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Abstract—Recently, major vendors have introduced new router
platforms to the market that support fast IP-level failure pro-
tection out of the box. The implementations are based on the
IP Fast ReRoute–Loop Free Alternates (LFA) standard. LFA
is simple, unobtrusive, and easily deployable. This simplicity,
however, comes at a severe price, in that LFA usually cannot
protect all possible failure scenarios. In this paper, we give new
graph theoretical tools for analyzing LFA failure case coverage
and we seek ways for improvement. In particular, we investigate
how to optimize IGP link costs to maximize the number of
protected failure scenarios, we show that this problem is NP-
complete even in a very restricted formulation, and we give exact
and approximate algorithms to solve it. Our simulation studies
show that a deliberate selection of IGP costs can bring many
networks close to complete LFA-based protection.

I. INTRODUCTION

The IP protocol suite has come a long way to become

a viable bearing platform for commercial telecom services.

However, there still exist missing components that make

it difficult to sustain the transmission quality required by

multimedia applications, like VoIP, IPTV, online gaming, etc.,

in a pure IP or MPLS/LDP environment. Perhaps the most

prominent issue is the slow reaction to device and/or link

failures. Interior Gateway Protocols (IGPs), like OSPF or

IS-IS, adopt a restoration-based resilience approach, using a

global flooding of failure information and a lengthy network-

wide re-convergence process. In order to achieve a sub-50 ms

convergence time, needed for most multimedia applications,

one needs to go beyond conventional restoration and invoke a

protection-based, proactive, local recovery method, called IP

Fast ReRoute (IPFRR, [1]). In IPFRR, routers precompute

alternate next-hops and traffic is instantly switched to these

secondary next-hops should the primary next-hop become

unavailable. This ensures that traffic flows without interruption

until the IGP converges in the background.

Unfortunately, combining IP’s destination-based forwarding

with protection is difficult. Therefore, many IPFRR proposals

require alterations to destination-based forwarding itself [2],

or introduce some forms of in-band or out-of-band signaling

mechanism for failure notification [3]–[5], or use tunnels to

route around the failed component [6]–[8]. Unfortunately,
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deploying such IPFRR mechanisms would either demand non-

trivial modifications to the essential IP infrastructure or impose

considerable management burden on network operations [9]

(or both), making network device vendors reluctant to imple-

ment them and discouraging operators from deploying IPFRR.

To our days, only a single IPFRR specification has found

its way into commercial IP routers: Loop Free Alternates

(LFA, [10]). LFA is as simple as it can get: traffic impacted

by a failure is passed on to an alternate next-hop (called

a Loop Free Alternate) that still has an intact path to the

destination. LFA can be implemented with straightforward

software upgrades, and so it can be deployed incrementally.

Simplicity and deployability, however, comes at a significant

price: depending on the network topology and IGP link costs,

very often not all routers have LFAs to all destinations, making

it impossible to repair certain failure scenarios rapidly.

Consequently, many operators are hesitating to enable LFA,

trying to measure the expected benefits against the additional

costs. In this paper, we seek ways to assist in making this im-

portant decision. In the first part, we give new graph theoretical

tools for analyzing LFA failure case coverage in operational

networks. Similar protectability analyses are already available

for some non-standardized IPFRR mechanisms: [11] considers

the O2 method and [12] discusses a centralized destination-

based routing scheme. For LFA, only simulation-based reports

have been available this far [13]–[16], but a mathematical

apparatus for LFA coverage analysis is still missing. We took

the initial steps towards this goal in [17], and in this paper we

bring that work further.

Initial deployments confirmed that in many operational net-

works LFA indeed does not guarantee protection for all failure

scenarios. There are various ways to overcome this. One is to

alter the network topology (which problem we treated in [17])

and the other we focus on in this paper is altering link costs. In

particular, we ask how a network operator can adjust IGP link

costs in order to maximize LFA-based resilience. Although

many operators have important operational preferences to

reflect in the link costs [18], [19], we still believe that an

in-depth analysis of the extent of fast resilience achievable

with LFA can prove valuable to anyone considering IPFRR

deployment. And while improving IP resilience is a recurring

theme in the literature (see [20] for deflection routing, [11]

for O2, or [12] for a review), for the specific case of LFA



only the joint optimization task of network performance and

resilience has been investigated previously [21], [22]. Thus, at

the moment very little understanding is available as to how

much LFA-based IP Fast ReRoute is suitable to protect an IP

network and to what extent this can be improved by optimizing

link costs.

After introducing the notations and the model in Section II,

we first discuss LFA failure coverage analysis (see Section III)

and then, in Section IV, we turn to discuss the LFA cost

optimization problem. We show that even a very minimalistic

formulation of the problem is already NP-complete, and we

give exact and heuristic algorithms to solve it. In Section V, we

evaluate the proposed algorithms numerically, in Section VI

we review the related literature, and finally we conclude our

work with Section VII.

