Compiling Packet Programs to Reconfigurable Switches: Theory and Algorithms

EuroP4 2020

<u>Balázs Vass</u>, Budapest Univ. of Technology and Economics, Budapest, Hungary Erika Bérczi-Kovács, Eötvös Loránd University, Budapest, Hungary Costin Raiciu, University Politehnica of Bucharest, Romania Gábor Rétvári, Budapest Univ. of Technology and Economics, Budapest, Hungary

Introduction: Pipeline Embedding Problem

Reconfigurable Switch Pipelines

- Programming pipelines using a high-level domain-specific language like P4 is increasingly adopted
- Applications booming \rightarrow
 - dataplane programs
 - grow in complexity
 - new programmable switch ASICs:
 - more dataplane resources
 - more pipeline stages
- \rightarrow Algorithmic issues

3

Pipeline Embedding Problem

- Dataplane programming: top-down approach
 - required behavior of the network described in a declarative **P4 program**
 - mapped to hardware by a **P4 compiler**
- The compiler must analyze the P4 program
 - given an abstract model of the hardware:
 - limits of memory space, width, types,
 - # processing stages
 - max. level of concurrency at each stage, ...
 - finds the best encoding such that:

all constraints are met

- 'best': min. # stages, min power, etc.
- We call this the **Pipeline Embedding** Problem

Pipeline Embedding

• Stage for Pipeline Embedding set by [NSDI'15]:

12th USENIX Symposium on Networked Systems Design and Implementation (NSDI '15). May 4–6, 2015 • Oakland, CA, USA ISBN 978-1-931971-218

Open Access to the Proceedings of the 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI '15) is sponsored by USENIX

- Proposed:
 - Abstract model for Pipeline Embedding
 - ILP + heuristic algorithms
- Issues:
 - ILP: possibly exponential runtime (runs for hours for a moderate-sized pipeline)
 - heuristics: no proven guarantees of 'goodness'
- Unfolding the algorithmic landscape of Pipeline Embedding was required

Balázs Vass

Models of programs and pipelines

- Control-flow dependencies of a P4 program
 - represented by a directed acyclic graph (DAG)
 - called Table Dependency Graph (TDG)
 - vertices: logical match-action tables (MATs)
 - arcs: dependencies between the MATs (match, action, etc.)

- Packet processing **pipeline**:
 - modeled as a directed path
 - nodes s_1, s_2, \dots represent the pipeline stages
 - arcs (s_i, s_{i+1}) encode succession
 - For simplicity:
 - the switch has infinitely many stages,
 - objective: minimize the # stages in the embedding.

Compiling Packet Programs to Reconfigurable Switches: Theory and Algorithms

3. EuroP4 2020

Hardware constraints: Simplified models

Full hardware model: very complex \rightarrow simplifications \rightarrow gained some insight \rightarrow some constraints put back \rightarrow reanalysed

Model name	INF-CAP	1D1R	1D1R-hsplit	2D1R	2D2R	2D2R-T/S	2D2R-PISA
New feature on	(mapping	1D capacity/	hsplit (table	2D capacity/	2 kinds of	limited number	crossbar
top of the	concurrency	demands	entries split	demands	resources per	of tables per	constraints,
previous model	due to		between		stage	stage	word packing,
	dependency)		stages)		2004		etc.

- INF-CAP: a directed path of stages, each with infinite capacities (no arc of TDG mapped to just one stage)
- 2D2R-PISA: a full-blown PISA model (RMT described in [NSDI'15])

Results

Results - Complexity

Model name	INF-CAP	1D1R	1D1R-hsplit	2D1R	2D2R	2D2R-T/S	2D2R-PISA
New feature on top of the previous model	(mapping concurrency due to dependency)	1D capacity/ demands	<i>hsplit</i> (table entries split between stages)	2D capacity/ demands	2 kinds of resources per stage	limited number of tables per stage	crossbar constraints, word packing, etc.
Complexity	Р	NPC	NPC	NPC	NPC	NPC strongly	NPC NP-hard

- NP complete even with simple capacity constraints (1D1R)
- Hint of proof: some NP-hard problems are apparently special cases

9

More bad news: Inapproximability

Model name	INF-CAP	1D1R	1D1R-hsplit	2D1R	2D2R	2D2R-T/S	2D2R-PISA
New feature on top of the previous model	(mapping concurrency due to	1D capacity/ demands	<i>hsplit</i> (table entries split between	2D capacity/ demands	2 kinds of resources per stage	limited number of tables per stage	crossbar constraints, word packing,
	dependency)		stages)				etc.
Bad news: (unless P=NP,) Inapproximable better than	OPT	3/2*OPT	5/4*OPT	5/4*OPT	5/4*OPT	?	?

No Polynomial Time Approximation Scheme

(PTAS) exists (no poly. alg. with arbitrary multiplicative error)

- Bird's view of proofs:
 - showing a problem instance family s.t:
 - we can embed each instance in k stages exactly if a related NP-hard problem has a solution
 - \circ otherwise we need (k+1) stages \rightarrow inapprox. better than (k+1)/k *OPT

- E.g. for 1D1R (oversimplified):
 - no TDG arcs
 - Σ (TDG node sizes) = 2* (stage size)
 - We can embed in k=2 stages exactly if the PARTITION has a solution over the table sizes
 - ...that is NP-hard.

Compiling Packet Programs to Reconfigurable Switches: Theory and Algorithms

Good news : constant(!)-approximability in quasi-linear time

Model name	INF-CAP	1D1R	1D1R-hsplit	2D1R	2D2R	2D2R-T/S	2D2R-PISA
New feature on top of the previous model	(mapping concurrency due to dependency)	1D capacity/ demands	hsplit (table entries split between stages)	2D capacity/ demands	2 kinds of resources per stage	limited number of tables per stage	crossbar constraints, word packing, etc.
Good news: Constant-appro- ximable in	OPT	3*OPT	2*OPT	3*OPT	(5 to 8)*OPT (*)	(6 to 9)*OPT (*)	?

- Approximation idea: (First Fit by Level and Size)
 - group the TDG nodes by their level
 - node v on level i if the longest directed path from the root R to v has a length of i
 - nodes in each level can be mapped in the same stage
 - for each level: ~bin packing (without dependency constraints)
 - ...or combinig bin packings

Balázs Vass

Compiling Packet Programs to Reconfigurable Switches: Theory and Algorithms 3.

Conclusion & Future Work

Take-away: Pipeline Embedding is

-inapproximable in poly. time 😞

-constant-approximable 😉

We will investigate:

- Optimality gaps of Chipmunk, Domino, & others?
- How to write better P4 programs?

Thank you for your attention Q&A