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Abstract—The Internet routing ecosystem is facing substantial
scalability challenges on the data plane. Various “clean slate”
architectures for representing forwarding tables (FIBs), such as
IPv6, introduce additional constraints on efficient implementa-
tions from both lookup time and memory footprint perspectives
due to significant classification width. In this work, we propose
an abstraction layer able to represent IPv6 FIBs on existing
IP and even MPLS infrastructure. Feasibility of the proposed
representations is confirmed by an extensive simulation study
on real IPv6 forwarding tables, including low-level experimental
performance evaluation.

I. INTRODUCTION

Most methods that efficiently represent IP-based FIBs do
not scale well to IPv6 [7], [19], [21], [24] due to its sig-
nificantly larger 128-bit address width. It is hard to find
IPv6-based FIB representations with comparable lookup time
and memory requirements that are implemented in regular
memory. This is a major reason why state-of-the-art solutions
for IPv6 FIB are implemented in very expensive and power-
hungry ternary content-address memories (TCAMs) [4], [22],
which calls for more efficient software representations.

One recurring theme across IPv6 software FIB implemen-
tations is various forms of decision tree representations, like
prefix trees [2], [6], [7], [18], [20], [21]. Unfortunately, prefix
trees are inherently sequential, meaning that an longest prefix
match (LPM) search involves multiple consecutive lookup
steps, each step using the result of the previous one, and the
total number of steps is bounded only by the width of the
address space (128 in the case of IPv6). The reason is that
a prefix tree can contain for any given IPv6 address multiple
matching entries and our task is to find the most specific one
LPM. Note that each step needs a separate random access to
memory. There is an upper limit on the number of consecutive
memory accesses that can be performed per packet at line-rate,
and this imposes a strict budget on the number of levels any
tree traversal can take. This is why most IPv4 FIB prefix tree
representations are not extensible to IPv6 naively within the
desired lookup time and memory requirements.

To address this limitation, IPv6 FIB representations can
exploit the level of parallelism (how many parallel lookups can
be done per packet at line-rate) that is an internal characteristic
of each network element. A straightforward choice for paral-
lelization of IPv6 FIB lookup would be classifying prefixes

to groups, where each group would contain all prefixes of the
same length [17], [23], [25], and perform lookups on each of
the prefix groups simultaneously. Eventually, the match within
the group of the longest prefix length is output as a result. This
scheme is extremely appealing for implementations because
lookup inside groups boils down to a simplistic exact match,
where the key is taken as the initial bits of the address as
specified by the group’s prefix length, which can be easily
done with a CAM or a hash. Unfortunately, the number of
different prefix lengths, and hence the number of lookup
threads needed to be executed in parallel, is too high in the
IPv6 case, as most HW (except GPUs [10]) lacks the necessary
number of independent cores.

This discussion brings us to the main question we address
in this paper: how to find alternative decompositions for an
IPv6 FIB, more efficient and more amenable to parallelization
than by prefix length? The decomposition must be such that
(i) lookups inside each group should be as simple as possible,
preferably exact match, (ii) the number of groups must be
reasonable, e.g., in the order of a couple of dozens, and (iii)
the number of bits participating in classification in every group
is significantly smaller than the original classification width
(e.g., from 128 to 32 or even 13 bits) allowing representation
of IPv6 FIBs on existing IP and MPLS infrastructure.

II. NOTATION

A prefix classifier K is an ordered set of rules K =
(R1, . . . , RN ), where each rule Ri consists of a prefix filter
Fi and a pointer to the corresponding action Ai. A filter F is
an ordered set of w bits F = {f0, f1, . . . , fw−1}, each bit fi
taking the value 0, 1, or ∗ (“don’t care”), and a prefix filter is
such that all “don’t care” bits appear in F only after a certain
position p, i.e., fi = ∗ if and only if p ≤ i < w for some
0 ≤ p < w. For instance, the filter F1 = (1 0 ∗ ∗) is a prefix
filter while F2 = (∗ 0 0 ∗) is not. A header H matches a filter
F if for any bit of H the corresponding bit of F has the same
value or ∗. For instance, the filter F = (∗ 0 1 0) matches the
headers (0 0 1 0) and (1 0 1 0), but not (1 0 1 1). A header
H matches a rule Ri if Ri’s filter is matched. The rules have
priorities represented by an ordering ≺; if a header matches
both Ri and Rj for Ri ≺ Rj , the action of rule Ri is applied.
We shall use the convention that high priority rules precede



lower priority rules (appear at a lower indices) in the classifier:
Ri ≺ Rj if and only if i < j. Then the longest-prefix-
match semantics of IPv6 forwarding tables is implemented by
ensuring that a more specific prefix rule always occurs lower
than any overlapping less specific rule. We say that two filters
F and F ′ intersect if there is at least one header that matches
both F and F ′; otherwise, F and F ′ are disjoint. A classifier
whose any two filters are pairwise disjoint is called disjoint or
order-independent. Two classifiers are semantically equivalent
if every header leads to the same action in both.

