
Supercharge WebRTC: Accelerate TURN
Services with eBPF/XDP

Tamás Lévai
Budapest University of Technology

and Economics
L7mp Technologies
levait@tmit.bme.hu

Balázs Edvárd Kreith
Riverside.fm

balazs.kreith@gmail.com

Gábor Rétvári
Budapest University of Technology

and Economics
L7mp Technologies
retvari@tmit.bme.hu

ABSTRACT
Real-time communication (RTC) services, from videoconferencing
to cloud gaming and remote rendering, are everywhere. WebRTC,
an enabler technology for these applications, traditionally relies on
a comprehensive NAT traversal protocol suite, most importantly,
TURN, to interconnect clients and media servers behind NATs
and firewalls. With the demise of residential public IP addresses,
these massive-scale TURN services have become an indispensable
component of WebRTC applications. Traditionally implemented as
multi-protocol user-space packet relays, TURN servers are noto-
riously resource hungry. In this paper, we propose an eBPF/XDP
offload engine to improve TURN server performance. We design a
reusable eBPF/XDP TURN offload architecture, create a prototype
on top of pion/turn, a popular WebRTC framework written in Go,
and show on a fully functional WebRTC testbed that our offload
significantly improves throughput and, more importantly, delay, by
2–3× compared to the state-of-the-art.

CCS CONCEPTS
• Information systems → Multimedia information systems;

KEYWORDS
TURN protocol, WebRTC, eBPF/XDP

ACM Reference Format:
Tamás Lévai, Balázs Edvárd Kreith, and Gábor Rétvári. 2023. Supercharge
WebRTC: Accelerate TURN Services with eBPF/XDP. In 1st Workshop on
eBPF and Kernel Extensions (eBPF ’23), September 10, 2023, New York, NY, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3609021.3609296

1 INTRODUCTION
Today videoconferencing (Google Meet, MS Teams, Discord) and
cloud gaming (GeForce NOW) are part of our everyday life. Most
such real-time communication (RTC) services rely on WebRTC [1],
an extensive API for handling real-time media (e.g., audio, video) in
Web browsers, plus a bunch of legacy protocols, for the most part
adopted from Voice over IP (VoIP), for transmitting media over the
Internet.

eBPF ’23, September 10, 2023, New York, NY, USA 
© 2023 Copyright held by the owner/author(s). 
ACM ISBN 979-8-4007-0293-8/23/09.
https://doi.org/10.1145/3609021.3609296

Increasingly, users connect to WebRTC services from behind
one or more layers of network address translators (NAT). As an
unfortunate legacy of VoIP, however, WebRTC media communi-
cation requires direct connection between peers. In response, a
comprehensive suite of NAT-traversal protocols have been stan-
dardized in the IETF, and implemented in browsers and server-side
WebRTC frameworks, to help clients traverse NATs. Clients and
servers negotiate the connection parameters using ICE (Interac-
tive Connectivity Establishment), exchanging a list of candidate IP
address and UDP/TCP port pairs that may potentially allow them
connect. ICE candidates in turn are obtained via an additional set of
protocols; for instance, STUN (Session Traversal Utilities for NAT)
allows peers to “punch a hole” at the outermost NAT layer, which,
in certain lucky situations, may allow them to connect directly.
When all attempts fail, WebRTC clients and servers fall back to
TURN (Traversal Using Relays around NAT, [16]) to relay traffic
via a public proxy server. TURN services also find extensive use
beyond WebRTC, like VPNs [4], desktop streaming, game servers,
etc.

The typical standalone TURN service runs on one or more ded-
icated servers over a public IP address. A recent alternative is to
bundle the TURN server into the WebRTC media server [21] (e.g.,
LiveSwitch, Web Call Server); this cuts down the round-trip latency
from clients via the TURN server to the media servers. In addition,
TURN is increasingly being adopted as a media gateway protocol
to ingest media traffic into a Kubernetes cluster, allowing to run
media servers on private IPs inside the cluster (STUNner, [8]).

Relaying high-definition live video and audio streams for poten-
tially millions of users in real-time, TURN servers are notoriously
resource and network intensive. Hosting a public TURN service
requires significant expertise, vast bandwidth, and high-end server
CPUs. Worse yet, most open-source TURN server implementa-
tions run in user space, processing massive-scale traffic comprising
predominantly small UDP packets, which is a well-known perfor-
mance corner case for the Linux network stack [3]. This calls for
new network optimization techniques. Unfortunately, rewriting the
TURN server over a high-performance user-space network stack,
like DPDK, would require prohibitive effort and hardly fit into the
modern Kubernetes ecosystem [8].

