this should be determined
by the distribution of labels on the nodes, is not a com-
pletely far-fetched idea. Think of a FIB with each node
labeled the same; here, the label distribution is deter-
ministic and so its entropy is zero; this FIB can then be
substituted with a single default route whose size is in-
dependent of the number of prefixes, and hence the cor-
responding FIB-entropy is also zero. The more random
the label distribution the larger the entropy and worse
the compressibility, or at least this is what we expect
from our entropy notion. Interestingly, MBW exposes
just the above intuitive notion of entropy, when Sα is
encoded using e.g. generalized wavelet trees [15].

Claim 4. For K = O(log(t)), mbw(T) can be en-

coded on tH0(pc) + t + o(t) bits, where H0(pc) is the

entropy of the label-distribution pc : c ∈ Σ:

H0(pc) =
∑

c∈Σ

pc log
1

pc
, pc =

∑

n∈T
I(l(n) = c)

t
.

Higher order string compressors use the observation
that elements of a string often depend on their neigh-
bors. Let the k-context of a symbol c in a string S be
defined as the k-long substring that precedes c. Then,
the main postulate in string compression is that the
larger the context (i.e., k), the better the prediction
of c from its k-context. For a string S the k-th order
entropy Hk(S) is commonly used as a metric of com-
pressibility of S, given that information on k-contexts
is available to the encoder. Note that Hk(S) ≤ H0(S).
To actually attain k-th order entropy, string compres-
sors usually apply the Burrows-Wheeler transform, a re-
versible permutation of the string so that symbols with

4

similar context end up close to each other. This way,
the transformed string compresses well, even with zero-
order compressors.

Using the same argumentation as in [15], we can show
that MBW is not just a zero-order FIB compressor but
it can attain higher-order entropy as well. The idea
is that the notion of k-context naturally generalizes to
multibit tries: simply, k-context of a node n is the k-
long upstream subpath from the parent of n to the root.
For instance, the k-context of the leftmost leaf with la-
bel 3 in Fig. 2(a) is the string 00, which, for k large
enough, essentially corresponds the level of the node.
As MBW organizes nodes of similar level (i.e., of sim-
ilar context) next to each other, it realizes the same
effect for tries as the Burrows-Wheeler transform for
strings (hence the name). As for strings, we can as-
sume that similarly labeled leaves in T reside at similar
level, and the better the correspondence the more effi-
cient the prediction. Currently it is entirely unclear to
what extent such contextual dependency is present in
IP routing tables, but our experiments provided some
pointers that it actually is. Now, using a higher-order
string indexer we obtain the following bound [15].

Claim 5. Given a multibit trie T : K = O(1), mbw(T)
can be encoded on tHk(pl) +O(t) bits.

5. A LINUX-KERNEL PROTOTYPE

Finally, we set out to test MBW on real data. We
coded up a quick prototype, where we do FIB construc-
tion in user space and the actual lookup is realized as a
custom Linux kernel module.

Research on IP FIBs has for a long time been plagued
by the unavailability of real data. Apart from the two
IP core router FIBs we could get privately (taz and
hbone), what is available publicly (AS*) are RIB dumps
from BGP collectors, like RouteViews or looking glass
servers. Unfortunately, these only very crudely model
real FIBs, because BGP collectors run the best-path
selection algorithm on their peers and these adjacencies
differ greatly from real next hops on production routers.
We experimented with heuristics to restore the original
next-hop information (e.g., set next-hop to the first AS-
hop), but the results were basically the same.

We used a PC with a quad-core Intel Core i5 CPU at
2.50GHz, with 2x32 Kbyte L1 cache for each core and
256 Kbyte shared L2 cache. We built an initial prefix
tree from the BGP dumps and first applied leaf-pushing
to remove redundant entries. To remove structural re-
dundancy as well, we ran a slightly modified version of
variable-stride optimization [11], which simultaneously
minimizes the number of internal nodes and the aver-
age depth and realizes various trade-offs between the
two via a weighting parameter α. The intention is to
decrease the number of levels in the trie, and hence
the number queries to mbw(T) during IP lookup. Curi-

ously, we also found that a certain over-compactification
often reduces storage. We then applied the MBW trans-
form and then the compressed FIBs were obtained us-
ing libcds [16]: Slast was compressed with RRR and the
zero-order Huffman-shaped WaveletTree was used to
compress Sα. The compressed strings were downloaded
to the kernel, which ran a minimalistic port of libcds
to do IP lookups right on the compressed form.