Next, we introduce two operations on packet classifiers,
namely, (width-)reduction and partitioning. Let B be an or-
dered set of bit indices, B ⊆ {0, . . . , w − 1}, referring to
a subset of the bits in packet headers. For a header H , the
(sub)header of H obtained by taking only bits of H with
indices in B is called a reduction of H to B, denoted by HB .
Likewise, for a rule R (or a filter F ) the reduction of rule R
(reduction of filter F ) to B, denoted by RB (FB , respectively),
is the (sub)rule (subfilter) defined on the bit positions in B.
Finally, for a classifier K = (R1, . . . , RN ), let KB be the
(sub)classifier obtained from K by replacing each rule R in
the classifier by RB . The notions of matching, intersection,
and order-independence carry over to such subsequences.

Observe that any reduction of a prefix classifier is again a
prefix classifier. Further notice that a reduced rule matches
a larger set of packets than an underuced one (as certain,
potentially valuable, bits in the filters are ignored), therefore a
match in the reduced classifier does not immediately signal a
match in the original classifier. Thus a match in a reduced
classifier must always be validated using a false positive
check, except for the case when only “don’t care” bits are
eliminated (like for prefix-length-based decompositions). We
also introduce the notion of classifier partitions, as a division
of the rules in a classifier into distinct groups of rules. Consider
a classifier K = (R1, . . . , RN ) and a subset of the index set
C ⊆ {1, . . . , N}. Now, the classifier KC = (Ri : i ∈ C) is
called the (classifier) group of K defined by C. Given any
partition C = {C1, . . . , Ck} of {1, . . . , N}, where

⋃
Ci =

{1, . . . , N} and Ci ∩ Cj = ∅ whenever i 6= j, the classifier
partition defined by C is given by exactly k classifier groups
on C: KC = {KC1 , . . . ,KCk

}. Note that any partition of a
prefix classifier is semantically equivalent with the original
classifier, using the convention that from the matching rules
of each group the output is chosen by longest prefix length.

III. MULTI-GROUP REPRESENTATIONS

Intuitively, prefix-length-based decompositions enjoy an ap-
pealing structural property: for every input each subclassfier
contains at most one matching rule. This property makes
representation of every group simple since all prefixes in a
group can be represented as exact values; this is strong order
independence. Unfortunately, prefix-length-based decomposi-
tions can have too many groups (128 in the worst case for
IPv6). One interesting question we tackle in this paper is
the existence of structural properties in classifiers that would
allow to consider prefixes with heterogeneous length to be

mixed in the same group while still keeping the simplicity
of representation. We argue that order-independent decom-
positions are a natural generalization of prefix-length-based
decompositions in this context: given any classifier K, it holds
that K contains at most one matching rule for any header if and
only if K is order-independent. This is a special type of order-
independence that we call weak. This discussion motivates
to limit our attention to the classifier decompositions that
guarantee order-independence (weak or strong) inside each
group on a subset of bit-identities that allows to mitigate time-
space tradeoffs in representations of IPv6 FIBs.

Problem 1: Minimal weak (strong) order-independent reduc-
tion. Given a classifier K (not necessary order-independent)
and a constant l, assign K’s rules to a minimal number of
disjoint groups such that different groups of prefixes can be
based on subsets of at most l bit-identities, and each group is
weak (strong) order-independent on these bits.

Finding a subset of bit-identities that keeps order-
independence on these bits of order-independent (both weak
and strong) classifier is already computationally hard for a sin-
gle group (reduction from the minimum test set problem [8]).

In addition for a prefix classifier with N rules, this problem
is not approximable within (1 − ε) lnN for any ε > 0, if
NP 6⊂ DTIME(N log logN ) [3].

IV. PROPOSED REPRESENTATIONS

A. Introduction and building blocks

Although finding exact minimal reductions is computation-
ally hard, we propose several heuristics that can be used in
practice. All proposed algorithms follow the same general
scheme shown as Algorithm 1: one by one, they construct a
group with some ONEGROUP procedure, remove it from the
current set of prefixes, and then call ONEGROUP again until
the stopping condition is satisfied, i.e., either all prefixes of a
given classifier are already covered or the number of created
groups has reached a given level of parallelism β. Another
parameter is the bit exact that shows whether we are trying
to construct groups with only exact values or groups where
∗ bits are allowed. The building block for our heuristics is
the MAXOI procedure that finds, for a set of ranges [si, fi],
i = 1..n, the maximal set of non-intersecting ranges; the
greedy Algorithm 2 (earliest-deadline-first (EDF)) for this
problem is optimal with O(N logN) time complexity [13].

Example 1: We consider the following running example for
this section with original size 4 × 5 = 20 bits: F1 = 1001,
F2 = 1000, F3 = 01 ∗ ∗, F4 = 11 ∗ ∗, F5 = 0 ∗ ∗∗. In this
example, three different prefix lengths yield a decomposition
into three groups with total size 13 bits.