II. MODEL AND PROBLEM FORMULATION

We model the network with a connected, undirected graph

G(V,E), the set of nodes is denoted by V (|V | = n) and set of

edges by E (|E| = m). Let Ni denote the set of neighbors of

some node i ∈ V . For simplicity, we assume that the network

consists of point-to-point links only and contains no broadcast

LANs and Shared Risk Link Groups (SRLGs). IGP link costs

are represented by an edge cost function c : E 7→ Z
+. The cost

of an edge (i, j) is denoted by c(i, j). The model assumes that

costs are symmetric. We presume that G(V,E) and the cost

function c are readily available to the network nodes through

the IGP, using which all routers can compute the shortest path

distance between any two routers in the network. Denote the

distance from node i to node j with dist(i, j).

Fig. 1 shows a sample network, with costs indicated near the

edges and shortest paths towards node f marked by arrows.

For instance, node b’s next-hop along the shortest path to node

f is node e. Should the link from b to its next-hop, e, become

unavailable, b can safely switch to an alternate next-hop, in

this case node d, even without explicitly notifying it about the

failure, as d will never send packets destined to f through

b so no loop can arise. We say that for some source s and

destination d, a neighbor n of s that is not the next-hop of s
towards d is a link-protecting LFA if [10]:

dist(n, d) < dist(n, s) + dist(s, d) . (1)

That is, any neighbor that is not an upstream in the shortest

path tree is a link-protecting LFA. Besides node b, e also has

an LFA to f (the same d as that of b), and so has d and c (e and

d, respectively). What is more, the LFAs of b and c are node-

protecting as well, as they protect against both the failure of the

link to the next-hop and the next-hop itself. Moreover, d is also

called a per-link LFA for b, as it protects all nodes reachable

from b through the link (b, e). For a full taxonomy, see [10],

[16]. As single link failures account for the majority (about

70%) of unplanned outages in a generic network [23], we shall

treat only this type of failures in the sequel. Consequently, the

term LFA will refer to link-protecting LFAs exclusively. Other

LFA types are for further study.
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Figure 1: Sample network, edge costs and shortest paths to

node f .

We observe that, in the present network topology with the

given link costs, node a does not have an LFA to f . This is

because it has only two neighbors, one is the the next-hop

d towards f whose failure we want to protect, and the other

is an upstream node, which cannot provide an LFA by (1).

Given a graph G(V,E) and a cost function c, let Is,d(G, c) be

an indicator variable whose value is 1 if node s has an LFA

to node d, and zero otherwise. Then, given a set of source-

destination pairs S = {(sk, dk) : k ∈ 1, . . . ,K, sk 6= dk}
the LFA coverage with respect to S is defined as (inspired

by [10]):

ηS(G, c) =
1

|S|

∑

(s,d)∈S

Is,d(G, c) .

We shall often confine ourselves to the special cases when S is

the set of all node pairs whose destination is a given terminal

node d: Sd = {(s, d) : s ∈ V \ {d}}, or when S contains

all distinct node pairs in V × V . In the latter case, we shall

neglect to indicate S in the LFA coverage metric and simply

write η(G, c).
As our example shows, usually not all nodes have LFA to

all destinations. There are basically two ways to remedy this:

by adding new edges to the graph or by altering the edge costs.

Taken the example of Fig. 1, adding the new edge (a, b) to E
and setting its cost to, say, 10, will let b to become an LFA of a
(and vice versa). The LFA graph extension problem asks, how

to achieve maximal LFA protection by adding the minimum

number of new edges. We address this problem in a separate

paper [17]. The other way is to change edge costs: if we, for

instance, reduce the cost of edge (c, d) from 8 to 5, then c’s
shortest path to f will bypass a and so a and c will become

LFAs for each other. This paper is devoted to investigate this

very problem, called the LFA cost optimization problem:

Definition 1: LFACostOpt(G, S): Given a graph G(V,E)
and a set of source-destination pairs S, is there a cost function

c so that ηS(G, c) = 1?

We shall in many cases treat the optimization version of

LFACostOpt(G, S), that is, we shall seek the costs that

maximize network-wide LFA coverage.

III. LFA FAILURE COVERAGE ANALYSIS

Before turning to discuss how to solve the LFA cost

optimization problem, first we show some simple theoretical

limits on LFA coverage, intended to serve as a guideline for



network operators to quickly assess the LFA-protectability of

their network. In particular, we give simple graph theoretical

lower and upper bounds on the LFA coverage achievable in a

given graph under any selection of link costs. In what follows,

we shall assume that S = (V × V ) \ {(v, v) : v ∈ V }.
Some preliminaries. Let ∆ denote the average node degree

in G and let ∆max be the maximum degree. Easily, ∆ ≥
2(n−1)

n
for any connected graph, since the sparsest connected

graphs are trees for which ∆ = 2(n−1)
n

. A ∆-regular graph

is a graph in which all nodes are of constant degree ∆. An

even (odd) ring is a cycle graph with an even (odd) number of

nodes. Rings are the smallest degree 2-edge-connected regular

graphs (in particular, ∆ = 2).

