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ABSTRACT
A critical step in P4 compilation is finding an efficient mapping of

the high-level P4 source code constructs to the physical resources

exposed by the underlying hardware, while meeting data and con-

trol flow dependencies in the program. In this paper, we take a new

look at the algorithmic aspects of this problem, with the motiva-

tion to understand the fundamental theoretical limits and obtain

better P4 pipeline embeddings in the dRMT (disaggregated Match-

Action Table) switch architecture. We report mixed results. We find

that optimizing P4 program embedding for maximizing through-

put is computationally intractable even when some architectural

constraints are relaxed, and there is no hope for a tractable appro-

ximation with arbitrary precision unless𝒫=𝒩𝒫. At the same time,

we find that the maximal throughput embedding is approximable

in quasi-linear time with a small constant bound. Our evaluations

show that the proposed algorithm outperforms the heuristics of

prior work both in terms of throughput and compilation speed.

CCS CONCEPTS
• Networks→ Network algorithms; •Hardware→ Network-
ing hardware.

KEYWORDS
reconfigurable switches, packet programs, pipeline embedding, P4
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1 INTRODUCTION
Computing applications critically depend on more efficient, reliable,

flexible, and observable networks [11]. Accordingly, programming

reconfigurable switch pipelines using a high-level domain-specific

language like P4 [2] is increasingly being adopted in diverse applica-

tion areas, like large-scale disaggregation, in-network computation

[4], telemetry [10], load-balancing [9, 12], etc. We witness data-

plane programs growing in complexity, including more and larger

match-action tables, diverse header parse graphs, table–action de-

pendency relationships, and match/action types [1]. At the same

time, new generations of programmable switch ASICs [7] feature

more dataplane resources and pipeline stages.

Dataplane programming adopts a top-down approach: the re-

quired behavior of the network is described in a declarative P4

program, which is then mapped to the underlying hardware by a P4
compiler. The compiler must analyze the P4 program and, given an

abstract model of the hardware target, including limits on the avail-

able memory space, width, and types, the number of processing

units, and the supported level of concurrency at each stage, find the

best encoding of the P4 program into the target switch pipeline so

that control and data dependencies in the program are reproduced

in a semantically correct way. Here, the “best” encoding may be such
that it maximizes the throughput, while keeping the latency within
reasonable bounds.
Programmable packet forwardingASICs: RMTvs. dRMT.The
seminal paper [8] set the stage for P4 program compilation for the

Reconfigurable Match-Action Table (RMT) switch architecture, using

an abstract model to describe the resource requirements and data-/

control-dependencies of P4 programs as well as the switch data-

plane resources. The RMT architecture, however, has two important

restrictions: (1) a table memory is local to an RMT pipeline stage,

implying that memory not used by one stage cannot be reclaimed by

another, and (2) RMT is hardwired to sequentially execute matches

followed by actions as packets traverse pipeline stages. Thus, P4

embeddings for RMT may exhibit performance cliffs; e.g., adding

only a single MAT to a P4 program may halve the throughput due

to recirculation. Moreover, P4 embedding for the RMT architecture

poses inherent algorithmic difficulties [16].

The disaggregated RMT (dRMT) architecture is a recent upgrade
to RMT to address these issues [3]. First, dRMT moves table mem-

ories out of pipeline stages and into a centralized pool that is ac-

cessible through a crossbar. Second, dRMT replaces RMT’s pipeline
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Figure 1: disaggregated RMT architecture

stages with a cluster of processors that can execute match and ac-

tion operations in any order (see Fig. 1). Intuitively speaking, and

considering a single processor for a moment, the aim of maximizing

throughput translates to minimizing the (average) number of clock

cycles 𝑃 between the termination of processing two consecutive

packets. Supposing that a processor can ensure finalizing a packet

in every 𝑃-th clock cycle, it is easy to see that the number of proces-

sors needed for achieving line rate (i.e., to finish the processing of

a packet in each clock cycle) is also 𝑃 , since processors can process

packets in a round robin fashion (see Fig. 2, credits to [3]). When

there are more than one processors availalbe, the throughput is
inversely proportional to the number of processors.

At the moment, there are many open algorithmic questions re-

lated to P4 program embedding over the dRMT architecture. This

is becoming increasingly troubling, since P4 compilation times can

easily grow beyond practical. For instance, evaluating one of the ex-

emplary P4 programs often cited to demonstrate the complexities of

real-life P4 programs, a subprogram of switch.p4 called "Egress",

[3] identifies 𝑃 = 7 as a firm lower bound on the complexity of the

best possible P4 embedding. At the same time, it was not possible

to reduce the complexity of the embedding below 𝑃 = 11 using the

heuristics and ILPs proposed in [3], leaving open the question of

whether a further 57% throughput increase is possible.