Algorithm 1: MULTIGROUP

Data: Classifier K, max. width l, parallelism β, exact
1 begin
2 i← 0, T ← K, G ← ∅
3 while T 6= ∅ and i < β do
4 Gi = KBi

Ci
← ONEGROUP(T , l, exact)

5 G ← G ∪ {Gi}
6 T ← T \ Gi
7 i← i+ 1

8 return G

Algorithm 2: MAXOI

Data: Set of prefixes K = {F1, . . . , Fn}
1 begin
2 represent K as set of ranges Fi = [ai, bi]
3 sort K by upper bounds bi, set k ← 1, S ← ∅
4 for i = 2, . . . , n do
5 if a[i] > b[k] then
6 S ← S ∪ {Fi}, k ← i

7 return S

Algorithm 3: ONEGROUP, the MINSIMILAR heuristic.

Data: K, max. width l, exact
1 begin
2 for every bit i = 1, . . . , k do
3 Compute Si = max{0i,1i}
4 Choose B = {b1, . . . , bl} of l bit identities with minimal Si
5 C ← K
6 if exact then
7 C ← {F ∈ C | ∗ 6∈ FB}
8 return MAXOI(KBC )

Algorithm 4: ONEGROUP, the MAXPAIR heuristic.

Data: K, max. width l, exact
1 begin
2 for every bit i = 1, . . . , k do
3 compute Di ← max{|(F, F ′)| | F, F ′ ∈ K, Fi 6= F ′

i , Fi 6=
∗, F ′

i 6= ∗}
4 Choose B = {b1, . . . , bl} of l bit identities with maximal Di
5 C ← K
6 if exact then
7 C ← {F ∈ C | ∗ 6∈ FB}
8 return MAXOI(KBC )

Throughout this section, we use five IPv6 FIBs from the
Internet2 project [11] for evaluation of our algorithms.

B. Weak order-independence

We now introduce heuristics that assign prefixes of a given
classifier to groups with fixed maximal width l. The first
intuitive approach is to remove bit identities that have the most
similar values in all prefixes. Specifically, we denote by 0i (1i)
the number of prefixes whose ith bit is either 0 (1) or ∗. In
addition, we denote Si = max{0i,1i}. Algorithm 3 removes
bit identities with maximal value of Si, finding l bits with
minimal Si, and then runs MAXOI on the classifier cut to
these l bits. If we need exact values, we simply choose them
from the reduced classifier. We call this heuristic MINSIMILAR
because we minimize the number of similar bits.

Table I shows detailed simulation results for Algorithm 3.
For five values of maximal width l, it shows Algorithm 3

Algorithm 5: ONEGROUP, the MINSIMILARδ heuristic; ∗FB de-
notes the number of ∗ bits in FB .

Data: K, l, δ, exact
1 begin
2 for every bit i = 1, . . . , k do
3 Compute Si = max{0i,1i}
4 Choose B = {b1, . . . , bl} of l bit identities with minimal Si
5 C ← {F ∈ K | ∗FB ≤ δ}
6 return MAXOI(KBC )

Algorithm 6: ONEGROUP, the MAXPAIRδ heuristic; ∗F denotes the
number of ∗ bits in F .

Data: K, max. width l, exact
1 begin
2 for every bit i = 1, . . . , k do
3 compute Di ← max{|(F, F ′)| | F, F ′ ∈ K, Fi 6= F ′

i , Fi 6=
∗, F ′

i 6= ∗}
4 Choose B = {b1, . . . , bl} of l bit identities with maximal Di
5 C ← {F ∈ K | ∗FB ≤ δ}
6 return MAXOI(KBC )

results with exact = False, with exact = True, and, in
the “Exp.” columns, the results of straighforwardly expanding
each prefix in the non-exact results; this results in copying each
prefix 2∗+1 times, where ∗ is the number of ∗ bits in the prefix.
Both heuristics expose the tradeoff between number of groups
and total resulting size of the classifier (the total size will
obviously decrease with decreasing maximal width since it is
bounded by (# rules)×(max. width)). The alternative approach
is to choose bit identities that distinguish the maximal number
of pairs of prefixes. Denoting by Di a number of prefix pairs
that differ in the ith bit, we get the MAXPAIR heuristic shown
in Algorithm 4. Table II, with layout similar to Table I, shows
the results of the MAXPAIR heuristic. The results are mostly
similar to MINSIMILAR, they are two sides of the same coin;
it appears that MINSIMILAR is better suited for small widths
l, and MAXPAIR works better for larger l.

Example 2: In the classifier from Example 1, the MINSIM-
ILAR heuristic computes S1 = 3, S2 = 3, S3 = 5, S4 = 4.
For l = 2, it chooses bits 0 and 1 and computes the maximal
order-independent set on these bits as {F1, F3, F4}, getting
the same results as REGROUP in Example 1. The MAXPAIR
heuristic computes S1 = 6, S2 = 4, S3 = 0, S4 = 1 and then
works in the same way for l = 2.