In [17], we identified the following fundamental lower and

upper LFA coverage bounds.

Proposition 1: The LFA coverage in a 2-edge-connected

graph G(V,E) on n nodes (n ≥ 3) is bounded by 1
n−1 ≤

η(G, c) ≤ 1, and the lower bound is tight for even rings and

uniform edge costs. For odd rings, η(G, c) = 2
n−1 with c

uniform.

In the rest of this section, we discuss how to sharpen the

above bounds. The idea is that the shortest path tree to some

destination d can contain only n − 1 edges, and all further

edges provide at least 1, and at most 2, nodes with LFAs

towards d. Consider the following lemma.

Lemma 1: For any connected simple graph G with n > 2,

η(G, c) ≤ n
n−1 (∆− 2) + 2

n−1 .

Proof: An edge not contained in the shortest path tree

rooted at some d provides at most 2 LFAs towards d. This

occurs when the edge lies between two branches of the tree.

Since the number of such out-of-tree edges is exactly m −
(n − 1), at most 2(m − n + 1) = n∆ − 2n + 2 = n(∆ −
2)+2 nodes can have LFA to d. Taken the sum over all nodes

and dividing by the number of source-destination pairs gives

η(G) ≤ n(n(∆−2)+2)
n(n−1) = n

n−1 (∆− 2) + 2
n−1 .

The Lemma is non-trivial for
2(n−1)

n
≤ ∆ < 3. For trees,

in particular, we obtain η(G, c) ≤ 0, which implies that the

Lemma is tight for trees over arbitrary link costs. It is tight for

uniform cost odd rings as well, for which we obtain η(G, c) ≤
2

n−1 (c.f., Proposition 1).

Lemma 2: For any connected simple graph G with n > 2,

η(G, c) ≥ n
n−1

∆

2
−1

∆max−1 + 1
(n−1)(∆max−1) .

Proof: Again, exactly n − 1 nodes are contained in the

shortest path tree of d, and an out-of-tree edge (of which we

have m−n+1) can provide at least one LFA towards d (if the

edge is inside a single branch of the shortest path tree, then it

provides LFA from the upstream to the downstream). So there

are m − n + 1 out-of-tree edges that are incident to at least
m−n+1
∆max−1 =

n(∆

2
−1)+1

∆max−1 nodes providing LFA to them towards d
(∆max − 1 because every node has at least one in-tree edge,

so only the rest count as out-of-tree edges). Taking the sum

over all nodes and dividing by n(n − 1) gives the required

result.

Corollary 1: For a ∆-regular graph R∆ on n nodes,

η(R∆, c) ≥
1
2 −

1
2

n−∆−1
(n−1)(∆−1) .

This gives η(R2, c) ≥
1

n−1 and η(R3, c) ≥
1
4 + 3

4
1

n−1 > 1
4 .

From this, we conclude that the lower bound of Lemma 2 is

tight for even rings (again, by Proposition 1). One easily sees

that it is tight for trees as well, for which we get η(G, c) ≥ 0.

The above analysis helps us identify an interesting extreme

case for LFA coverage. In particular, we find that the 2-

connected graph with the smallest possible average degree that

can be fully protected using LFA is the 3-ring C3. Every other

2-connected graph with complete LFA coverage has degree

higher than 2. From Proposition 1, we have η(C3, c) = 1,

which is attained when c is uniform, and one easily sees

that η(C3, c) is the only 2-connected graph of average degree

∆ = 2 with this property. Graphs with ∆ < 2 cannot have full

protection because such graphs contain at least one node with

degree 1 whose single outgoing link can never be protected.

On the other hand, larger 2-connected graphs with ∆ = 2 are

all ring topologies, and rings can only have full LFA coverage

if n = 3 (again, by Proposition 1).

IV. LFA COST OPTIMIZATION

The LFA cost optimization problem asks for an IGP link

cost setting that maximizes the LFA coverage, given the in-

herent limitations of the network topology under consideration.

First, we characterize the extent to which such an optimization

can improve LFA coverage, then we discuss the complexity

and the algorithmic aspects of the problem.

A. The Potential of LFA Cost Optimization

The question immediately arises as to whether it is worth

optimizing costs for LFA at all. Easily, readjusting costs in

most of the cases alters, possibly in a negative way, default

shortest paths, which might have been previously tweaked with

great accuracy to match the needs of the network in terms of

load balancing, traffic engineering, etc. [18], [19], [24]. On

the other hand, as shall be shown through an example below,

the wins achievable with optimizing link costs for LFA can be

substantial (more than 50%), and such a huge improvement in

fast resiliency might compensate for the losses in forwarding

efficiency in certain cases.