Disagregated P4 pipeline embedding. Motivated by the above,

in this paper we initiate the study of the algorithmic landscape of
the disaggregated P4 pipeline embedding problem (DPEP), where
the aim is to find a valid P4 program embedding that maximizes

the throughput, or equivalently, minimizes 𝑃 . To the best of our

knowledge, ours is the first principled approach to this end. We take

off from a simplified model of a programmable switch target (the

BASIC model) on which pipeline embedding maps to a well-known

combinatorial optimization problem that can be solved to optimal-

ity in polynomial time. Then, we re-introduce additional degrees of
complexity into the model to obtain increasingly more realistic and

restrictive models, eventually reproducing the problem formula-

tions of [3] in the models called WIDTH-IPC1 and WIDTH-IPC2.

Thus, we give a comprehensive characterization of the respective com-
putational complexity and approximation bounds and cast several

open problems.

The main contributions of the paper are the following.

(1) We fix the algorithmic complexity of different versions of the

DPEP problem, and we present low-polynomial constant-appro-

ximation algorithms. These results are summarized in Table 1.

𝐴0

𝑀1 𝐴1

𝑀2 𝐴2

(a)

proc.

cycle

0 1 2 3 4 5 6

0 𝐴0 𝑀1 𝑀2 𝐴1&𝐴2

1 𝐴0 𝑀1 𝑀2 𝐴1&𝐴2

0 𝐴0 𝑀1 𝑀2 𝐴1&𝐴2

1 𝐴0 𝑀1 𝑀2 𝐴1&𝐴2

(b)

Figure 2: The graph representation of a toy program (a), where 𝐴𝑖

and 𝑀𝑖 stand for action and match nodes/operations. Supposing a
processor can initiate ≤ 1 match per clock cycle, (b) encodes an op-
timal embedding of the program, where 𝑃 = 2.

(2) Our evaluations show that one of our P4 embedding algorithms,

Alg. 1, achieves at least 85% of the theoretically optimal through-

put on all P4 programs studied in [3], significantly improving

on the heuristic rnd_sieve of [3] that achieves only 73% of the

theoretical optimum.

(3) We provide upper bounds on the achievable 𝑃 , a feature that

has not been proposed in previous approaches.

The rest of the paper is organized as follows. Sec. 2 introduces the

simplified DPEP problem variants, alongside stating the algorithmic

complexities and some related inapproximability and approxima-

bility bounds. Then, Sec. 3 presents the preliminary simulation

results of our algorithms. Finally, the conclusions are drawn in Sec.

4. Formal proofs of our statements are provided in the Appendix.

2 ALGORITHMIC ISSUES OF P4 PROGRAM
EMBEDDING TO DRMT SWITCHES

In this section, we build a sequence of increasingly complex models

to characterize the resource requirement for embedding P4 pro-

grams into the dRMT pipeline. For each model, we analyze the

computational complexity of the particular incarnation of the P4

pipeline embedding problem, and, using classical results in combina-

torial optimization, we derive the corresponding inapproximability

(bad news) and approximability (good news) bounds.

In all of our models, the P4 program is modeled by an Operation

Dependency Graph (ODG, [3]) 𝐷 = (𝑉 , 𝐸), 𝑉 = 𝑉𝐴 ∪ 𝑉𝑀 , where

disjoint set of vertices 𝑉𝐴 and 𝑉𝑀 represent the match and action

nodes, respectively, and arc set 𝐸 encodes the inter-dependency

between the vertices. If the tail of an arc 𝑒 = (𝑢, 𝑣) is a match

or action node, then the execution of 𝑣 can start at least Δ𝑀 or

Δ𝐴 cycles after the start of execution of 𝑢, respectively. Moreover,

in each CPU cycle, each processor can initiate up to 𝑀 parallel

table searches, and can modify up to 𝐴 action fields in parallel.

Parameters Δ𝑀 , Δ𝐴, 𝑀 and 𝐴 are positive integers. For example,

the setting on Fig. 2 can be described by Δ𝑀 = Δ𝐴 = 𝑀 = 1, and

an arbitrary 𝐴 ≥ 2.

Also, in line with [3], we restrict our study to cyclic dRMT sched-

ules, where a single packet processing plan is repeated on all packets

processed by all processors (cf. [3, Sec. 3.2.]). To give an intuition

behind or positive (approximability) results, we anticipate that,

based on [3, Theorem 3.5], the dRMT scheduling problem can be

simplified to the problem of scheduling a single packet on a single
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Model name: BASIC IPC1 WIDTH WIDTH-IPC1 WIDTH-IPC2
New feature on top of the

basic constraints

(basic model) Max. 1 packet per

processor per cycle

(IPC= 1)

arbitrary table widths arbitrary table widths

+ IPC= 1

arbitrary table widths

+ IPC= 2 (≤2
pkt./proc./cycle)

Complexity 𝒫 𝒩𝒫-hard 𝒩𝒫-hard 𝒩𝒫-hard ?

Bad news: Inapproximable

better than . . . (,unless𝒫=𝒩𝒫) OPT 4/3∗OPT 3/2∗OPT 3/2∗OPT ?

Good news: Constant

OPT 3∗OPT ? 4∗OPT 8∗OPT
approximable in. . .