The plain storage size for some standard FIB in-
stances is given in Table 1. The main observation is
that on FIBs with only a few next-hops MBW com-
presses to about 2-3 bits per prefix, while in the rest of
the cases about 6 bits/prefix is attained. Hence, FIBs
of >400 thousand prefixes can easily be encoded into
the 256-512 Kbyte caches common today. We found
that this transforms into improved-cache friendliness:
a process doing random IP lookups on the compressed
AS1221 FIB produced about 5 − 20% cache misses in
steady state (measured with the Linux perf tool), while
for prefix trees this was an impressive 40− 70%.

Additionally, MBW compresses below information-
theoretic minimum and zero-order entropy bound, and
the latter is substantially smaller than the former in-
dicating that FIBs indeed contain exploitable entropy.
We also experimented with calculating rough higher or-
der entropy bounds by compressing Sα with the ppmd

string compressor. This yielded smaller bounds than
the other two, especially for FIBs with high K, sug-
gesting that FIBs might contain additional contextual
dependency as well. But to decide, we’ll need real data.

Building and compressing the FIBs takes at maxi-
mum 300 ms and kernel download is in 10 millisecond
range, so about 3−10 complete rebuilds per second seem
plausible. FIB insert and delete do not necessarily need
complete rebuilds though, considering recent advances
in dynamic entropy-compressed string indexes [17].

But the real test is under real traffic. We deployed a
Linux router in a VirtualBox guest, the FIB came from
the AS1221 dataset, and the traffic was assembled from
CAIDA’s “Anonymized Internet Traces 2012”, compris-
ing 100K packets with mean packet size of 650 bytes.
Before each round we flushed the route cache and then
we used tcpreplay to replay the trace from the host
to the guest at different data rates and we observed the
packet loss. Note that packet loss is entirely due to the
increased lookup latency of MBW (recall that MBW is
lossless), and so it characterizes the price we pay for the
constant term in MBW’s O(W) lookup complexity.

For the default setting of the Linux route cache, we
have seen no observable data loss over MBW compared
to the Linux FIB implementation fib_trie [3], while
a conservative limit of 512 entries yielded the results
in Fig. 3. The most important message seems to be
that smaller average depth (through a proper setting
α) transforms to faster routing (i.e., smaller lookup de-

5

Table 1: Number of prefixes (N) and labels (K), number
of nodes/average depth in the binary tree (t0/d0) and the
multibit trie obtained at the optimal α (t/d), and for the
latter the information-theoretical lower bound (I), zero-
order entropy bound (H0), and size of mbw(T) (s) all in
Kbytes, and bits/prefix efficiency η.

Name N K t0/d0 t/d I H0 s η
taz 410K 3 298K/21.5 236K/5.3 118 90 80 1.6

hbone 410K 131 567K/21.7 440K/5.3 385 210 187 3.6
AS1221 379K 3 921K/22.6 344K/6.8 172 150 134 3.6
AS4637 219K 2 573K/22.5 164K/4.7 82 64 56 2.0
AS3257 385K 838 932K/22.6 507K/8.7 570 381 395 8.2
AS6447 400K 15 965K/22.6 573K/9.0 358 332 310 6.1
AS6730 388K 426 939K/22.6 502K/8.8 565 298 294 6.0

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100

fib_trie

MBW (leaf-pushed)

MBW (α = 0)

MBW (optimal α)

Figure 3: Fraction of packets the Linux implementa-
tion could process at different data rates [Mbit/sec].

lay), and that MBW supports about 80-100 Mbit/sec at
at about 30K-50K lookups/second. This is about two
orders of magnitude smaller than what is needed for
IP routers, but still seems fair from a proof-of-concept
prototype of an experimental data structure.

6. CONCLUSIONS

Our quest to FIB compression started with a crazy
idea: “Could we compress IP FIBs to some sorts of en-
tropy, with maintaining optimal lookup?” This paper
is about taking that idea to the extreme.

It turned out that a suitable abstraction from string
entropy to FIB entropy indeed exists, and this is via a
simple MBW transform. Hence, FIB entropy provides
us with solid information-theoretical guarantee that the
storage size we achieved is indeed minimal, up to lower-
order terms.