Consider the so called “Möbius ladder” topologies depicted

in Fig. 2. These graphs consist of an even ring with all the main

diagonals added. In Fig. 2a, the cost of diagonals is chosen so

that the path between any two nodes is shorter around the ring

than through it via a diagonal. This way, as one easily checks,

the graph has complete LFA coverage. The graph construction

can be generalized to arbitrary even n, and one can always

choose the above cost setting strategy to achieve complete LFA

protection. Fig. 2b also depicts a Möbius ladder (for n = 10),

just with setting costs uniformly at all edges and drawn in a

slightly awkward layout. The layout was chosen so that one

can easily check the validity of the following claim for any

Möbius ladder with n
2 odd, n > 2 and c uniform: for every

d ∈ V , exactly n
2 − 1 nodes have LFA. Considering the node

d we marked in Fig. 2b, there is exactly one node in each

“column” that has an LFA to d, except for the column of d
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Figure 2: Möbius ladder topologies.

in which there is no protected node. This gives η(G, c) =
1
2 −

1
2

1
n−1 < 1

2 . For instance, in our example η(G, c) = 4
9 .

This example shows that different selections of edge costs

can produce dramatical differences in LFA failure case cov-

erage. Simulation studies presented later also seem to support

this claim. The other lesson is that resilience and forwarding

efficiency are usually contradicting requirements in routing: in

our example in the latter case all traffic flows along min-hop

paths but resilience is poor, while in the former case we have

full protection but long forwarding paths going around the

ring instead of taking the shortcuts through it. Such “joker”

links that do not carry traffic seem a general requirement for

protectability [11].

B. Complexity

Next, we turn to discuss how to solve the LFA cost

optimization problem as of Definition 1. First, we characterize

the computational complexity of the problem.

Theorem 1: The LFA cost optimization problem

LFACostOpt(G, S) is NP-complete.

This result is not particularly unexpected, as we found

basically all other LFA-related network optimization problems

NP-complete [17]. Taking a closer look, we find that there

are two reasons due to which the problem is difficult. First,

there is an inherent coupling between the LFAs to different

destinations through the link costs, which makes it difficult to

make independent decisions. In particular, assigning a neigh-

bor as an LFA towards some destination necessitates adjusting

edge costs accordingly, but this may destroy LFAs to other

destinations. Second, even assigning LFAs to just a single

destination seems difficult enough. Consider the following

theorem.

Theorem 2: Given a graph G(V,E) and a node d ∈ V ,

LFACostOpt(G, Sd) with Sd = {(s, d) : s ∈ V \ {d}} is

NP-complete.

For a complete proof, see the Appendix.

Obviously, Theorem 2 proves Theorem 1 stated for the

general problem LFACostOpt(G, S) as well, of which

LFACostOpt(G, Sd) is a special case. Additionally, we also

observe that the optimization version, which asks for a cost

maximizing LFA coverage, is also intractable.

C. Algorithms

LFA cost optimization is difficult, yet solving it would be

extremely useful for improving the resilience in operational

IP networks. Next, we give an Integer Linear Program (ILP)

suitable for obtaining optimal solutions only in small networks,

then we discuss a heuristics better suited to large networks.

For simplicity, we assume that S contains all distinct node-

pairs (even though the algorithms are easy to generalize to

arbitrary S).

The ILP is formulated in the dual space: to every node i we

assign a node potential πd
i that signifies the shortest distance

from i to some d over the costs c, and then we require that

the potentials and the costs together fulfill the Shortest Path

Optimality Criteria [25] while also maximizing LFA coverage.

max
∑

(s,d)∈S

αd
s (2)

πd
j + sdij = πd

i + cij , 0 ≤ sdij ≤ Cydij

∀(s, d) ∈ S, ∀(i, j) ∈ E
(3)

∑

v∈Ns

ydsv ≤ |Ns| − 1 ∀(s, d) ∈ S (4)

ydsv ∈ {0, 1} ∀(s, d) ∈ S, ∀v ∈ Ns (5)

πs
v − πs

s + πd
s − πd

v + zdsv ≤ 0, 0 ≤ zdsv ≤ 1

∀(s, d) ∈ S, ∀v ∈ Ns

(6)

∑

v∈Ns

zdsv ≥ αd
s , 0 ≤ αd

s ≤ 1 ∀(s, d) ∈ S (7)

cij = cji, cij ∈ {1, . . . , Cmax} ∀(i, j) ∈ E (8)

