
Noname manuscript No.
(will be inserted by the editor)

Compact Policy Routing

Gábor Rétvári, András Gulyás, Zalán Heszberger, Márton Csernai, and

József J. Bíró

the date of receipt and acceptance should be inserted later

Abstract The main concern in this paper is to generalize compact routing to arbitrary routing policies that favor a broader
set of path attributes beyond path length. Using the formalism of routing algebras we identify the algebraic requirements for
a routing policy to be realizable with sublinear size routing tables, and we show that a wealth of practical policies can be
classified by our results. By generalizing the notion of stretch, we also discover the algebraic validity of compact routing
schemes considered so far and we show that there are routing policies for which one cannot expect sublinear scaling even if
permitting arbitrary constant stretch. Finally, we apply our methodology to the routing policies used in Internet inter-domain
routing, and we show that our algebraic approach readily generalizes to this setting as well.

Keywords compact routing, policy routing, routing algebras

An early version of this paper appeared as an extended abstract at the 30th annual ACM SIGACT-SIGOPS symposium on Principles of Distributed
Computing (PODC’11) [1].

Department of Telecommunications and Media Informatics
Budapest University of Technology and Economics
1117 Budapest, Magyar tudósok körútja 2. Hungary
E-mail: {retvari,gulyas,heszberger,csernai,biro}@tmit.bme.hu
Corresponding author: Gábor Rétvári, <retvari@tmit.bme.hu>

2 Gábor Rétvári, András Gulyás, Zalán Heszberger, Márton Csernai, and József J. Bíró

1 Introduction

Compact routing theory is the research field aimed at iden-
tifying the fundamental scaling limits of shortest path rout-
ing and constructing algorithms that meet these limits [2–8].
Shortest path routing is a key ingredient in many modern
network architectures, as it generally ensures low transmis-
sion delay while also minimizes the effort needed to transmit
one unit of information from the source to the destination.
To what extent shortest path routing can scale to large net-
works, in terms of the memory requirements of implement-
ing the local forwarding functionality at network nodes, has
for a long time been researched.

It turns out that in general it is impossible to implement
shortest path routing with routing tables whose size in all
network topologies grows slower than linear with the in-
crease of the network size [2, 3]. To answer this challenge,
compact routing research seeks algorithms to decrease rout-
ing table sizes at the price of letting packets to be routed
along suboptimal paths. In this context, suboptimal means
that the forwarding paths are allowed to be longer than the
shortest ones, but length increase is bounded by a constant
stretch factor. By now, the research community has built a
strong theoretical foundation for compact shortest path rout-
ing, fully characterizing its pinnacles and pitfalls on a broad
catalog of network topologies including hypercubes, trees,
scale-free networks, and planar graphs [5, 6, 9–11], while
having defined efficient compact routing algorithms for the
generic case as well [4, 5].

In order to ensure an expedient flow of information through
the network, one often needs to provision routes taking into
consideration a broader set of attributes beyond mere path
length, such as path reliability and resilience constraints [12],
bandwidth and perceived congestion [13–15], business rela-
tions and service level agreements between Internet service
providers [16, 17], etc. These path selection strategies are
usually described under the umbrella of policy routing. Prac-
tically speaking, a routing policy is a function that selects a
preferred transmission route from the set of all forwarding
paths available between two endpoints, according to prede-
fined requirements. Indeed, a significant portion of the Inter-
net today runs over policy routing [12,13,16,18,19]. Unfor-
tunately, at the moment no theory is available to characterize
the inherent scaling properties of these policy routing archi-
tectures, leaving a considerable gap in our understanding of
their long term sustainability.

In this paper, we take the first steps towards filling this
gap. We build on the recent work of Sobrinho and Grif-
fin [20–23], who lay the theoretical foundations for describ-
ing disparate routing policy structures in a single theoretical
framework using the notion of routing algebras, abstracting
away their syntactic and semantic diversity and letting us to
study them in a general, abstract sense. Using this frame-

work, we give an algebraic characterization of the scalabil-
ity of policy routing and we take a look into the applicability
of compact routing schemes, originally defined for shortest
path routing, in an abstract algebraic setting.

The main contributions of the paper are as follows:

– we extend the compact routing model defined by Fraig-
niaud and Gavoille specifically for shortest path rout-
ing [2,3] to support practically arbitrary routing polices;

– we identify the algebraic requirements for a policy to
be implementable with sublinear routing tables and we
give a comprehensive characterization of many practi-
cally important routing policies in networking;

– by generalizing the notion of stretch, we explore the al-
gebraic conditions under which the well-known shortest-
path-based compact routing schemes [4,5] generalize to
policy routing and we show that introducing stretch can-
not always eventuate sublinear scaling; and

– we investigate to what extent our results extend to inter-
domain routing policies, which admit only a rather coarse
algebraic description, and we find that our approach is
readily applicable in this context as well.