C. Strong Order-Independence: Tradeoff

In Algorithms 3 and 4, we explored two ways to achieve
strong order-independence (i.e., no ∗ bits in the filters): either
removing all prefixes with ∗ bits prior to running MAXOI
or running the algorithm as usual and then expanding all ∗
bits with an exponential blowup to the classifier. Tables I
and II suggest that these are the two extremes with respect
to our two conflicting objectives: cutting the width down vs.
reducing the number of filters. In the following heuristic,
we consider the middle ground between these two extremes.
Algorithm 5 shows the MINSIMILARδ heuristic where we



Original Per prefix max width = 13 max width = 16 max width = 24 max width = 32 max width = 48
with ∗ Exp. without ∗ with ∗ Exp. without ∗ with ∗ Exp. without ∗ with ∗ Exp. without ∗ with ∗ Exp. without ∗

# rules kb #gr. kb # kb kb # kb # kb kb # kb # kb kb # kb # kb kb # kb # kb kb # kb
hous 1475 184.4 36 69.7 44 12.7 59.8 69 12.3 27 15.3 123.4 47 17.5 9 25.6 4096.0 48 20.5 10 28.7 85015.5 18 26.1 7 50.9 4.1 · 109 15 30.0
clev 1475 184.4 36 69.7 44 12.7 59.8 69 12.3 27 15.3 123.4 47 17.5 9 25.6 4096.0 48 20.5 10 28.7 85015.5 18 26.1 7 50.9 4.1 · 109 15 30.0
kans 1475 184.4 36 69.7 44 12.7 59.8 69 12.3 27 15.3 123.4 47 17.5 9 25.6 4096.0 48 20.5 10 28.7 85015.5 18 26.1 7 50.9 4.1 · 109 15 30.0
losa 1475 184.4 36 69.7 44 12.7 59.8 69 12.3 27 15.3 123.4 47 17.5 9 25.6 4096.0 48 20.5 10 28.7 85015.5 18 26.1 7 50.9 4.1 · 109 15 30.0
seat 1476 184.5 36 69.8 42 12.8 59.6 69 12.2 27 15.3 107.2 45 17.9 9 25.6 4088.6 65 19.9 10 28.7 85015.6 18 26.1 7 50.9 4.1 · 109 15 30.0
atla 1476 184.5 36 69.8 45 12.7 59.7 64 12.3 27 15.3 121.2 46 17.6 9 25.6 4096.1 65 19.9 10 28.7 85015.6 18 26.1 7 50.9 4.1 · 109 15 30.0
chic 1476 184.5 36 69.8 42 12.7 59.7 64 12.3 27 15.0 106.5 45 18.0 9 24.8 4062.7 64 20.3 10 27.4 78798.1 19 26.0 7 48.8 3.9 · 109 15 30.0
newy 1477 184.6 36 69.9 42 12.8 59.9 68 12.2 27 15.3 120.6 45 18.0 9 25.6 4096.1 57 20.5 10 28.7 85015.7 20 26.2 7 51.0 4.1 · 109 15 30.1
wash 1475 184.4 36 69.8 42 12.8 59.8 62 12.1 33 15.0 113.1 45 17.6 9 25.6 4096.0 57 20.5 10 28.7 85009.5 18 26.2 6 50.9 4.1 · 109 15 30.1
salt 1475 184.4 36 69.7 44 12.7 59.8 69 12.3 27 15.3 123.4 47 17.5 9 25.6 4096.0 48 20.5 10 28.7 85015.5 18 26.1 7 50.9 4.1 · 109 15 30.0

TABLE I: Simulation results, the MINSIMILAR heuristic (Algorithm 3).

Original Per prefix max width = 13 max width = 16 max width = 24 max width = 32 max width = 48
with ∗ Exp. without ∗ with ∗ Exp. without ∗ with ∗ Exp. without ∗ with ∗ Exp. without ∗ with ∗ Exp. without ∗

# rules kb #gr. kb # kb kb # kb # kb kb # kb # kb kb # kb # kb kb # kb # kb kb # kb
hous 1475 184.4 36 69.7 44 12.7 59.8 67 14.0 27 15.3 123.4 54 18.3 9 25.6 4096.0 52 18.0 10 28.7 85015.5 28 25.8 7 50.9 4.1·109 16 29.7
clev 1475 184.4 36 69.7 44 12.7 59.8 67 14.0 27 15.3 123.4 54 18.3 9 25.6 4096.0 52 18.0 10 28.7 85015.5 28 25.8 7 50.9 4.1·109 16 29.7
kans 1475 184.4 36 69.7 44 12.7 59.8 67 14.0 27 15.3 123.4 54 18.3 9 25.6 4096.0 52 18.0 10 28.7 85015.5 28 25.8 7 50.9 4.1·109 16 29.7
losa 1475 184.4 36 69.7 44 12.7 59.8 67 14.0 27 15.3 123.4 54 18.3 9 25.6 4096.0 52 18.0 10 28.7 85015.5 28 25.8 7 50.9 4.1·109 16 29.7
seat 1476 184.5 36 69.8 42 12.8 59.6 49 14.7 27 15.3 107.2 64 18.3 9 25.6 4088.6 50 18.0 10 28.7 85015.6 28 25.8 7 50.9 4.1·109 17 29.7
atla 1476 184.5 36 69.8 45 12.7 59.7 65 14.1 27 15.3 121.2 51 18.4 9 25.6 4096.1 51 18.0 10 28.7 85015.6 27 25.8 7 50.9 4.1·109 16 29.7
chic 1476 184.5 36 69.8 42 12.7 59.7 50 14.8 27 15.0 106.5 59 18.3 9 24.8 4062.7 56 17.7 10 27.4 78798.1 26 25.8 7 48.8 3.9·109 17 29.7
newy 1477 184.6 36 69.9 42 12.8 59.9 48 14.7 27 15.3 120.6 52 18.4 9 25.6 4096.1 57 17.6 10 28.7 85015.7 28 25.8 7 51.0 4.1·109 17 29.6
wash 1475 184.4 36 69.8 42 12.8 59.8 66 14.0 33 15.0 113.1 53 18.4 9 25.6 4096.0 56 17.5 10 28.7 85009.5 28 25.8 6 50.9 4.1·109 17 29.7
salt 1475 184.4 36 69.7 44 12.7 59.8 67 14.0 27 15.3 123.4 54 18.3 9 25.6 4096.0 52 18.0 10 28.7 85015.5 28 25.8 7 50.9 4.1·109 16 29.7