In the ILP, (3)–(5) enforce the Shortest Path Optimality

Criteria: for each edge (i, j), πd
j ≤ πd

i +cij and the inequality

is satisfied with strict equality for at least one neighbor. This

is to ensure that the node potentials πd
i correctly encode the

shortest path distances with respect to the destination node

d over the cost setting c. Furthermore, (6)–(7) represent the

LFA condition as of (1): by (6) zdsv is an indicator variable

whose value is positive if and only if v is an LFA from s to

d, and (7) ensures that αd
s only becomes positive if at least

one neighbor of s provides LFA towards d. The requirements

(8) guarantee that costs are symmetric and are selected from

the interval {1, . . . , Cmax}. Finally, the objective function (2)

maximizes the number of LFA protected node pairs. There are

two problem parameters to the ILP: Cmax is the maximum

permitted cost, while C ≥ nCmax is the maximum allowed

potential difference between two neighboring nodes.

The ILP has O(n3) integer variables, which makes it

intractable in anything but the smallest topologies. Therefore,

we also present an approximate algorithm roughly modeled

after the Simulated Annealing probabilistic metaheuristic. The

idea is to, starting from a randomly chosen cost c, search for



Algorithm 1 Heuristic LFA cost optimization algorithm. Input

is graph G.

1: c← random_cost(Cmax), T ← T0

2: while T > 0 and η(G, c) < 1
3: c′ ← argmax

q∈neigh(c)

η(G, q)

4: if η(G, c′) > η(G, c) or T > random(T0) then

5: c← c′

6: end if

7: T ← T − 1
8: end while

the best c′ “nearby” c and accept c′ if either c′ provides larger

LFA coverage than c (greedy step) or c′ is worse than c but the

temperature T of the system is sufficiently large (escape from

a local minimum). As the algorithm progresses we gradually

reduce T , thus the system will increasingly tend to get stuck

in a good quality local minimum.

The pseudo-code for the approximate algorithm is given in

Alg. 1. The subroutine random_cost(C) returns a random

initial cost in the range {1, . . . , Cmax} for each link. The

routine neigh(c) returns a positive, integral cost setting

obtained by increasing or decreasing (if possible) the cost

c at exactly one edge by 1. Line 3 searches for the best

such neighbor. We unconditionally accept this cost if it is

better than the previous one. Additionally, we also accept it

if a random number generated in the range [1, T0] by the

subroutine random(T0) is below T . Thus, the algorithm

easily escapes from local minima initially, to eventually settle

in a good local minimum by only letting greedy steps when

T is low. The input to the heuristic is the graph G(V,E),
initial temperature T0 and maximum allowed cost Cmax, and

the output is the final cost c. The complexity of the algorithm

is O(T0mn3), dominated by the need to evaluate η(G, q)
(needing O(n3) steps) in each iteration for each 2m neighbor

of the current cost c.

V. NUMERICAL EVALUATIONS

In the course of our numerical studies, first we were

curious as to how close the approximate LFA cost optimization

algorithm can get to the optimum. Therefore, we implemented

the ILP (3)–(8) and the heuristics as described in Alg. 1.

We found that about the largest non-trivial graphs for which

the ILP can be solved are of 8 nodes. Unfortunately, very

few real topologies of this small size are available in the

literature. Thus, the first round of the evaluations were run on

Erdős-Rényi random graphs (n = 8, expected node degree 3).

Out of the 20 random graphs generated, 17 was 2-connected.

For each topology, the simulated annealing was executed 500

times (T0 = 150, Cmax = 20) and the cost c∗ that attained

the highest LFA coverage was selected. A tabu list of size

20 was also applied in order to preclude the heuristics from

oscillating. Table I gives some characteristics of the graphs

(number of nodes n, and number of links m); the theoretical

lower and upper bounds on LFA coverage (as of Lemma 1

and Lemma 2); and the actual LFA coverage η(G, copt) for the

costs copt obtained by the ILP and the heuristics (η(G, c∗)).
We observe that from the 17 experiments only in 2 cases the

approximation did not find the optimum (these experiments

are marked by an asterisk in Table I), and the difference is at

most 2-3% in LFA coverage. This indicates that in small net-

works the simulated-annealing-based heuristics performs quite

efficiently. Additionally, we found that the theoretical bounds

provide a solid estimate on the LFA coverage. Especially the

upper bound seems to be of practical relevance.