The rest of this paper is structured as follows. In Sec-
tion 2, we introduce the basic notations and models used
throughout the paper. Next, in Section 3 we characterize the
local memory requirements for implementing an important
subset of routing algebras, called delimited regular algebras,
and we apply the results to real-world routing policies. In
Section 4 we deal with an algebraic interpretation of stretch
and we generalize compact routing algorithms to regular al-
gebras. Then, in Section 5 we study compact routing over so
called non-delimited algebras, and finally we conclude the
paper in Section 6.

2 An algebraic model for policy routing

Let the communications network be modeled by a finite,
connected, simple, undirected graph G(V,E), let |V |= n and
let |E|= m. Communication between nodes is carried out by
sending packets: neighboring nodes exchange packets di-
rectly, while remote nodes communicate through interme-
diate hops. We assume that nodes v (edges e) are uniquely
identified by a natural number ID(v) (ID(e)). We often write
simply v (e) in place of ID(v) (ID(e)). Let deg(v) denote the
degree of v ∈V and let d = maxv∈V deg(v). An s− t walk is
a sequence of nodes p = (s = v1,v2, . . . ,vk = t), where k is
the length of the walk and (vi,vi+1) ∈ E : ∀i = 1, . . . ,k− 1.
A cycle is a walk with s = t, and a path is a walk that visits
a node at most once.

Compact Policy Routing 3

2.1 Routing algebras

Generally speaking, a routing policy can be considered as a
function p∗st = Pol(Pst) that from the set of available s−

t paths Pst selects a single preferred path p∗st according
to some predefined rules. This definition is broad enough
to contain basically every conceivable policy, including ex-
treme cases like choosing a random path as well as tradi-
tional ones like shortest path routing.

To be more specific, we leverage the abstract notion of
routing algebras from Sobrinho and Griffin to describe rout-
ing policies in this paper [20–25]. This allows us to infer
generic properties instead of having to define particular rout-
ing policies one by one and building piecemeal compact
routing frameworks. In addition, it has been shown that ba-
sically all practically important routing policies possess an
algebraic representation [22]. Thus, we shall use the terms
routing policy and routing algebra interchangeably in this
paper.

A routing algebra abstracts away the most important con-
cepts of shortest path routing, namely weight composition
(the method of constructing the weight of a path from the
weights of its constituent edges) and weight comparison (ex-
pressing the preference between edges or paths). In this pa-
per, a routing algebra A is defined as a totally ordered com-
mutative semigroup with a compatible infinity element. For-
mally,

A = (W,φ ,⊕,�) ,

where W is the set of (abstract) weights that can be assigned
to edges, φ (φ /∈W) is a special infinity weight meaning that
an edge/path is not traversable, ⊕ is a composition operator
for weights, and � is weight comparison.

Formally, the following properties are presumed:

– (W,⊕) is a commutative semigroup
– Closure: w1 ⊕w2 ∈W for all w1,w2 ∈W

– Associativity: (w1 ⊕w2)⊕w3 = w1 ⊕ (w2 ⊕w3) for
all w1,w2,w3 ∈W

– Commutativity: w1 ⊕w2 = w2 ⊕w1 for all w1,w2 ∈
W

– � is a total order on W

– Reflexivity: w � w for any w ∈W

– Anti-symmetry: if w1 � w2 and w2 � w1, then w2 =

w1 for any w1,w2 ∈W

– Transitivity: if w1 � w2 and w2 � w3, then w1 � w3

for any w1,w2,w3 ∈W

– Totality: for all w1,w2 ∈ W either w1 � w2 or w2 �

w1

– φ is compatible with (W,⊕) according to �
– Absorptivity: w⊕φ = φ for all w ∈W

– Maximality: w ≺ φ for all w ∈W

Given a path p = (v1,v2, . . . ,vk) we obtain the weight
w(p) of p by combining the weight of its constituent edges:

w(p) =
k−1⊕

i=1

w(vi,vi+1) .

Then, a preferred path in the algebra A between two
nodes s and t is simply one with the smallest weight accord-
ing to the relation �:

Pol(Pst) = p∗ : w(p∗)� w(p),∀p ∈ Pst .

We assume that if � orders the same precedence to mul-
tiple paths from Pst then Pol(Pst) can return any of these,
the only requirement is that all traffic demand for an s− t

pair is satisfied over a unique unsplittable path.
One easily checks that shortest path routing corresponds

to the algebra (N,∞,+,≤), while widest-path routing, where
preferred paths are those with the largest bottleneck capac-
ity, is simply (N,0,min,≥). See further examples later in
Section 3.1 and Section 5.

A special family of routing algebras, called regular rout-
ing algebras, will play an essential role in this paper.