In this paperwe propose an alternative approach using eBPF/XDP
as a portable TURN offload. Our contributions are as follows:
eBPF/XDP acceleration for TURN. After introducing the main
mechanisms in TURN (§2), we present an effective design for ac-
celerating TURN relays by offloading packet processing to an XDP
program (§3).

70

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3609021.3609296
https://doi.org/10.1145/3609021.3609296
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3609021.3609296&domain=pdf&date_stamp=2023-09-10


eBPF ’23, September 10, 2023, New York, NY, USA T. Lévai et al.

Integration. We present a practical implementation of our design
on top of the popular pion/turn library (§4).
Evaluation.We conduct extensive evaluations to understand TURN
performance in microbenchmarks as well as in end-to-end meaure-
ments (§5).

We close the paper discussing related work (§6) and deriving
the main conclusions (§7). We plan to publish the offload engine
under a permissive open-sourse license and contribute it back to
the upstream pion/turn library.
This work does not raise any ethical issues.

2 TURN INWEBRTC
TURN (Traversal Using Relays around NAT, [16]) is an IETF proto-
col for connecting WebRTC clients and servers via a public relay
when direct communication is not feasible due to a restrictive NAT
in the media path. With the depletion of the public IPv4 address
pool and the trend towards hosting end-users behind carrier-grade
NATs, TURN has become a necessity today [9].

A TURN session starts by a client (e.g., end-user) connecting to
the TURN server on a well-known port and sending an Allocate
Request to it. TURN supports essentially any possible transport pro-
tocol (e.g., UDP, TCP, TLS/TCP, DTLS/UDP), but most applications
prefer UDP to minimize latency. Once the client is authenticated,
the TURN server creates an allocation opening a so called transport
relay connection on behalf of the client, and sends the IP address and
port of this connection to the client. The client can then send this
address and port to its peers and the TURN server makes sure to
relay all packets between the client and the peers connected to the
transport relay connection. Any number of peers can connect; this
makes it possible to host multiparty conferences over TURN. Since
the transport relay connection is typically created on a public IP
address (although this is not strictly necessary [8]), the connection
is guaranteed to succeed even when all peers are behind a NAT.
Clients are uniquely identified by the IP 5-tuple (client IP and port,
TURN server IP/port), and similarly for peers.

If a client wishes to send a packet to a peer, it encapsulates the
payload into a Send Indication message, prefixes the payload with
the IP address of the peer, and sends the message along to the
TURN server. The server will decapsulate the message and relay
the payload to the intended peer over the transport relay connec-
tion. Due to the additional TURN header, this communication mode
comes with large overhead, which adds significantly to the oth-
erwise already costly TURN server bandwidth fees. To cut down
the overhead, TURN supports a lightweight communication mode
called channels. A TURN channel is essentially a direct shortcut
between the client and a peer via the TURN server. Channels need
to be explicitly created with a Channel Request message and each
channel is identified by a 2-byte channel id that is unique within
the allocation. Then, the client can send any data to the peer inside
a ChannelData message, which is essentially a shim 4-byte prefix
before the payload that contains the channel id. The server parses
the channel id to look up the corresponding peer, removes the chan-
nel id, and sends the packet on to the peer. Communication in the
reverse direction occurs similarly: the peer sends a plain UDP/TCP
packet over the transport relay connection, the server looks up the
corresponding channel id, encapsulates the payload prefixed by the

id, and sends the resultant ChannelData packet back to the client.
Channels remain active as long as clients actively refresh them.

Thanks to the small overhead, most TURN clients default to
sending all data over channels (instead of Send Indications). Ac-
cordingly, the bulk of the TURN server workload (more than 96%
of TURN packets as reported by our measurement with a Chrome
client and a LiveKit server) involves relaying Channel Data packets
from clients to peers and vice versa.