Table 1: Overview of the main results. Bad news: the Disaggregated Pipeline Embedding Problem (PEP) is𝒩𝒫-hard even with
relaxing some constraints. Good news: the DPEP is polynomially solvable under the BASIC model, and is constant approxi-
mable in quasi-linear time even when considering the model tackled by [3].

processor. This single packet scheduling has to fulfill a require-

ment of 𝑃-periodicity: the set of nodes assigned to clock cycles 𝑡 ,

𝑡 + 𝑃 , 𝑡 + 2𝑃 , . . . must meet the Δ𝑀 , Δ𝐴, 𝑀 , 𝐴 (and later on the

width and inter-packet concurrency) requirements together, for all

𝑡 ∈ {1, . . . , 𝑃}.

2.1 BASIC: A simplified model
In the BASIC model, there are no additional constraints to those

described above. Every table has a unit width. It is clear that the

minimal value of 𝑃 is at least the maximum of

⌈
|𝑉𝑚 |/𝑀

⌉
and

⌈
|𝑉𝑎 |/𝐴

⌉
.

As it turns out, the maximum of these two values is reachable with

a simple greedy algorithm (see Theorem 1).

Results for this model. DPEP under the BASIC model can be
solved to optimality in polynomial time.

2.2 IPC1: Inter-packet concurrency
On top of the constraints of BASIC, in the IPC1 model, we assume

that each processor may start a match for at most a fixed number

(Inter-Packet Concurrency, IPC) of different packets and likewise

start actions for up to IPC different packets. The set of packets that

start matches and the set of packets that start actions need not be

equal. Below we assume IPC=1. It turns out that in the presence

of the IPC constraint, the problem becomes not only 𝒩𝒫-hard,

but there is also no hope for a polynomial time approximation

scheme (PTAS) for 𝑃 (unless 𝒫=𝒩𝒫). The 𝒩𝒫-hardness and inap-

proximability can be reduced to a well-known scheduling problem

(see Theorem 2). On the bright side, in this setting, there exists a

3-approximation algorithm, described in Theorem 6.

Results for this model. DPEP under the IPC1 model is 𝒩𝒫-
hard. Bad news: the optimal number of cores to achieve line rate
cannot be approximated better than 4/3 unless𝒫=𝒩𝒫. Good news:
the optimum can be 3-approximated in linear time: 𝑂

(
|𝑉 | + |𝐸 |).

2.3 WIDTH: Variable table widths
Next, on top of BASIC we will also allow each match and action

node to be of arbitrary width, measured by a positive integer𝑊 :

𝑉 → N+. We represent this in our WIDTH model by letting each

processor to initiate up to 𝑀 parallel unit-wide (say, 𝑏 bits) table

searches in each cycle; e.g. a look up on two match-action tables

with key sizes 3 and 2, respectively, equals five parallel lookup

vectors of 𝑏 bits each, as long as 5 ≤ 𝑀 . It turns out that introducing

variable table (key) widths on top of the BASIC model also makes

the DPEP 𝒩𝒫-hard and inapproximable (see Theorem 3.):

Results for this model. DPEP under the WIDTH model is𝒩𝒫-
hard. Bad news: the optimal number of cores to achieve line rate
cannot be approximated better than 3/2 unless 𝒫=𝒩𝒫.

2.4 WIDTH-IPC1: Full-blown dRMT model
Our next model, WIDTH-IPC1, is equivalent to the one studied in

[3]. Here, we simultaneously require IPC= 1 and allow arbitrary

table widths. As expected, combining additional constraints does

notmake the problem easier: theminimal 𝑃 for which an embedding

exists cannot be approximated better than 3/2 (unless𝒫=𝒩𝒫, see

Theorem 2). As a promising positive result, though, we show that

in WIDTH-IPC1 the optimum can be 4-approximated in quasi-

linear time; see Alg. 1 (see Theorem 5). The algorithm is based on

the observation that the optimal period for a scheduling solution

(see Definition 1) is independent of values Δ𝑀 and Δ𝐴, because
it depends only on the number of clock cycles with at least one

match/action node (see Lemma 1). Our algorithm greedily finds

a solution with Δ𝑀 = Δ𝐴 = 1 (a pre-scheduling, see Definition 2)

such that clock cycles are filled with match/action nodes at least

half full when possible, resulting a 4-approximation.

Results for this model. DPEP under the WIDTH-IPC1 model is
𝒩𝒫-hard. Bad news: the optimal number of cores to achieve line rate
cannot be approximated better than 3/2 unless𝒫=𝒩𝒫. Good news: the
optimum can be 4-approximated in quasi-linear time:𝑂

(
|𝑉 | log |𝑉 | +

|𝐸 |).

2.5 WIDTH-IPC2: Loose IPC constraints
The original paper [3] also considers the case when IPC is 2, possibly

allowing more compact program embeddings. Intuitively speaking,

increasing IPC from 1 to 2 may allow at most twice as efficient

embeddings. Thus, the the greedy algorithm of model WIDTH-

IPC1 will give an 8-approximation in the WIDTH-IPC2 model (see

Theorem 7).

Results for this model. Good news: the optimum can be 8-
approximated in quasi-linear time: 𝑂

(
|𝑉 | log |𝑉 | + 𝐸).