TABLE II: Simulation results, the MAXPAIR heuristic (Algorithm 4).

remove the filters with at most δ ∗ bits before running MAXOI;
all the rest is exactly like MINSIMILAR. Algorithm 6 does the
same for MAXPAIR. Tables III and IV show the results for
δ = {1, 2, 3, 4}. Although generally, of course, the expanded
size of the classifier grows with δ, there are cases, especially
with small values of l, when increasing δ actually lets us save
both size and number of groups; compare, for instance, the
four δ values for l = 13 in Table IV.

Example 3: In the classifier from Example 1, the MINSIM-
ILAR and MAXPAIR heuristics with exact = true and l = 3
both choose bits 0, 1, and 3 and then have to discard all rules
except F1 and F2, which form the first group, and then split
the rest into two more groups, getting three groups with total
size 4 bits. For l = 3 and δ = 1, however, the first group
for l = 3 will contain {F1, F2, F3, F4}, and the width will be
reduced to 3, getting a total size of 12 bits in two groups.

D. Dynamic Updates

Another important aspect of the practical applications is the
availability of dynamic updates: whether it is possible to add
new filters on the fly.

In our settings it is trivial to add a new filter if it is
still order-independent with one the existing groups on the
same bits as the group is constructed. However, if we simply
recompute the groups every time a new filter does not fit
into an existing group, it may become infeasible. Clearly
keeping a bigger subset of bit-identities to implements order-
independence in the same group or increasing number of
potential groups decrease chances to recompute belonging of
filters to different groups. As a result we propose a simple
heuristic: keep a few groups in reserve and then, when a new
filter arrives, do the following (we do not formulate it as an

algorithm since any of the previous algorithms may be used
in adding the new filters): try to add it to one of the existing
groups; if it does not fit, try to add it to the reserve groups, in
order; if all reserve groups are full, recompute all groups and
empty the reserve groups.

E. Evaluation in DPDK

For experimental evaluation, we adopt the Intel Data Plane
Development Kit (DPDK) [5]. The DPDK is a set of data
plane libraries and drivers for fast packet processing. The
DPDK offers low-overhead access to raw network packets
using direct access to NIC, pollmod drivers, etc. The DPDK
processes packets outside the Linux Networking Stack avoid-
ing costly packet encapsulation in the Linux kernel and its
expensive system calls. The DPDK provides LPM6 library
that implements LPM table search method for 128-bit keys.
The LPM6 implementation uses modification of the DIR-24-8
algorithm [9] for IPv4 that trades memory usage for improved
LPM lookup speed. In the IPv6 case, instead of using 2 levels
as in the IP case, the 14 levels are used; the first level is
indexed using the first 24 bits of the IPv6 address, while the
rest of the levels, are indexed using the rest IPv6 address, in
chunks of 8 bits.

The goal of experiment is to study the impact of “pseudo
parallelism” achieved by multi-group representations vs. mul-
tiple serial lookups used by LPM6. Both implementations use
instruction-level parallelism from processor’s pipeline, but in
“serial” case the pipeline stalls while it is waiting to know
memory address of next level in LPM data structure. In the
pseudo-parallel case, all addresses are known before the actual
execution and might be efficiently prefetched by the processor.
In particular, our goal is to understand how many groups



Original δ = 1 δ = 2
l = 13 l = 16 l = 24 l = 32 l = 48 l = 13 l = 16 l = 24 l = 32 l = 48