Implementing high-performance TURN servers is tricky. Typical
TURN traffic consists of lots of small UDP packets that need to be
processed at very high speed (a single 4K video consumes 32Mbps!)
and at extremely low latency. This workload is known to pose per-
formance regressions due to the frequent copying of packet data
back and forth between the Linux kernel and the user space TURN
server [3]. For TURN server implementations written in a managed
language, frequent (per-packet) memory allocations add substantial
extra overhead [13]. For instance, the pion/turn library is written
in Go, which, thanks to its versatility and extensibility, has made
it one of the most popular open-source TURN implementations.
Unfortunately, pion/turn in UDP mode maxes out at about 30-50
kpps (thousand packets per second) and introduces several mil-
liseconds latency and jitter. We have recently contributed several
performance optimizations to the pion/turn project, including a
full multi-threaded UDP/TURN listener implementation [19]. Still,
our benchmarks indicate frequent performance regressions (see §5).
In this paper, we introduce a new eBPF/XDP acceleration frame-
work to remedy this situation.

3 ACCELERATING TURN CHANNELS WITH
XDP

3.1 Architecture
Rather than implementing a complete TURN server in kernel, we
adopt the fast-path–slow-path separation principle [12]. We pro-
pose an eBPF offload architecture that enables processing the bulk
of the TURN server workload in the kernel at very high speed and
small latency, and let the “difficult” packets, which constitute only
a tiny fraction of the typical TURN traffic mix, be handled by the
conventional user-space TURN server. In this paper we present
the XDP offload, but the architecture is easy to extend to support
additional eBPF offload techniques (i.e., eBPF/tc, sockmap).

We focus on accelerating the relaying operation for ChannelData
messages, the hotspot in a TURN server due to their sheer number. It
is also simpler to implement channel data processing in the kernel as
opposed to managing allocations and permissions. As Fig. 1 shows,
we keep most of the TURN server functionality in user space, and
offload only ChannelData processing to the XDP program running
in the kernel. The XDP program and the user space communicate
via eBPF maps.

The XDP program processes only ChannelData messages and
passes the rest of the TURN messages to the server running in
user space. If a new client connects to the server, the connection
establishment (allocate request, channel binding) will be handled
in user space. At the end of a successful channel binding, the user-
space server registers the new channel in the XDP program and
from that point the bulk of client traffic (channel data) is handled
by the XDP program in an efficient way, while periodic refresh

71



Supercharge WebRTC: Accelerate TURN Services with eBPF/XDP eBPF ’23, September 10, 2023, New York, NY, USA

client peer

XDP program

TURN server

eBPF maps

user space
kernel

ChannelData

TURN messages

Figure 1: Architecture: After a successful channel binding,
media packets take the kernel fast path. Other TURN mes-
sages are processed by the user-space server.

Ethernet
header

IP
header

UDP
header

ChannelData
header
4bytes

Payload

Channel
Number
2 bytes

Length
2 bytes

UDP Data

Figure 2: ChannelData Packet Diagram.

messages are passed on to the server. When the client disconnects
the user space unregisters the channel from the XDP program.

Next, we detail the main challenges we found in applying an
XDP offload for ChannelData TURN messages.

3.2 Resizing UDP Packets
As Fig. 2 shows, the ChannelData header starts at the L4 protocol
payload (e.g., UDP Data), and is 4-byte long with two fields: a
Channel Number (2 bytes) to identify the channel, and Length (2
bytes) to specify the length of application data that follows. The
TURN server inserts the header when it relays peer data to the
client, or removes it in the reverse direction.

This step is challenging to support in XDP. Incoming packets are
represented as a packet buffer that is a continuous memory area.
Adding or removing bytes is supported only at the beginning and
the end of that packet buffer. Consequently, to add/remove a 4-byte
field at the beginning of the UDP payload that is in the middle of
the buffer, the subsequent chunk of data needs to be shifted by 4
bytes. Moving variable size packet payload in memory, however,
is difficult in eBPF because memmove is limited to a small constant
size.

A straightforward solution is to call memmove in a loop. Shifting
by 4 bytes at each iteration results large number of loop-cycles
even in case of small packets, and limits the size of packets that can
be processed. An alternative option to shift larger chunks when-
ever possible; in other words, to shift in batches. Shifting a single
32-byte chunk can replace eight 4-byte shifts as shown in Fig. 3.
Unfortunately, this is still difficult to implement because the eBPF
verifier prevents loops that cannot be proven to be bounded.