For IPC= 2 the ILP solvers of [3] can compute efficient program

embeddings relatively easily. Thus, we will not study this model

further here.
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Algorithm

Graph Egress

|𝑉 | = 104

|𝐸 | = 291

Ingress

|𝑉 | = 224

|𝐸 | = 930

Combined

|𝑉 | = 328

|𝐸 | = 1221

rnd_sieve

i.e., [3]-greedy

13 21 30

Our greedy 13 19 23

[3] ILP 11 17 21

ILP lower bound 7 15 21

Table 2: Best P values computed by different algo-
rithms
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Figure 3: Throughput provided by different heuristics as precent-
age of the best ILP solution

Algorithm 1: WIDTH-IPC1 Our Greedy

Input: ODG 𝐷 = (𝑉 , 𝐸) ;𝑊 : 𝑉 → N+
;𝑀,𝐴

Output: 𝑃𝑆 : 𝑉 → N+

begin
1 𝑖 := 1;𝑉 ′

:= 𝑉

2 while𝑉 ′ ≠ ∅ do
3 𝑎 := list of action nodes with 0 indegrees, descending order of width

4 𝑚 :=list of match nodes with 0 indegrees, descending order of width

5 𝑤𝑎 := sum of widths in 𝑎

6 𝑤𝑚 := sum of widths in𝑚

7 current_usage := 0

8 if 𝑤𝑚 ≥ 1/2𝑀 and 𝑤𝑎 ≥ 1/2𝐴 then
9 Go to line 12 or 19

10 if 𝑤𝑎 ≥ 1/2𝐴 and 𝑤𝑚 < 1/2𝑀 then
11 Go to line 19

12 while𝑚 [0]+current_usage ≤ 𝑀 do
13 current_usage +=𝑚 [0]
14 PS[𝑚 [0]] := 𝑖
15 𝑉 ′

:= 𝑉 ′ \ {𝑚 [0] }
16 𝑚 :=𝑚 −𝑚 [0]
17 i := i+1

18 if 𝑤𝑚 ≥ 1/2𝑀 then
continue

19 while a[0]+current_usage ≤ 𝐴 do
20 current_usage += 𝑎 [0]
21 PS[𝑎 [0]] := 𝑖
22 𝑉 ′

:= 𝑉 ′ \ {𝑎 [0] }
23 𝑎 := 𝑎 − 𝑎 [0]
24 𝑖 := 𝑖 + 1

25 return PS

3 PRELIMINARY SIMULATION RESULTS
In this section, we present our simulation studies on P4 embeddings

for the dRMT architecture over the WIDTH-IPC1 model. Our goal

is to maximize throughput while keeping latency under control.

Running times were measured on a commodity laptop, with 64 GB

RAM and 24 threads, at 2.40GHz. The code used in the evaluation

is available on GitHub (https://github.com/fraknoiadam/drmt).

Maximizing the throughput. The throughput of a dRMT switch

is inversely proportional to the number of processors 𝑃 needed

to achieve line rate [3]. Table 2 summarizes the lowest P values

computed by different algorithms. In summary, Alg. 1 uses at most

19% more processors than the best ILP solution, compared to the at

most > 36% extra processors used by the heuristic rnd_sieve of [3].

Recall, Alg. 1 is a provably constant approximation on the optimal P.

In addition, the running time of Alg. 1 on the "Egress", "Ingress", and

"Combined" instances obtained from switch.p4 [3] was 7 ms, 24

ms, and 41ms, respectively, which is beyond an order of magnitude

improvement over rnd_sieve [3]. The average running time of Alg.

1 and rnd_sieve on these graphs were 0.007, 0.28, 10.5 and 0.3,

1.5, 2.7 [sec], respectively. Out of 1000 runs, Alg. 1 reached the

theoretically optimal P values 1000, 85, and 4 times, exploiting the

fact that, in Alg. 1 there are multiple steps where random choices

are made (e.g., at lines 3 and 4).

Fig. 3 visualizes the throughput provided by our greedy algo-

rithm, and rnd_sieve [3] as the percentage of the best throughput

provided by the optimal ILPs. For the Egress, Ingress, and Com-

bined instances, Alg. 1 achieves 85%, 89%, and 96%, while rnd_sieve

yields 85%, 81%, and 73%, respectively. In other words, our algo-

rithm performs at least as well as the rnd_sieve. Moreover, in these

cases, with the size of the input graph growing, Alg. 1 got closer to

the best throughput computed by the ILP formulation, while the

relative performance of rnd_sieve degraded.

Running times and latency. For each of the three program in-

stances, Table 3 shows the optimal latency (𝑇 = 𝑇𝑃 ) in the case of

the three lowest 𝑃 values that could be computed by the ILPs of

the paper. We can see that, while approaching the best 𝑃 obtained

by the ILP, the optimal latency remained more or less steady in

the case of Ingress and Combined, and, for Egress, it grew only

by less than 5% also. Running times for achieving the optimal 𝑇

values did not grow radically either on the example cases, except

for Egress. We can conclude that, contrary to the intuition, a higher

throughput (i.e., a lower P) has no significant impact on the lowest

latency (T) achievable.