In the second round, we examined the performance of

the approximate LFA cost optimization algorithm in larger

real network topologies where the ILP could not be solved

to optimality. We used inferred ISP data maps from the

Rocketfuel dataset [26] (AS1221, AS1239, AS1755, AS3257,

AS3967 and AS6461). We obtained approximate POP-level

maps by collapsing the topologies so that nodes correspond

to cities and we eliminated leaf-nodes (this preprocessing

method was suggested in [27]). These networks come with

inferred link costs. We also chose some network topologies

from [28], namely, the Abilene, Italy, Germany, NSF and

AT&T networks and the 50 node extended German backbone

(Germ_50). Unfortunately, except for the last network no

valid link costs were available, so we set each cost to 1. We

also chose some representative ISP topologies from [29], in

particular, the Arnes, Deltacom, Geant, and the InternetMCI

topologies. Link costs were set inversely proportional to the

link capacities (this setting is recommended by Cisco, see

documentation on ospf auto-cost in [30]). Additionally,

we also ran the evaluations on some artificial topologies with

uniform costs. In particular, Mn are the Möbius ladder graphs

of n nodes as discussed in Section IV.

Table II shows, in the order of the appearance: the char-

acteristics of the topologies (name, number of nodes n and

edges m, and the average node degree ∆); the LFA coverage

obtained by the original link cost setting for the graphs; and the

LFA coverage η(G, c∗) for the best cost function c∗ obtained

by the approximate algorithm. There was only one topology

on which we could solve the ILP to optimality: AS1221. For

this particular network, the approximate solution matches the

ILP optimum (η(G, copt) = η(G, c∗) = 0.833).

Our observations are as follows. First, we found that the

LFA coverage η(G, c∗) produced by the approximate algo-

rithm is usually significantly higher than the LFA coverage

produced by the network’s original cost setting. The im-

provement almost always exceeds 5%, but in many cases it

attains about 15-20% (e.g., AS1239, AS3967, or the Italian

backbone). This suggests that optimizing costs specifically

for LFA usually attains significant improvement in network

resilience. The improvement is especially significant for the

artificial networks. Second, for large Möbius ladder graphs the

approximation could not get closer than 10% to the optimum

(which we know is η(G, copt) = 1 in this case). This indicates

that in larger topologies the efficiency of the heuristics we

identified in small networks might not be present. Last but

not least, we observe that the final LFA coverage η(G, c∗)



Table I: LFA cost optimization in random topologies.

Num n m Lower/Upper η(G, copt) η(G, c∗)

1* 7 11 0.278/1 1 0.976

2 8 9 0.095/0.571 0.536 0.536

3* 8 13 0.214/1 1 0.982

4 7 11 0.278/1 1 1

6 8 9 0.143/0.571 0.571 0.571

9 7 11 0.208/1 0.952 0.952

10 8 11 0.114/1 0.857 0.857

11 8 10 0.143/0.857 0.75 0.75

12 8 9 0.095/0.571 0.429 0.429

13 8 11 0.143/1 0.911 0.911

14 8 11 0.19/1 0.821 0.821

15 8 11 0.19/1 0.946 0.946

16 7 8 0.111/0.667 0.5 0.5

17 8 14 0.2/1 1 1

18 8 11 0.114/1 0.714 0.714

19 8 9 0.143/0.571 0.482 0.482

20 8 10 0.143/0.857 0.679 0.679

Table II: LFA cost optimization in real and artificial topologies.

Name n m ∆ η(G, c) η(G, c∗)

AS1221 7 9 2.57 0.809 0.833

AS1239 30 69 4.60 0.873 0.957

AS1755 18 33 3.66 0.872 0.98

AS3257 27 64 4.74 0.923 0.997

AS3967 21 36 3.42 0.785 0.967

AS6461 17 37 4.35 0.933 0.996

Abilene 12 15 2.5 0.56 0.701

Italy 33 56 3.39 0.784 0.919

Germany 17 25 2.94 0.695 0.889

NSF 26 43 3.3 0.86 0.95

AT&T 22 38 3.45 0.822 0.984

Germ_50 50 88 3.52 0.9 0.934

Arnes 41 57 2.78 0.623 0.702

Deltacom 113 161 2.85 0.577 0.662

Geant 37 55 2.97 0.69 0.74

InternetMCI 19 33 3.47 0.904 0.932

M6 6 9 3 0.4 1

M10 10 15 3 0.444 0.933

M18 18 27 3 0.470 0.879

M30 30 45 3 0.482 0.89

in many real network topologies is more than 95%. The

denser the network, the higher the LFA coverage. It seems

that networks with an average node degree exceeding about

3.5 lend themselves especially well to LFA cost optimization

(AS1239, AS1755, AS3257, AS6461, AT&T, Germ_50): in

these networks even the default cost settings yield a higher

than 80% LFA coverage and our cost optimization tool can

bring these networks well beyond 95% and close to 100% in

many cases. Networks of average degree 3 are still amenable to

LFA, but when the degree falls below 3 the chances of getting

a high LFA coverage rapidly vanish. For sparser networks (like

the Abilene topology), the final LFA coverage η(G, c∗) is a

mere 70%. These observations are in line with our theoretical

analysis in Section III. Note, however, that node degree alone

is not sufficient to assess the extent to which LFA can protect

a network, as there are topologies (the Möbius ladder graphs)

that have small average degree of 3 but still complete LFA

protection over some appropriately chosen costs. It seems that

LFA cost optimization is most difficult when the degree is

about 3.