An alternative appoach would be to unroll the memmove loop.
Unfortunately, as the size of the UDP payload is variable, we do
not know the amount of data that needs to be moved, only the
maximum payload size. The compiler in this case generates loops

12345

12

5 iterations

2 iterations

32B

4B

Figure 3: Shifting packet data to insert ChannelData header:
memmove large chunks minimizes loops needed.

considering the maximum size (e.g., 1480 bytes), resulting a large
program. The limited size of eBPF programs can become a hard
limit on the payload length we can support with this approach.

Instead, we settled with an option that minimizes the number of
loop iterations. Our solution is based on a simple observation: it is
easier to shift the small constant size data chunk that comes before
the channel id with a negative offset than it is to move the variable
size chunk that comes after it with a positive offset. This first chunk
consists of the L2, L3 and L4 headers and is of fixed size for the
typical Internet packet (e.g., 46 bytes for Ethernet+IPv4+UDP and
66 bytes for Ethernet+IPv6+UDP), which is much smaller than the
variable size payload. Once the XDP program parses the packet
headers it knows exactly how many bytes to move. Our code con-
tains specialized data shift implementations for the most frequent
header combinations and it is easy to add more.1 Packets that con-
tain an exotic header (e.g., an IP option) are passed on to the slow
path.

3.3 UDP Checksum Calculation
While relaying a ChannelData message, the underlying UDP pseu-
doheader and data gets modified. This renders the UDP checksum
invalid, and might result packet drop on the receiver’s end. UDP
checksum originally is a 16-bit one’s complement of the one’s com-
plement sum of the pseudoheader and the UDP packet (plus padding
if needed) [14].

XDP programs handle UDP header updates (e.g., changes of
source/destination port) vi an efficient incremental checksum cal-
culation method [17] that calculates a differential checksum update
based on the prior state and the current state of a modified chunk
of the packet. Adding or removing the ChannelData header to UDP
data is not suitable for this differential checksum update algorithm
due to the lack of prior state. A naïve approach is to either recalcu-
late the full checksum, which is computation-intensive and has an
upper limit on packet length due to loops in checksum calculation;
or to generate no UDP checksum, which works for IPv4 only.

Instead, we use an efficient incremental checksum update algo-
rithm. This method relies on the commutativity of one’s comple-
ment sum [18]; adding 4 bytes to the beginning of the data has the
same effect on the checksum as adding it to arbitrary position. In
addition, adding 4 bytes does not require additional padding for
1Cilium follows a similar approach: https://github.com/cilium/cilium/blob/
b6235e4a7f97c783d928f89b1c0f8a89a52d83c7/bpf/include/bpf/ctx/xdp.h#L270

72

https://github.com/cilium/cilium/blob/b6235e4a7f97c783d928f89b1c0f8a89a52d83c7/bpf/include/bpf/ctx/xdp.h#L270
https://github.com/cilium/cilium/blob/b6235e4a7f97c783d928f89b1c0f8a89a52d83c7/bpf/include/bpf/ctx/xdp.h#L270


eBPF ’23, September 10, 2023, New York, NY, USA T. Lévai et al.

the calculation. The implementation relies on the bpf_csum_diff
helper function. A similar approach works in the reverse direction,
when the program removes the ChannelData header.

3.4 Monitoring
Monitoring the way media traffic is processed through the TURN
server, which is inserted at a particularly sensitive point into the
real-time media plane, is crucial. Most TURN server implemen-
tations therefore contain broad support for generating monitor-
ing data that can be visualized, for instance, in Prometheus and
Grafana. This lets operators to quickly spot the origin of perfor-
mance hotspots and latency spikes.

When network traffic does not flow directly through the TURN
server, for instance because we shortcut channels in the XDP of-
fload, these monitoring functions become ineffective. To overcome
this problem, our XDP program provides the instantaneous packet
statistics in an eBPF map (number of packets, bytes, etc., by active
IP 5-tuple). Conversion to connections, statistics aggregation, and
Prometheus integration is still delegated to the user-space TURN
server.