4 CONCLUSION AND FUTUREWORK
P4 pipeline embedding sits at the core of programmable dataplane

use cases, as a crucial step for deploying P4 programs to real targets.

Given the booming data rates and sizes of P4 programs, maximizing

throughput is of paramount importance. In this paper, we analyze

the theoretical aspects of this problem, characterizing its complexity

and providing bounds for different models. Our results may help

Egress Ingress Combined

P 11 12 13 17 18 19 21 22 23

optimal𝑇𝑃 217 208 206 245 246 244 243 244 243

time [sec] 1203 76 107 106 59 23 118 25 109

Table 3: P vs T: higher throughput does not mean higher la-
tency.
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judge the performance of existing P4 compilers and build better

compilers for future switch architectures.

In our future work, we intend to analyze the adaptability of dif-

ferent existing P4 program deployment approaches [5, 6, 14, 15] for

taking advantage of the dRMT’s architectural enablers in through-

put maximization. Furthermore, we aim to tighten our lower and

upper bounds for the different DPEP variants and provide a clear

picture of how existing greedy approaches compare to an optimal

cyclic dRMT scheduling. Another interesting direction is unfolding

the possible and practical benefits and drawbacks of enabling a

number of 𝑙 > 1 packet scheduling cycles in dRMT scheduling.

A FORMAL PROOFS
A.1 Formal problem statement
Suppose that one of the DPEP model inputs is given with input

parameters 𝐷 = (𝑉 , 𝐸), Δ𝑀,Δ𝐴,𝑀,𝐴, 𝐼𝑃𝐶 ∈ {1, 2,∞} and 𝑊 :

𝑉 → N. For brevity we will use the latency function 𝑙 : 𝑉 →
{Δ𝑀,Δ𝐴}, where 𝑙 (𝑣) = Δ𝑀 or Δ𝐴 if 𝑣 is a match/action node,

respectively.

Definition 1. A scheduling of the nodes is a function 𝑆 : 𝑉 →
N+ such that for every arc (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸 we have 𝑆 (𝑣 𝑗 ) −𝑆 (𝑣𝑖 ) ≥ 𝑙 (𝑣𝑖 ).

For a scheduling 𝑆 and period 𝑃 ∈ N+, let S𝑃 denote the set of
schedulings 𝑆𝑖 such that 𝑆𝑖 (𝑣) = 𝑆 (𝑣) + 𝑖𝑃 (for 𝑖 ∈ N). We say that a
scheduling 𝑆 is feasible with period 𝑃 if

(1) ∀𝑡 ∈ N+ :

∑
𝑆𝑖 ∈S𝑃

∑
𝑣𝑚 ∈𝑉𝑚
𝑆𝑖 (𝑣𝑚)=𝑡

𝑊 (𝑣𝑚) ≤ 𝑀

(2) ∀𝑡 ∈ N+ :

∑
𝑆𝑖 ∈S𝑃

∑
𝑣𝑎 ∈𝑉𝑎

𝑆𝑖 (𝑣𝑎)=𝑡
𝑊 (𝑣𝑎) ≤ 𝐴

(3) ∀𝑡 ∈ N+ : #

{
𝑆𝑖 ∈ S𝑃

��∃𝑣𝑚 ∈ 𝑉𝑚 : 𝑆𝑖 (𝑣𝑚) = 𝑡
}
≤ 𝐼𝑃𝐶

(4) ∀𝑡 ∈ N+ : #

{
𝑆𝑖 ∈ S𝑃

��∃𝑣𝑎 ∈ 𝑉𝑎 : 𝑆𝑖 (𝑣𝑎) = 𝑡
}
≤ 𝐼𝑃𝐶.

In a DPEP instance, the goal is to find the minimum 𝑃 such that there
exists a scheduling 𝑆 which is feasible with period 𝑃 . The decision
version of DPEP is to decide for a given value 𝑘 if there exists a feasible
𝑃-periodic scheduling with 𝑃 ≤ 𝑘 .

A.2 Complexity
Theorem 1. For model BASIC 𝑃 = max

(⌈
|𝑉𝑚 |
𝑀

⌉
,

⌈
|𝑉𝑎 |
𝐴

⌉)
is the

optimal period, and a feasible 𝑃-periodic scheduling can be found in
polynomial time, in 𝑂

(
|𝐸 | + |𝑉 |𝑃

)
.