Our results suggest that most real network topologies,

which are usually richly connected and highly redundant, lend

themselves readily to LFA cost optimization and almost perfect

LFA coverage can be achieved in most of the cases. There

were, however, some exceptional topologies where LFA cost

optimization was less appealing. For such networks, LFA is

not an acceptable option and operators need to look after more

efficient alternatives [31].

VI. RELATED WORKS

The IP Fast ReRoute framework was initiated by the Internet

Engineering Task Force in [1], and the Loop Free Alternates

standard, as the basic specification for IPFRR, was subse-

quently documented in [10]. IPFRR is not only targeted into

pure IP networks, but forwarding mechanisms that also rely

on the IP control plane for routing information could also

benefit from it. Most notable amongst these is MultiProtocol

Label Switching using the Label Distribution Protocol for label

management.

It was from the very beginning made clear by the IETF

that LFA does not guarantee fast protection for all possible

failure scenarios in all network topologies. This was later

confirmed by extensive simulation studies, which indicated

that, depending on the topology and link cost settings, LFA can

usually protect only about 50-80% of the possible link failure

scenarios, and the level of node protection is even worse [13]–

[15], [32]. These LFA coverage analyses are all quantitative

studies, concentrating on calculating the LFA coverage for

various real-life network topologies. Perhaps the most detailed

amongst these is [16], which inspects the applicability of LFA

in common access network topologies. So far, no qualitative

analyses similar to the one we provide in the first part of the

paper have been available in the literature. Such analysis is

crucial, as it helps uncover the graph theoretical ingredients

needed for good LFA coverage. Possibly the closest to ours

is the study in [12], where the authors perform a qualitative

protectability analysis for a fast resilience scheme they call

IP protection routing. Protection routing is appealing for such

an analysis as it is theoretically much easier to approach than

LFA, however, in practice it is somewhat less attractive as

implementing it requires centralized control over the routing

tables. Therefore, we initiated the theoretical study of LFA

coverage in [17], and in this paper we have refined our earlier

results significantly.

Since the appearance of the original LFA draft, many IPFRR

proposals have surfaced to overcome the limitations inherent

to it. Implicit in these proposals is the recognition that in order

to protect all failure scenarios one either needs to go behind

standard IP forwarding and/or apply some forms of explicit



failure notification mechanism. The reason for this is that a

router must give special treatment to packets traveling on a

detour around a failure, or otherwise forwarding loops will

arise in certain failure scenarios.

Most IPFRR proposals choose the former option and inter-

vene at the level of IP packet forwarding. Failure Insensitive

Routing [2], [33], [34] differentiates packets based on the

incoming interface they arrive through, letting the router to

guess the failure’s location from the direction of the re-

ceived packets and exploit this information in the course of

packet forwarding. Multiple Routing Configurations [5] call

to achieve the same goal with explicit packet marking, while

other proposals, like Not-via Addresses, use tunnels to this

end [6]–[9]. Unfortunately, the former solution would allocate

invaluable bits in the IP header, while the latter might cause

painful packet fragmentation and time-consuming reassembly

at the tunnel endpoint if the additional IP header does not fit

into the MTU. Deflection routing for fast rerouting purposes

is proposed in [20], while O2 routing, a resilient multi-path

data forwarding method, is specified in [35]. Both require non-

standard IP forwarding functionality which at the moment are

not available in routers.

A different approach is to use explicit signaling to notify

routers about failures [3], [36]. This avoids having to modify

standard IP forwarding at the price of a establishing a separate

signaling mechanism just for IPFRR. Proposals also exist to

combine different IPFRR mechanisms to achieve full protec-

tion [32]. Good overviews on IPFRR are [13] and [15].

So far, only one IPFRR method has found its way into

commercial routers, and hence into operational IP networks,

LFA. Due to its appealing simplicity, operators can deploy

LFA incrementally without any particular staff training, and

no major alterations to the installed IP hardware and software.

Therefore, at least two major vendors are already providing

LFA out of the box [37], [38], and other vendors are expected

to follow suit.

Finding methods to design or optimize networks in an

attempt to improve fast resiliency has been an actively re-

searched topic lately. In the recent literature, [20] seems to be

the first reference that, besides motivating the need for fast IP

resilience with detailed failure case analysis in an operational

backbone, proposes a method to improve the robustness of

the network against such failures. Theory and algorithms for

topology optimization for the O2 scheme are presented in [11],

and a generic approach for protection routing is given in [12].

Apart from our study on LFA graph extension in [17], the

only attempts at LFA-oriented network optimization seem to

be [21] and (partly) [22].