4 IMPLEMENTATION
We implemented the XDP acceleration for TURN channels for
client–peer and peer–client connections using the cilium/ebpf
package and integrated the offload with the pion/turn library. The
cilium/ebpf library is a Go tool for building eBPF-based applica-
tions, supporting an extensive range of hooks to attach programs.
The pion/turn library is an easy-to-extend TURN server implemen-
tation written in Go. We added the XDP-acceleration as a reusable
Go package of pion/turn. Our implementation handles only UDP
transport at the moment; channels using different transport pro-
tocols are handled on the slow path. The XDP program is roughly
300 lines of C code, and the pion/turn integration took appr. 350
lines of Go code. The source code is available on GitHub [10], we
are also working on upstreaming our changes.

5 EVALUATION
In this Section, we evaluate the performance aspects of applying
eBPF/XDP offload for a TURN server to process TURN Channel-
Data messages. During the evaluations, we focus on two aspects: i)
investigate internal TURN server performance improvement, and ii)
get insights into the end-to-end performance of the XDP-offloaded
TURN server.

5.1 Evaluation Setup
We use two baseline TURN servers: the single-threaded pion/turn
example server implementation (this is the default operational mode
of pion/turn), and a multi-threaded pion/turn example server
that allocates 4 threads to handle UDP sockets. The source code is
available on GitHub [10].

Our testbed consists of two servers connected back-to-back with
a full-duplex 40G link. Both servers are equipped with 12×2.4GHz
CPU (power-saving disabled) and 64GB RAM installed with Ubuntu
22.04 (kernel: v5.15.98).

5.2 Microbenchmarks
The first set of measurements focuses on quantifying the TURN
server performance gain by offloading its packet processing logic
to the kernel partially. In these measurements we try to eliminate
external factors (e.g., networking). For this purpose, we evaluate
the offload using pion/turn benchmarking and identify the key
speedup point in its execution. In addition, we present an end-to-
end microbenchmark on the loopback interface.
Standalone benchmarks. Our first performance evaluation relies
on the official pion/turn benchmarking capabilities. The bench-
mark instantiates and interconnects a minimal TURN server, a
client, and a peer, on the localhost. The client transmits data to the
peer via the server for a given time period, then terminates the
connection. During the execution, Go profiling collects execution
data. We examine this profiling data, and draw conclusions.

We execute the benchmarks with and without the ChannelData
XDP offloading. The profiling data involves the client and peer
packet processing, as well as the server. The server’s packet pro-
cessing hotspot is the Server.readLoop() function that manages
incoming traffic; it classifies TURN messages and reacts to them
(e.g., does the ChannelData processing).

Without the offload, the Server.readLoop() takes a signifi-
cant part of the execution: 47.89s (Fig. 4). This is roughly 34% of
the total running time of the benchmark; the rest is comprised
by the clients generating test traffic and a sink receiving it. The
benchmarks indicate that our offload essentially removes this pro-
cessing time altogether: with XDP offload the total running time of
Server.readLoop() is now only 0.96s, or roughly 0.1% of the total
running time (Fig. 5). This is more than 50× improvement. Con-
sequently, the overall execution time of the benchmark decreases
from 113.76s to 63.14s. These results motivate the application of
eBPF/XDP offloading in TURN servers.
Testing with real traffic. In our next measurement, we benchmark
the TURN server implementations in a more realistic environment.
We create an evaluation setup (Fig. 6), in which we have a fine-
control over the test traffic. First, we use the loopback interface to
connect the components; later, we show end-to-end results.

We execute 3 consecutive 100-sec measurements and summa-
rize the steady-state results in Table 1. The single-threaded default
pion/turn implementation yields limited performance. Increas-
ing the number of processing threads seems to improve on this
baseline significantly: with 4 threads we see an 3× throughput im-
provement with a slight increase in average delay. The XDP offload
improves the throughput by 6.4× compared to the single-threaded
case. Interestingly, we found that the main bottleneck is not the
TURN server any more; rather it is now the iperf server that
constrains throughput. A quick baseline measurement between an
iperf client and server yields a hard 230 kpps limit, which indicates
that there is still significant room for loading our XDP accelerated
TURN server further. In addition, the XDP offload improves delays
by 10×. For real-time communication services, such performance
improvements are crucial.

73



Supercharge WebRTC: Accelerate TURN Services with eBPF/XDP eBPF ’23, September 10, 2023, New York, NY, USA

Figure 4: Flame graph of the pion/turn benchmark with no offload shows server and client processing; server packet processing
logic is highlighted with the red box.

Figure 5: Flame graph of pion/turn benchmark with eBPF/XDP offload shows server and client processing; server packet
processing logic is highlighted with the red box.

iperf
client

turncat
(proxy)

.