Proof. It is clear that

⌈
|𝑉𝑚 |
𝑀

⌉
and

⌈
|𝑉𝑎 |
𝐴

⌉
are lower bounds for

𝑃 . To prove the other direction, let 𝑣1, 𝑣2, . . . , 𝑣𝑛 be an arbitrary

topological order of the nodes (i.e. 𝑖 < 𝑗 if 𝑣𝑖𝑣 𝑗 ∈ 𝐸). We will

construct a scheduling 𝑆 of the nodes in this order in the following

way. 𝑆 (𝑣1) := 1. For 𝑗 > 1, let 𝛿 𝑗 := max{𝑆 (𝑣𝑖 ) + 𝑙 (𝑣𝑖 ) | 𝑣𝑖𝑣 𝑗 ∈
𝐸} if 𝑣 𝑗 has at least one entering arc, otherwise 𝛿 𝑗 := 𝑆 (𝑣 𝑗−1). If
𝑣 𝑗 ∈ 𝑉𝑚 , let 𝑆 (𝑣 𝑗 ) := min{𝑘 ≥ 𝛿 𝑗 | #{𝑖 : 𝑖 < 𝑗, 𝑣𝑖 ∈ 𝑉𝑚, 𝑆 (𝑣𝑖 ) ≡ 𝑘

mod 𝑃} ≤ 𝑀}. Similarly, if 𝑣 𝑗 ∈ 𝑉𝑎 , let 𝑆 (𝑣 𝑗 ) := min{𝑘 ≥ 𝛿 | #{𝑖 :
𝑖 < 𝑗, 𝑣𝑖 ∈ 𝑉𝑎, 𝑆 (𝑣𝑖 ) ≡ 𝑘 mod 𝑃} ≤ 𝐴}. Note that by choice of

𝑃 , the set to be minimized is never empty. The total number of

steps for calculating all 𝛿𝑖 values is 𝑂 ( |𝐸 |), whereas to determine

a minimum value for an 𝑆 (𝑣 𝑗 ) we need to check at most 𝑃 values

from 𝛿 𝑗 , 𝛿 𝑗 +1, . . . , 𝛿 𝑗 +𝑃 −1, giving a running time of𝑂
(
|𝐸 | + |𝑉 |𝑃

)
.

□

Theorem 2. The decision versions of models IPC1 and WIDTH-
IPC1 are NPC. Furthermore, they cannot be approximated better than
a ratio of 4/3 unless 𝒫=𝒩𝒫.

Proof. The problem can be reduced to the scheduling problem

𝑃 |𝑝𝑟𝑒𝑐, 𝑝 𝑗 = 1|𝐶𝑚𝑎𝑥 that can be reduced to CLIQUE problem [13].

□

Theorem 3. The decision version of model WIDTH is NPC, and it
cannot be approximated better than a ratio of 3/2 unless 𝒫=𝒩𝒫.

Proof. Assume we have only match nodes and Δ𝑀 = 1. In this

case, the problem is equivalent to the Pipeline Embedding Problem

(PEP) variant 1D1R [16]. □

Theorem 4. The decision version of model WIDTH-IPC1 cannott
be approximated better than a ratio of 3/2, unless 𝒫=𝒩𝒫.

Proof. It can be reduced to PEP version 1D1R [16]. □

A.3 Approximation algorithms
In this subsection, we describe approximation algorithms formodels

IPC1, WIDTH-IPC1, and WIDTH-IPC2. The key idea is to find

a proper partial order of the nodes that can be expanded into a

scheduling.

Definition 2. A function 𝑃𝑆 : 𝑉 → N+ is a pre-scheduling, if
(1) 𝑃𝑆 (𝑣𝑚) ≠ 𝑃𝑆 (𝑣𝑎) for every 𝑣𝑚 ∈ 𝑉𝑚, 𝑣𝑎 ∈ 𝑉𝑎 ,
(2) 𝑃𝑆 (𝑣 𝑗 ) − 𝑃𝑆 (𝑣𝑖 ) ≥ 1 for every arc (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸,
(3) if 𝑃𝑆−1 (𝑘) = ∅ for a 𝑘 ∈ N+, then 𝑃𝑆 (𝑣) < 𝑘 for every 𝑣 ∈ 𝑉 .
(4) ∀𝑡 ∈ N+ :

∑
𝑣𝑚 ∈𝑉𝑚

𝑃𝑆 (𝑣𝑚)=𝑡
𝑊 (𝑣𝑚) ≤ 𝑀,

(5) ∀𝑡 ∈ N+ :

∑
𝑣𝑎 ∈𝑉𝑎

𝑃𝑆 (𝑣𝑎)=𝑡
𝑊 (𝑣𝑎) ≤ 𝐴.

Let 𝐿(𝑃𝑆) denote the length of the pre-scheduling, so the largest clock
cycle that has an embedded node:

𝐿(𝑃𝑆) = max{𝑖 |𝑃𝑆−1 (𝑖) ≠ ∅}.

Let𝐴 denote the number of clock cycles with at least one embedded
action node. Formally, 𝐴 := #{𝑖 ∈ N+ |𝑃𝑆−1 (𝑖) ∩𝑉𝑎 ≠ ∅}. We define
𝑀 similarly with match nodes.

A scheduling 𝑆 is an expansion of a pre-scheduling 𝑃𝑆 if there
exists a strictly monotone function 𝑓 : N+ → N+ such that 𝑆 (𝑣) =
𝑓 (𝑃𝑆 (𝑣)).

Claim 1. Every pre-scheduling has an expansion.

Proof. We determine values 𝑓 (1), . . . , 𝑓 (𝐿(𝑃𝑆)) in this order.