# kb #gr. kb exp. #gr. kb exp. #gr. kb exp. #gr. kb exp. #gr. kb exp. #gr. kb exp. #gr. kb exp. #gr. kb exp. #gr. kb exp. #gr. kb exp.
hous 1475 184.4 37 30.9 70.5 34 37.1 86.6 36 39.7 89.9 18 46.0 92.5 14 56.1 114.0 35 31.3 71.8 28 63.9 136.4 28 51.0 107.1 17 39.6 84.1 14 42.6 114.8
clev 1475 184.4 37 30.9 70.5 34 37.1 86.6 36 39.7 89.9 18 46.0 92.5 14 56.1 114.0 35 31.3 71.8 28 63.9 136.4 28 51.0 107.1 17 39.6 84.1 14 42.6 114.8
kans 1475 184.4 37 30.9 70.5 34 37.1 86.6 36 39.7 89.9 18 46.0 92.5 14 56.1 114.0 35 31.3 71.8 28 63.9 136.4 28 51.0 107.1 17 39.6 84.1 14 42.6 114.8
losa 1475 184.4 37 30.9 70.5 34 37.1 86.6 36 39.7 89.9 18 46.0 92.5 14 56.1 114.0 35 31.3 71.8 28 63.9 136.4 28 51.0 107.1 17 39.6 84.1 14 42.6 114.8
seat 1476 184.5 39 32.8 73.5 37 32.1 77.2 34 37.4 84.8 19 46.0 92.4 14 56.1 114.0 37 29.8 70.0 29 53.0 111.8 29 45.7 104.7 18 39.9 84.6 14 39.7 84.9
atla 1476 184.5 37 34.7 76.5 35 49.6 100.7 35 40.2 90.6 18 46.1 92.5 14 56.1 114.0 34 28.0 67.8 29 68.7 141.5 28 45.2 102.1 17 39.6 84.1 15 42.6 114.7
chic 1476 184.5 38 32.7 72.7 35 33.3 79.9 37 37.7 86.2 19 43.0 88.0 13 57.6 116.8 38 30.7 71.3 30 53.0 111.8 29 51.3 107.2 18 30.7 66.3 15 55.4 110.9
newy 1477 184.6 40 32.8 72.8 35 49.9 100.6 41 53.7 108.9 19 32.4 66.6 14 61.7 123.3 35 30.9 70.6 30 53.9 115.3 27 51.8 110.1 17 30.4 67.7 14 39.5 113.2
wash 1475 184.4 36 33.3 73.7 34 32.4 78.3 37 56.7 114.6 20 34.3 71.3 15 44.4 88.9 33 26.9 65.9 30 67.2 140.6 28 48.0 105.8 19 27.5 105.0 14 55.6 111.3
salt 1475 184.4 37 30.9 70.5 34 37.1 86.6 36 39.7 89.9 18 46.0 92.5 14 56.1 114.0 35 31.3 71.8 28 63.9 136.4 28 51.0 107.1 17 39.6 84.1 14 42.6 114.8

δ = 3 δ = 4
l = 13 l = 16 l = 24 l = 32 l = 48 l = 13 l = 16 l = 24 l = 32 l = 48

# kb #gr. kb exp. #gr. kb exp. #gr. kb exp. #gr. kb exp. #gr. kb exp. #gr. kb exp. #gr. kb exp. #gr. kb exp. #gr. kb exp. #gr. kb exp.
hous 1475 184.4 33 20.9 87.8 26 64.9 388.3 24 46.5 115.8 18 27.4 181.0 12 42.7 320.8 33 21.1 92.9 24 23.9 251.2 21 48.8 159.1 16 27.5 351.9 11 45.9 192.6
clev 1475 184.4 33 20.9 87.8 26 64.9 388.3 24 46.5 115.8 18 27.4 181.0 12 42.7 320.8 33 21.1 92.9 24 23.9 251.2 21 48.8 159.1 16 27.5 351.9 11 45.9 192.6
kans 1475 184.4 33 20.9 87.8 26 64.9 388.3 24 46.5 115.8 18 27.4 181.0 12 42.7 320.8 33 21.1 92.9 24 23.9 251.2 21 48.8 159.1 16 27.5 351.9 11 45.9 192.6
losa 1475 184.4 33 20.9 87.8 26 64.9 388.3 24 46.5 115.8 18 27.4 181.0 12 42.7 320.8 33 21.1 92.9 24 23.9 251.2 21 48.8 159.1 16 27.5 351.9 11 45.9 192.6
seat 1476 184.5 35 21.8 78.9 27 63.6 383.4 22 45.4 121.1 17 38.4 90.2 13 45.0 94.0 33 20.2 93.4 26 32.0 203.6 21 45.6 171.7 17 27.9 352.6 11 46.5 335.4
atla 1476 184.5 33 20.5 84.0 28 62.1 375.0 23 50.3 114.3 18 27.4 181.0 12 42.7 320.8 33 19.9 88.9 23 22.8 251.7 22 46.5 160.7 16 27.3 351.5 11 45.9 192.7
chic 1476 184.5 33 19.1 73.3 27 65.0 385.1 24 45.7 124.4 17 41.1 96.3 12 43.0 321.2 33 19.0 93.7 28 30.2 193.1 21 45.9 155.1 14 28.6 354.3 11 45.9 192.7
newy 1477 184.6 31 27.3 72.8 26 64.1 395.0 23 46.4 121.5 17 41.8 99.0 12 46.3 315.9 30 25.1 86.7 27 32.4 200.2 23 49.2 159.9 16 32.0 104.2 11 46.3 335.9
wash 1475 184.4 35 20.3 79.1 26 67.4 414.6 22 49.2 127.3 17 41.1 96.2 12 45.0 182.4 33 20.7 87.2 23 25.4 252.1 22 49.3 162.5 16 27.5 351.9 12 45.3 191.1
salt 1475 184.4 33 20.9 87.8 26 64.9 388.3 24 46.5 115.8 18 27.4 181.0 12 42.7 320.8 33 21.1 92.9 24 23.9 251.2 21 48.8 159.1 16 27.5 351.9 11 45.9 192.6

TABLE III: Simulation results, the MINSIMILARδ heuristic (Algorithm 5).