.

.

.

.

.

iperf
client

turncat
(proxy)

TURN
server

iperf
server

Figure 6: Evaluation Setup: A configurable number of iperf
clients generate UDP test traffic, one turncat TURN proxy
per iperf client relays the generated UDP traffic to the TURN
server under test, and an iperf server acts as a peer.

5.3 End-to-End Performance Evaluation
To get insights into the TURN server performance, we conduct an
RFC 2544-style measurement [2]. We deploy the TURN server to a
dedicated host, while other components of Fig. 6 run on the other
host connected back-to-back to the first one. For each tested TURN
server implementation we first identify the maximal throughput
without packet loss, as usual with the RFC2544-style measurements,
and then we execute 2 consecutive 120-sec measurements using
the measured bandwidth. To quantify TURN server overhead, we
conducted a baseline measurement as well. The baseline eliminates

Implementation Throughput Latency [ms]
[kpps] min avg max

1 thread 36.493 3.760 3.944 4.184
4 threads 96.152 0.473 4.311 5.419

XDP 227.378 0.023 0.033 0.074
Table 1: End-to-End results on a single host: 8 clients connects
to a peer via the loopback interface.

the TURN server and measures pure UDP-forwarding performance
with iptables at the rate of the measured XDP throughput.

We present results in Table 2. The throughput follows a similar
tendency as the microbenchmarks. The XDP offload throughput
again reaches the possible maximum (i.e., that of the baseline).
The single-threaded TURN server again seems to be producing
slightly smaller latency than the 4-thread version. For both cases
the minimum delay is at 0.044 ms (not shown in the table). On the
contrary, XDP pushes the minimum delay down to 0.028 ms, while
on average it is appr. 2–3× smaller than the user-space implemen-
tations. Contrasting with the baseline, we found that reason for
the slight increase in the minimal and average latency was caused
by the first couple of channel messages that got processed by the
user-space TURN server before the offload became effective. Again,

74



eBPF ’23, September 10, 2023, New York, NY, USA T. Lévai et al.

Implementation Throughput Latency [ms] Jitter
[kpps] avg std dev [ms]

1 thread 68.5 0.1795 0.2261 0.0265
4 thread 94.8 0.2492 0.3731 0.0351

XDP 134.3 0.0852 0.0994 0.0217
baseline 134.3 0.0386 0.0132 0.0086

Table 2: End-to-End results with 5 clients connecting to a sin-
gle peer via pion/turn, except the baseline that implements
UDP-forwarding only.

the XDP offload provides a significant improvement to user-space
implementations.

To conclude evaluations, we see that adding more socket pro-
cessing threads to a user-space TURN server improves throughput
at the cost of small extra latency. In contrast, the proposed XDP
offload not only improves performance significantly, but it also
reduces delay meanwhile. This makes our offload a good fit for
real-time communication services.

6 RELATEDWORK
High-performance media dataplane. A real-time communica-
tion service relies an efficient packet processing framework, like
Intel DPDK [6], Intel P4/Tofino switches, or Linux eBPF/XDP. Cur-
rently, we are not aware of any mature TURN server implementa-
tion on top of DPDK. A P4-based media dataplane implementation,
which offloads media relaying to P4 switches, is proposed in [7]. De-
spite the unparalleled efficiency, the requirement for P4-supported
hardware limites usability, as opposed to our offload that works on
general purpose CPUs and commercial off-the-shelf hardware.
Application-specific eBPF/XDP offload.Outside of network per-
formance improvements, eBPF is proven to be effective for speeding
up applications. BMC [5] implements a complex caching solution
in eBPF to improve memcached performance. Automatically split-
ting applications to user-space and eBPF components to improve
application performance is investigated in [20].
Accelerating network applications with an eBPF/XDP data-
plane. XDP and eBPF is used in a wide range of applications to
provide high-performance networking capabilities. Among oth-
ers, load balancers (Katran), Kubernetes gateways (Blixt), firewalls
(L4drop, bpftables [11]), container networking interfaces (Cilium,
Calico), serverless frameworks (SPRIGHT [15]), software switches
(OVS [22]), service mesh components (merbridge, l7mp) use eBPF-
based data plane to provide high throughput and low latency follow-
ing the fastpath/slowpath principle and enabling acceleration for
a subset or all of their traffic. Our work aligns with this approach,
being the first to accelerate TURN servers.