Let 𝑓 (1) = 1. For 1 < 𝑖 ≤ 𝐿(𝑃𝑆), if there is no arc entering nodes in
𝑃𝑆−1 (𝑖), then 𝑓 (𝑖) := 𝑓 (𝑖 − 1) + 1. Else let 𝑓 (𝑖) := max{𝑓 (𝑃𝑆 (𝑣)) +
𝑙 (𝑣) |𝑣𝑤 ∈ 𝐸, 𝑃𝑆 (𝑤) = 𝑖}. □

Lemma 1. Let 𝑃𝑆 be a pre-scheduling and let 𝐼𝑃𝐶 = 1. For 𝑃 :=

max (𝐴,𝑀) there exists an expansion of 𝑃𝑆 that is feasible with period
𝑃 . Moreover, 𝑃 is the smallest among such periods.

Proof. It is easy to see that values 𝐴 and 𝑀 are lower bounds

for the period of an expansion because the resulting scheduling has

the same number of match/action clock cycles.

Now we show that 𝑃𝑆 has a feasible 𝑃-periodic expansion.
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We have seen in Claim 1 that 𝑃𝑆 has an expansion. We use a

similar approach to get a feasible 𝑃-periodic scheduling. In addition,

we will make sure that there are no two clock cycles with the same

type of nodes embedded into the same residue class modulo 𝑃 ,

which will guarantee constraints (1)-(4) of a feasible scheduling.

Let 𝑓 (1) = 1 and for 1 < 𝑖 ≤ 𝐿(𝑃𝑆) we do the followings. If there
exists an arc entering a node in 𝑃𝑆−1 (𝑖) then 𝛿 := max{𝑓 (𝑃𝑆 (𝑣)) +
𝑙 (𝑣) |𝑣𝑤 ∈ 𝐸, 𝑃𝑆 (𝑤) = 𝑖}, otherwise 𝛿 := 𝑓 (𝑖 − 1) + 1.

𝑓 (𝑖) := min{𝑘 ≥ 𝛿 | � 𝑗 < 𝑖 : 𝑓 ( 𝑗) ≡ 𝑘 mod 𝑃 and

𝑃𝑆−1 (𝑖), 𝑃𝑆−1 ( 𝑗) have the same type } (1)

Note that the set we are minimizing for 𝑓 (𝑖) is not empty since

𝑃 ≥ 𝑀 and 𝑃 ≥ 𝐴, and former clock cycles of the same type cannot

cover all residue classes modulo 𝑃 . □

Theorem 5. There is a 4-approximation algorithm for model
WIDTH-IPC1.

Proof. Based on Lemma 1, our goal is to find a pre-scheduling

𝑃𝑆 where we minimize max(𝐴,𝑀). Our algorithm uses a greedy

approach and embeds at least half full clock cycles as long as it is

possible (see Algorithm 1).

The algorithm maintains the subset 𝑉 ′
of nodes that need to

be embedded. At the beginning, let 𝑉 ′
:= 𝑉 . Let𝑚/𝑎 denote the

current list of match/action nodes of zero indegree in the subgraph

spanned by 𝑉 ′
, sorted in a descending order according to their

width. At one phase of the algorithm, we embed some nodes from

𝑚 and 𝑎 to one or two clock cycles and then move to the next clock

cycle and the next phase, when𝑚 and 𝑎 are updated again. Let 𝑖

denote the current first empty clock cycle.

Let 𝑤𝑚 and 𝑤𝑎 denote the sum of widths of nodes in𝑚 and 𝑎,

respectively. In one phase, we do the following:

If𝑤𝑚 < 𝑀/2 and𝑤𝑎 < 𝐴/2, we embed all nodes in𝑚 to clock

cycle 𝑖 and all nodes in 𝑎 to clock cycle 𝑖 + 1. We move on to the

next clock cycle: 𝑖 := 𝑖 + 2.

If𝑤𝑚 ≥ 𝑀/2 and𝑤𝑎 < 𝐴/2, we greedily embed only nodes in

𝑚 in clock cycle 𝑖 as long as possible, and move to the next clock

cycle: 𝑖 = 𝑖 + 1.

Similarly, if𝑤𝑚 < 𝑀/2 and𝑤𝑎 ≥ 𝐴/2, we greedily embed nodes

in 𝑎 in clock cycle 𝑖 as long as possible, and then move on to the

next phase and the next clock cycle.

Finally, if both 𝑤𝑚 ≥ 𝑀/2 and 𝑤𝑎 ≥ 𝐴/2, we can choose𝑚 or

𝑎 arbitrarily and embed nodes again greedily as before into clock

cycle 𝑖 .

Now we prove 4-approximation. We partition the clock cycles

into four groups: let 𝐻𝐹𝑚/𝐻𝐹𝑎 denote those clock cycles that are

at least half full with match/action nodes, respectively, and simi-

larly, let 𝑁𝐻𝐹𝑚/ 𝑁𝐻𝐹𝑎 denote the list of those that are not half

full. Note that |𝑁𝐻𝐹𝑚 | = |𝑁𝐻𝐹𝑎 | and 𝑁𝐻𝐹𝑚 [ 𝑗] = 𝑁𝐻𝐹𝑎 [ 𝑗] − 1.