Original δ = 1 δ = 2
l = 13 l = 16 l = 24 l = 32 l = 48 l = 13 l = 16 l = 24 l = 32 l = 48

# kb #gr. kb exp. #gr. kb exp. #gr. kb exp. #gr. kb exp. #gr. kb exp. #gr. kb exp. #gr. kb exp. #gr. kb exp. #gr. kb exp. #gr. kb exp.
hous 1475 184.4 39 75.7 153.3 34 81.9 165.1 28 52.2 105.3 26 28.3 71.7 14 51.8 118.8 37 77.1 159.4 25 72.6 152.4 32 50.4 111.4 22 33.6 73.4 13 36.8 207.7
clev 1475 184.4 39 75.7 153.3 34 81.9 165.1 28 52.2 105.3 26 28.3 71.7 14 51.8 118.8 37 77.1 159.4 25 72.6 152.4 32 50.4 111.4 22 33.6 73.4 13 36.8 207.7
kans 1475 184.4 39 75.7 153.3 34 81.9 165.1 28 52.2 105.3 26 28.3 71.7 14 51.8 118.8 37 77.1 159.4 25 72.6 152.4 32 50.4 111.4 22 33.6 73.4 13 36.8 207.7
seat 1476 184.5 38 78.1 157.9 33 81.5 164.3 28 53.1 107.2 24 29.1 73.2 15 52.7 121.2 36 77.3 160.4 30 72.2 151.8 31 54.0 117.3 20 33.8 74.4 15 45.3 182.6
atla 1476 184.5 45 76.4 154.8 33 79.6 160.4 29 53.1 107.3 37 44.5 90.6 14 51.9 118.8 39 77.4 160.2 28 72.6 152.4 33 54.3 117.4 20 34.2 74.8 14 36.8 207.7
chic 1476 184.5 40 74.9 151.8 31 81.4 163.9 27 52.1 105.3 22 28.9 73.0 14 52.9 121.5 35 77.6 160.0 28 71.8 151.0 30 54.0 117.3 19 33.5 73.8 14 53.2 155.7
newy 1477 184.6 40 77.2 156.2 33 82.3 165.8 29 50.2 100.9 24 28.1 70.9 15 52.7 121.2 37 76.2 157.9 26 74.5 153.1 29 49.9 111.4 20 33.5 73.3 14 36.9 207.9
wash 1475 184.4 41 77.5 156.6 33 83.4 168.0 28 52.2 105.5 22 26.7 68.6 17 38.9 79.8 36 76.8 159.3 32 74.9 157.4 32 54.9 118.7 22 33.5 73.3 12 30.6 200.1
salt 1475 184.4 39 75.7 153.3 34 81.9 165.1 28 52.2 105.3 26 28.3 71.7 14 51.8 118.8 37 77.1 159.4 25 72.6 152.4 32 50.4 111.4 22 33.6 73.4 13 36.8 207.7

δ = 3 δ = 4
l = 13 l = 16 l = 24 l = 32 l = 48 l = 13 l = 16 l = 24 l = 32 l = 48

# kb #gr. kb exp. #gr. kb exp. #gr. kb exp. #gr. kb exp. #gr. kb exp. #gr. kb exp. #gr. kb exp. #gr. kb exp. #gr. kb exp. #gr. kb exp.
hous 1475 184.4 30 65.2 142.2 23 72.5 159.5 22 27.0 173.1 21 29.2 112.3 12 45.3 340.3 32 61.4 148.0 19 94.4 261.8 19 36.9 358.7 19 27.3 329.4 11 45.2 536.5
clev 1475 184.4 30 65.2 142.2 23 72.5 159.5 22 27.0 173.1 21 29.2 112.3 12 45.3 340.3 32 61.4 148.0 19 94.4 261.8 19 36.9 358.7 19 27.3 329.4 11 45.2 536.5
kans 1475 184.4 30 65.2 142.2 23 72.5 159.5 22 27.0 173.1 21 29.2 112.3 12 45.3 340.3 32 61.4 148.0 19 94.4 261.8 19 36.9 358.7 19 27.3 329.4 11 45.2 536.5
seat 1476 184.5 31 65.1 143.6 22 71.8 156.3 23 29.2 176.1 24 29.5 118.4 12 44.8 339.3 35 62.6 152.1 22 92.8 266.2 17 36.1 361.6 18 27.7 194.1 12 45.1 548.3
atla 1476 184.5 31 65.6 143.4 22 70.6 156.0 23 28.8 175.3 25 30.9 118.9 12 45.4 340.5 34 62.6 150.9 22 92.5 265.6 17 37.3 362.7 19 28.7 329.3 11 45.5 537.1
chic 1476 184.5 32 66.9 144.3 22 71.3 156.2 23 29.7 177.0 21 27.7 177.4 12 38.1 407.6 33 63.1 151.3 22 92.9 266.3 16 36.0 361.6 21 28.6 328.7 12 39.7 565.3
newy 1477 184.6 32 64.7 142.5 21 70.2 157.1 23 25.4 170.2 23 29.0 115.9 12 38.6 281.1 32 63.9 152.9 20 94.1 260.5 17 36.1 361.5 19 30.3 211.6 12 46.5 539.2
wash 1475 184.4 34 75.7 165.1 25 74.4 164.6 23 25.9 171.5 26 30.5 118.2 12 33.0 282.0 31 62.6 150.8 19 94.0 260.7 19 26.7 309.5 20 30.0 210.9 12 34.6 434.4
salt 1475 184.4 30 65.2 142.2 23 72.5 159.5 22 27.0 173.1 21 29.2 112.3 12 45.3 340.3 32 61.4 148.0 19 94.4 261.8 19 36.9 358.7 19 27.3 329.4 11 45.2 536.5