7 CONCLUSIONS
Real-time communication services are part of our everyday life.
TURN services interconnect clients and media servers behind NATs
and firewalls. Relaying media streams for large number of users
in real-time, TURN servers are notoriously resource and network
intensive.

In this paper we introduce an eBPF/XDP offload to improve
TURN service performance. We developed a practical XDP offload
implementation. Our evaluation shows that the XDP offload im-
proves not just the TURN server performance significantly, but
it is also able to improve throughput and reduce delay simultane-
ously. This makes the offload a good fit for real-time communication
services.

Future work focuses on extending the offload engine to support
additional eBPF-based mechanisms such as eBPF/tc or sockmap.

ACKNOWLEDGMENT
This work was supported by the ÚNKP-22-4-I-BME-231 New Na-
tional Excellence Program of the Ministry for Culture and Innova-
tion from the source of the National Research, Development and
Innovation Fund, and by the NKFIH/OTKA Project #135606. Tamás
Lévai is also with the ELKH-BME Information Systems Research
Group, and Gábor Rétvári is also with the ELKH-BME Cloud Appli-
cations Research Group.

REFERENCES
[1] Niklas Blum, Serge Lachapelle, and Harald Alvestrand. 2021. WebRTC: Real-Time

Communication for the Open Web Platform. Commun. ACM 64, 8 (jul 2021),
50–54. https://doi.org/10.1145/3453182

[2] Scott Bradner and Jim McQuaid. 1999. Benchmarking Methodology for Network
Interconnect Devices. RFC 2544.

[3] Qizhe Cai, ShubhamChaudhary,Midhul Vuppalapati, JaehyunHwang, and Rachit
Agarwal. 2021. Understanding Host Network Stack Overheads. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference (Virtual Event, USA) (SIGCOMM
’21). Association for Computing Machinery, New York, NY, USA, 65–77. https:
//doi.org/10.1145/3452296.3472888

[4] David Anderson. 2020. How NAT traversal works. https://tailscale.com/blog/
how-nat-traversal-works/

[5] Yoann Ghigoff, Julien Sopena, Kahina Lazri, Antoine Blin, and Gilles Muller.
2021. BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-
stack Processing. In 18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21). USENIX Association, Berkeley, CA, USA, 487–501.
https://www.usenix.org/conference/nsdi21/presentation/ghigoff

[6] Intel. 2023. Data Plane Development Kit. http://dpdk.org.
[7] Elie F. Kfoury, Jorge Crichigno, and Elias Bou-Harb. 2020. Offloading Media

Traffic to Programmable Data Plane Switches. In ICC 2020 - 2020 IEEE International
Conference on Communications (ICC). IEEE, New York, NY, USA, 1–7. https:
//doi.org/10.1109/ICC40277.2020.9149159

[8] l7mp.io. 2023. A Kubernetes media gateway for WebRTC. https://github.com/
l7mp/stunner

[9] Tsahi Levent-Levi. 2020. WebRTC TURN: Why you NEED it and when you
DON’T need it. https://bloggeek.me/webrtc-turn/

[10] Tamás Lévai et al. 2023. Source Code and Artifacts on GitHub. https://github.
com/l7mp/turn/tree/server-ebpf-offload

[11] Sebastiano Miano, Matteo Bertrone, Fulvio Risso, Mauricio Vásquez Bernal,
Yunsong Lu, and Jianwen Pi. 2019. Securing Linux with a Faster and Scal-
able Iptables. SIGCOMM Comput. Commun. Rev. 49, 3 (nov 2019), 2–17. https:
//doi.org/10.1145/3371927.3371929

[12] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J. Jackson, Andy Zhou, Jarno Ra-
jahalme, Jesse Gross, Alex Wang, Jonathan Stringer, Pravin Shelar, Keith Amidon,
and Martín Casado. 2015. The Design and Implementation of Open VSwitch.
In Proceedings of the 12th USENIX Conference on Networked Systems Design and
Implementation (Oakland, CA) (NSDI’15). USENIX Association, USA, 117–130.