A common theme shared by most approaches is that (with

the exception of [11] and [17]) each one addresses the joint

optimization of network resilience and routing performance

simultaneously. The former aims at better protection against

failures, while the latter is called to minimize congestion and

distribute load evenly in the network with respect to some

known, measured or predicted traffic matrix. A good example

of this approach is [21], where the authors formulate the

joint LFA cost optimization and traffic engineering problem

as a constraint-programming task and feed it into a generic

solver. We believe that this approach has several drawbacks.

First, good traffic matrices are difficult to come by, and

this is even more so today as traffic is becoming extremely

dynamic and unpredictable. Many modern traffic engineering

methods, therefore, completely eliminate the dependence on

traffic matrices [27]. Second, there may be operational goals

more important than mere load balancing [19], [24], and most

existing proposals leave these out of consideration. But most

importantly, solving the joint optimization problem leaves the

particularities of the individual subproblems, their computa-

tional complexity and algorithmic aspects, in obscurity. For

instance, the authors in [21] claim that the joint problem is NP-

complete because OSPF traffic engineering in itself is already

NP-complete [39], without ever getting to know anything

about the computational complexity of LFA cost optimization

alone.

We think that our approach allows a deeper understanding

of the problem. Separating traffic engineering and LFA cost

optimization allows us to treat the latter as a standalone

optimization problem, determine its complexity, formulate it

as an ILP and give efficient algorithms. This then leads to

good insight into the inherent limitations of LFA-based IP

Fast ReRoute and the extent to which optimizing costs just

for the purpose of IPFRR can improve the resilience in IP

networks. We have found that dense networks lend themselves

remarkably well to LFA-based IP protection and most of the

cases above 90% failure case coverage can be achieved, while

sparser networks are not suitable for LFA. We believe that

only after understanding the fundamental trade-offs involved

in LFA-based IPFRR should we take the next step and address

different operational issues, like traffic engineering, in network

optimization.

VII. CONCLUSIONS

In this paper, we have assessed the possibilities of improving

the fast resilience of operational IP networks using the Loop

Free Alternates method. The motivation for choosing LFA

over its alternatives is its simplicity, easy deployability, and

availability in IP routers. We presented new tools to quickly

estimate LFA failure case coverage and we sought ways

to improve it by carefully adjusting IGP link costs. We

showed that this problem is NP-complete and we proposed

a simplistic simulated-annealing-based approximation, using

which we could achieve close to perfect LFA coverage in

many real-world network topologies. Considering that LFA is

just a router-configuration command away in many modern

IP networks, we believe that this result has huge practical

relevance. Nevertheless, we also found that some topologies

are less amenable to LFA cost optimization. Future work

involves combining the LFA network optimization tools we

gave in [17] and the algorithms presented herein to improve

IP-level fast resilience in such notorious network topologies.
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APPENDIX

Proof of Theorem 2: Easily, LFACostOpt(G, Sd) is in NP.

To prove NP-hardness, we show that it is essentially equivalent

to the protection routing problem, proved to be NP-complete

in [12].

Definition 2: PR(G, d): given a graph G(V,E) and some

d ∈ V , is there a directed spanning DAG Rd(V,Ed) : Ed ⊆ E
rooted at d, so that for any single node or link failure f every

node s ∈ V \ {d} has a neighbor k : (s, k) /∈ Ed for which

it holds that (i) k is not upstream of s in Rf
d , and (ii) there

is a k → d path in Rf
d , where Rf

d is obtained from Rd by

removing the failed component f .

The basic differences are that (a) LFACostOpt(G, Sd) is

defined in terms of costs, while PR(G, d) in terms of a routing

DAG Rd, (b) PR(G, d) is for both node and link failures, while

LFACostOpt(G, Sd) is only for link failures, and (c) item (ii) in

the above definition. To show equivalence, we need to handle

all these differences.

First, we show that a cost function c uniquely determines

an Rd and vice versa, in that we can show a mapping from c
to Rd so that a path is shortest path over c if and only if it

is contained in Rd (this will handle (a)). Easily, the shortest

paths over c are always in a DAG. The reverse direction, that

is, taking Rd and creating a cost c of it, is equally easy: take

a topological ordering o(v) : v ∈ V of Rd (this always exists)

and for each (i, j) ∈ E set c(i, j) = o(j)− o(i) if (i, j) ∈ Ed

and c(i, j) = n otherwise.

Second, taking a close look on the NP-completeness proof

of PR(G, d) in [12], we observe that the proof remains valid if

we treat link failures only and disregard node failures. Thus,

we can a state stronger claim: PR(G, d) is NP-complete, even

if we only allow link failures. This handles (b).

Finally, (c) means that in PR(G, d) we only take a node for

protected, if after a failure f all its downstream neighbors’

path in Rd avoids f . However, when we only consider single

link failures, item (i) guarantees this.