To actually encode to entropy, we eventually had to
get rid of good-old trees and pointers. Pointers are “fat”
in that they index the entire memory, and wasteful at
smaller scales. The pointerless data structures we used,
on the other hand, seem at least two orders of mag-
nitude slower than needed. We are confident that, by
optimizing the implementations and the compression al-
gorithms for access time instead of mere memory foot-
print (and measuring on real hardware!), performance
can be improved with at least one order of magnitude.
Lookup is, after all, theoretically optimal O(W). But
the question still remains open, whether fully pointer-
less FIBs can be scaled to be practically relevant on
multi-gigabit IP routers, with retaining entropy bounds
and cache-friendly storage size.

The other issue is to thoroughly study the entropy
present in IP FIBs. We need to see why it is there, track
down its origins, and eliminate it. To what extent this
argumentation can then be extended to higher-order en-
tropy is, for the moment, unclear at best.

7. ACKNOWLEDGEMENTS
J. T. is the member of the MTA-BME Future Internet Re-

search Group. The research was partially supported by High

Speed Networks Laboratory (HSN Lab), the project TAMOP
421B-09/1/KMR-2010-0002, and the OTKA/PD-104939 grant.

8. REFERENCES

[1] G. Huston. BGP routing table analysis reports.
http://bgp.potaroo.net/.

[2] Xiaoliang Zhao, Dante J. Pacella, and Jason Schiller.
Routing scalability: an operator’s view. IEEE J.Sel. A.

Commun., 28(8):1262–1270, October 2010.
[3] S. Nilsson and G. Karlsson. IP-address lookup using

LC-tries. IEEE JSAC, 17(6):1083 –1092, jun 1999.
[4] R. Bolla and R. Bruschi. RFC 2544 performance evaluation

and internal measurements for a Linux based open router.
In IEEE HPSR, page 6, 2006.

[5] Varun Khare, Dan Jen, Xin Zhao, Yaoqing Liu, Dan
Massey, Lan Wang, Beichuan Zhang, and Lixia Zhang.
Evolution towards global routing scalability. IEEE JSAC,
28(8):1363–1375, October 2010.

[6] Kevin Fall, Gianluca Iannaccone, Sylvia Ratnasamy, and
P. Brighten Godfrey. Routing tables: Is smaller really much
better? In ACM HotNets-VIII, 2009.

[7] Keith Sklower. A tree-based packet routing table for
Berkeley UNIX. Technical Report, Berkeley, 1991.

[8] Wencheng Lu and S. Sahni. Succinct representation of
static packet forwarding tables. In ICN, page 78, 2007.

[9] Mikael Degermark, Andrej Brodnik, Svante Carlsson, and
Stephen Pink. Small forwarding tables for fast routing
lookups. In ACM SIGCOMM, pages 3–14, 1997.

[10] G. Cheung and S. McCanne. Optimal routing table design
for IP address lookups under memory constraints. In
INFOCOM, pages 1437–1444, 1999.

[11] V. Srinivasan and George Varghese. Faster IP lookups
using controlled prefix expansion. SIGMETRICS Perform.

Eval. Rev., 26(1):1–10, 1998.
[12] Richard Draves, Christopher King, Srinivasan

Venkatachary, and Brian Zill. Constructing optimal IP
routing tables. In INFOCOM, March 1999.

[13] Pierre Francois, Clarence Filsfils, John Evans, and Olivier
Bonaventure. Achieving sub-second IGP convergence in
large IP networks. SIGCOMM Comput. Commun. Rev.,
35(3):35–44, 2005.

[14] G. Jacobson. Space-efficient static trees and graphs. In
IEEE FOCS, pages 549–554, 1989.

[15] Paolo Ferragina, Fabrizio Luccio, Giovanni Manzini, and
S. Muthukrishnan. Compressing and indexing labeled trees,
with applications. J. ACM, 57(1):4:1–4:33, 2009.

[16] Gonzalo Navarro and Francisco Claude. libcds: Compact
data structures library, 2004. http://libcds.recoded.cl.

[17] Veli Mäkinen and Gonzalo Navarro. Dynamic entropy
compressed sequences and full-text indexes. ACM Trans.

Algorithms, 4(3):32:1–32:38, July 2008.

6