TABLE IV: Simulation results, the MAXPAIRδ heuristic (Algorithm 6).

based on 24 or 32 bits can be used during processing of 14
levels of LPM6 implementation. For this experiments we use
rte lpm6 lookup() (or rte lpm lookup()) functions with two
calls of rte get tsc cycles() function. Difference between TSC
values is the number of cycles to execute the set of lookups.

We run every test in each experiments 1000 times and then
average the cycles. As a testbed, we use a physical server with
two 8 core Intel Xeon CPU E5-2670 @ 2.60GH, 96 GB DDR3
RAM, Ubuntu 14.04.2 LTS. Results of our experiments show
that it is possible to run multi-group representation on 14-18
groups in the same time as IPv6 lookup, which together with
other results of this section leads to significant size reduction
with no loss for performance.

Moreover, in future work and practical implementations
there are ways to make pseudo-parallel lookups even faster and
smoother in the number of cycles. First, every x86 server has

at least 4 independent memory channels; we can physically
allocate the groups’ LPM tables in different memory banks
to make multiple accesses faster (using platform-dependent
code, bootmem, page alloc etc). Second, one can use builtin
prefetch instructions so that CPUs will load these tables in
cache in advance (e.g., DPDK has the rte prefetch() API).
Third, comparison in LPM tables can be rewritten with movcc
assembly instructions on x86.

V. RELATED WORK

Some of the fastest IP lookup engines use space- and
lookup-efficient encodings of prefix trees [2], [6], [7], [21].
Unfortunately, the lookup time on prefix trees increases pro-
portionally with the address size, which is a problem for IPv6
due to the increased address space. Therefore, most prefix tree
implementations for IPv6 carefully adapt the basic IP prefix
tree data structure to the special needs of IPv6. Unfortunately,



a naive application of IPv4 level-compression algorithms [1],
[21], [24] to IPv6 do not work straight away, as IPv6 prefix
trees are considerably sparse and therefore extending nodes’
stride naively yields a lot of empty nodes, leading to an
explosion in storage size. Consequently, one needs to find a
way to encode sparse subtrees inside prefix tree nodes. Tree
bitmaps, which use compact bitmaps to mark existing and
missing children, have proved very useful in this context [7].
Extensions of tree bitmaps to IPv6 include shape shifting tries
[20], which employ a succinct bitmap encoding to implement
children membership queries, and FlashTrie [2], using a hash-
based data structure for this purpose. While very efficient these
schemes are still just prefix trees under the hood, inherently
sequential and hence not amenable to parallelization.

Prefix-length-based decompositions are much more appeal-
ing for parallel execution [17], [23], since prefixes grouped
together in a single execution thread are independent and thus
allow fast and efficient exact matching data structures to be
used in implementations. The idea was proposed in [23], where
the prefix groups were organized into a (sequential) binary
search scheme to find the most specific match. Note that this
scheme requires special dummy entries (called markers) to be
stored at each level to signal the presence of more specifics.
Our scheme performs the lookups in parallel and therefore
does not need markers. The original scheme [23] was extended
to IPv6 in [25], using a TCAM to store each group, and
[17], which uses a separate Bloom-filter to eliminate the levels
that do not have matching entries in performing the binary
search. Our scheme is complementary to these proposals; by
generalizing prefix-length-based decompositions to reduced
order-independent decompositions we could realize all the
appealing properties (independence and exact match semantics
in groups) with much fewer groups and significantly smaller
per-group lookup tables.

[12], [16] addressed efficient time-space tradeoff for multi-
field classification, where fields are represented by ranges.
Note that limiting consideration to LPM filters significantly
simplify representations and allow to consider new special
cases as exact values on l bits. [14], [15] exploit Boolean min-
imization techniques to reduce required memory to represent
packet classifiers.

VI. CONCLUSION

Identifying appropriate invariants around which to imple-
ment lookup can significantly affect lookup time and space
requirements for the corresponding data structures. In this
paper we exploit weak and strong forms of order independence
in order to find decompositions for an IPv6 FIB that allow
to exploit a system level parallelism. The methods that we
suggest define an abstraction layer which remains transparent
to methods used for representation of lookup tables in net-
work elements. Our experimental evaluations suggest that the
proposed approach can lead to drastic savings in the memory
footprint of lookup tables with no loss to performance.
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