[13] Pion. 2023. Pion TURN, an API for building TURN clients and servers. https:
//github.com/pion/turn

[14] Jon Postel. 1980. User Datagram Protocol. RFC 768.
[15] Shixiong Qi, Leslie Monis, Ziteng Zeng, Ian-chin Wang, and K. K. Ramakr-

ishnan. 2022. SPRIGHT: Extracting the Server from Serverless Computing!
High-Performance EBPF-Based Event-Driven, Shared-Memory Processing. In
Proceedings of the ACM SIGCOMM 2022 Conference (Amsterdam, Netherlands)
(SIGCOMM ’22). Association for Computing Machinery, New York, NY, USA,
780–794. https://doi.org/10.1145/3544216.3544259

[16] Tirumaleswar Reddy.K, Alan Johnston, Philip Matthews, and Jonathan Rosenberg.
2020. Traversal Using Relays around NAT (TURN): Relay Extensions to Session
Traversal Utilities for NAT (STUN). RFC 8656.

75

https://doi.org/10.1145/3453182
https://doi.org/10.1145/3452296.3472888
https://doi.org/10.1145/3452296.3472888
https://tailscale.com/blog/how-nat-traversal-works/
https://tailscale.com/blog/how-nat-traversal-works/
https://www.usenix.org/conference/nsdi21/presentation/ghigoff
http://dpdk.org
https://doi.org/10.1109/ICC40277.2020.9149159
https://doi.org/10.1109/ICC40277.2020.9149159
https://github.com/l7mp/stunner
https://github.com/l7mp/stunner
https://bloggeek.me/webrtc-turn/
https://github.com/l7mp/turn/tree/server-ebpf-offload
https://github.com/l7mp/turn/tree/server-ebpf-offload
https://doi.org/10.1145/3371927.3371929
https://doi.org/10.1145/3371927.3371929
https://github.com/pion/turn
https://github.com/pion/turn
https://doi.org/10.1145/3544216.3544259


Supercharge WebRTC: Accelerate TURN Services with eBPF/XDP eBPF ’23, September 10, 2023, New York, NY, USA

[17] Anil Rijsinghani. 1994. Computation of the Internet Checksum via Incremental
Update. RFC 1624.

[18] C. Partridge R.T. Braden, D.A. Borman. 1988. Computing the Internet Checksum.
RFC 1071.

[19] Gábor Rétvári et al. 2023. Implementation of per-client UDP readloops. https:
//github.com/pion/turn/pull/295

[20] Farbod Shahinfar, Sebastiano Miano, Giuseppe Siracusano, Roberto Bifulco, Au-
rojit Panda, and Gianni Antichi. 2023. Automatic Kernel Offload Using BPF. In
Proceedings of the 19th Workshop on Hot Topics in Operating Systems (Providence,
RI, USA) (HOTOS ’23). Association for Computing Machinery, New York, NY,
USA, 143–149. https://doi.org/10.1145/3593856.3595888

[21] Tim Steeves. 2022. WebRTC NAT Traversal Methods: A
Case for Embedded TURN. https://www.liveswitch.io/blog/
webrtc-nat-traversal-methods-a-case-for-embedded-turn

[22] William Tu, Yi-Hung Wei, Gianni Antichi, and Ben Pfaff. 2021. Revisiting the
Open VSwitch Dataplane Ten Years Later. In Proceedings of the 2021 ACM SIG-
COMM 2021 Conference (Virtual Event, USA) (SIGCOMM ’21). Association for
Computing Machinery, New York, NY, USA, 245–257. https://doi.org/10.1145/
3452296.3472914

76

https://github.com/pion/turn/pull/295
https://github.com/pion/turn/pull/295
https://doi.org/10.1145/3593856.3595888
https://www.liveswitch.io/blog/webrtc-nat-traversal-methods-a-case-for-embedded-turn
https://www.liveswitch.io/blog/webrtc-nat-traversal-methods-a-case-for-embedded-turn
https://doi.org/10.1145/3452296.3472914
https://doi.org/10.1145/3452296.3472914

	Abstract
	1 Introduction
	2 TURN in WebRTC
	3 Accelerating TURN channels with XDP
	3.1 Architecture
	3.2 Resizing UDP Packets
	3.3 UDP Checksum Calculation
	3.4 Monitoring

	4 Implementation
	5 Evaluation
	5.1 Evaluation Setup
	5.2 Microbenchmarks
	5.3 End-to-End Performance Evaluation

	6 Related Work
	7 Conclusions
	References