We can assume that 𝑀 ≥ 𝐴. From Lemma 1, we get that the con-

structed pre-scheduling can be expanded into feasible scheduling

with period 𝑀 . Let 𝑃𝑜 denote the optimal period for the problem.

We know that 𝑃𝑜 ≥ ∑
𝑣∈𝑉𝑚 𝑊 (𝑣)/𝑀 . Since

∑
𝑣∈𝑉𝑚 𝑊 (𝑣)/𝑀 ≥∑

𝑣∈𝑃𝑆−1 (𝐻𝐹𝑚)𝑊 (𝑣)/𝑀 ≥ |𝐻𝐹𝑚 |/2 and we get |𝐻𝐹𝑚 | ≤ 2𝑃𝑜 .

Claim 2. For every node 𝑣 embedded in 𝑁𝐻𝐹𝑚 [𝑖] or 𝑁𝐻𝐹𝑎 [𝑖]
(𝑖 ≥ 2) there is a path from a node embedded in 𝑁𝐻𝐹𝑚 [𝑖 − 1] or
𝑁𝐻𝐹𝑎 [𝑖 − 1] to 𝑣 .

Proof. Let us consider the phase when𝑚 = 𝑁𝐻𝐹𝑚 [𝑖 − 1] and
𝑎 = 𝑁𝐻𝐹𝑎 [𝑖 − 1]. Observe that every node in the current 𝑉 ′

is

reachable from nodes embedded in𝑁𝐻𝐹𝑚 [𝑖−1] or𝑁𝐻𝐹𝑎 [𝑖−1]. □

Claim 3. There is a path of length of at least |𝑁𝐻𝐹𝑚 | in 𝐷 .

Proof. Applying Claim 2 backwards starting from an arbitrary

node 𝑣 |𝑁𝐻𝐹𝑚 | embedded in 𝑁𝐻𝐹𝑚 [|𝑁𝐻𝐹𝑚 |] or 𝑁𝐻𝐹𝑎 [|𝑁𝐻𝐹𝑚 |]
we get a path from a node 𝑣 |𝑁𝐻𝐹𝑚 |−1 embedded in𝑁𝐻𝐹𝑚 [|𝑁𝐻𝐹𝑚 |−
1] or 𝑁𝐻𝐹𝑎 [|𝑁𝐻𝐹𝑚 | − 1], and so on. By concatenating these paths,
we get a path P which is required in the claim. □

Note that for any path 𝑄 we have that |𝑉 (𝑄) ∩ 𝑉𝑚 | ≤ 𝑃𝑜 and

|𝑉 (𝑄)∩𝑉𝑎 | ≤ 𝑃𝑜 so |𝑉 (𝑄) | ≤ 2𝑃𝑜 . Hence |𝑁𝐻𝐹𝑚 | ≤ |𝑉 (P)| ≤ 2𝑃𝑜
and so |𝑀 | = |𝐻𝐹𝑚 | + |𝑁𝐻𝐹𝑚 | ≤ 4𝑃𝑜 , which proves the theorem.

The running time of the algorithm is 𝑂 ( |𝑉 | log |𝑉 | + |𝐸 |). □

Theorem 6. Model IPC1 can be 3−approximated in polynomial
time.

Sketch of proof. We can simplify the previous algorithm in

Theorem 5 the followingway: we do not need to sort the elements in

lists𝑚 and 𝑎 because all have unit width. Moreover, we apply limits

𝑀 and𝐴 for embeddings instead of𝑀/2 and𝐴/2, and embed nodes

to get full clock cycles (with either match or action nodes only).

Let 𝐹𝑚 and 𝐹𝑎 denote the set of full clock cycles. We can derive a

sharper bound |𝐹𝑚 | ≤ 𝑃𝑜 , which gives a 3-approximation. □

Finally, we can derive an approximation algorithm for theWIDTH-

IPC2 model from the one given for the WIDTH-IPC1 .

Theorem 7. Model WIDTH-IPC2 can be 8−approximated in poly-
nomial time.

Proof. Let 𝑃
𝑜𝑝𝑡

1
and 𝑃

𝑜𝑝𝑡

2
denote the optimal periods forWIDTH-

IPC1 and WIDTH-IPC2, respectively for a pair of models with the

same input parameters (except 𝐼𝑃𝐶). Since a feasible 𝑃-periodic one

for WIDTH-IPC2 can be transformed into a feasible 2𝑃-periodic

scheduling for WIDTH-IPC1, so 𝑃
𝑜𝑝𝑡

1
≤ 2𝑃

𝑜𝑝𝑡

2
. Let 𝑃∗ denote the

period of the scheduling given by the 4−approximation algorithm

for WIDTH-IPC1 (Theorem 5). Then 𝑃∗ ≤ 4𝑃
𝑜𝑝𝑡

1
≤ 8𝑃

𝑜𝑝𝑡

2
. □
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