Definition 1 A routing algebra A is said to be regular, if it

satisfies the following properties1:

– Monotonicity (M): w1 � w2 ⊕w1 for all w1,w2 ∈W

– Isotonicity (I): w1 � w2 ⇒ w3 ⊕w1 � w3 ⊕w2 for all

w1,w2,w3 ∈W

Monotonicity (M) means that prepending an edge (or
path) of weight w1 with another edge (or path) of w2 can
only make it less preferred: w2 ⊕w1 � w1. By commutativ-
ity, the same applies to appending edges/paths: w1 ⊕w2 �
w1. Isotonicity (I), on the other hand, requires � to be com-
patible with the semigroup (W,⊕) in the following sense: if
an edge/path is preferred over some other one, then prepend-
ing or suffixing both with a common edge or path maintains
this relation.

Below are some further algebraic properties we shall of-
ten use to characterize routing policies [23].

– Delimited (D): w1 ⊕w2 6= φ for all w1,w2 ∈W

– Strictly monotone (SM): w1 ≺ w2 ⊕w1 for all w1,w2 ∈

W

– Selective (S): w1 ⊕w2 ∈ {w1,w2} for each w1,w2 ∈W

– Cancellative (N): w1⊕w2 =w1⊕w3 ⇒w2 =w3 for each
w1,w2,w3 ∈W

– Condensed (C): w1⊕w2 =w1⊕w3 for each w1,w2,w3 ∈
W

1 In this paper, we use the definitions of Sobrinho [20] with the un-
derstanding that other authors may adopt different terminology. For
instance, what will be called isotonicity here is called monotonicity in
conventional order theory. The reason is that this terminology seems to
be widely adopted in the literature.

4 Gábor Rétvári, András Gulyás, Zalán Heszberger, Márton Csernai, and József J. Bíró

From the above, perhaps only delimitedness deserves
more explanation. This property ensures that edges can be
combined in an arbitrary sequence without the danger of ob-
taining an untraversable path. Intra-domain routing policies,
like shortest path routing or widest path routing, are usually
delimited, while inter-domain routing policies, like the ones
used in the Border Gateway Protocol (BGP), are often not.

2.2 Composite algebras

An attractive feature of routing algebras is that surprisingly
complex and expressive policy constructions can be built us-
ing only an elemental set of primitive algebras by apply-
ing simple algebra composition and decomposition opera-
tors appropriately [22]. Two of these operators have particu-
lar importance in this paper, namely the lexicographic prod-
uct operator [23] and subalgebras.

Given two routing algebras A =(WA ,φA ,⊕A ,�A) and
B = (WB,φB,⊕B,�B), the lexicographic product of A

and B is a routing algebra A ×B = (W,φ ,⊕,�) where

– W =WA ×WB , φ = (φA ,φB)

– (w1,v1)⊕(w2,v2)= (w1⊕A w2,v1⊕B v2) for all w1,w2 ∈

WA and v1,v2 ∈WB

– (w1,v1)� (w2,v2) =

{

v1 �B v2 if w1 =A w2

w1 �A w2 otherwise

Note that φ is well-defined if A and B are delimited. In
other cases, defining φ needs more attention.

As a simple example, consider the so called widest-shortest
path policy [14], defined as (N,∞,+,≤) × (N,0,min,≥),
i.e., the lexicographic product of the shortest path and the
widest path routing algebras. Here, edge costs and edge ca-
pacities are composed separately and path preference is de-
cided by edge costs with tie-breaking between equal cost
shortest paths on the path capacity.

Proposition 1 The lexicographic product operator transforms

the properties of the constituent algebras according to the

following rules [23]:

– M(A ×B)⇔ SM(A)∨ (M(A)∧M(B))
– I(A ×B)⇔ I(A)∧ I(B)∧ (N(A)∨C(B))

– SM(A ×B)⇔ SM(A)∨ (M(A)∧SM(B))

The second algebra composition operator we consider
in this paper is subalgebras. Given a routing algebra A =

(W,φ ,⊕,�) and a weight set W ′ ⊆ W , the restriction of
A to W ′: (W ′,φ ,⊕,�) is a subalgebra of A if and only
if W ′ is closed for ⊕. Subalgeras inherit the properties of the
root algebra, but new ones may also emerge. For instance,
the subalgebra (N,∞,+,≤) of the weakly monotone alge-
bra (N∪{0},∞,+,≤) is strictly monotone.

2.3 Routing model

In order to describe the complex process of policy routing
and forwarding, we generalize the model of routing func-

tions from [2, 3]. In this model, a packet contains a payload
plus a header2 with routing related information. Now, given
a routing policy A and a graph G, a policy routing func-

tion is a mapping R : N×N 7→ N×N together with a la-
beling of the nodes LV : V 7→ N and a labeling of the edges
LE : E 7→ N with the following property: for each node pair
s and t for which a traversable s− t path exists (i.e., a path
whose weight is not equal to φ), the successive application
of R

(hi+1, li+1) = R(vi,hi), ∀i = 1, . . . ,k−1

yields a preferred path p∗st = (s = v1, . . . ,vi, . . . ,vk = t) ac-
cording to A and corresponding edge labels li+1 =(vi,vi+1),
where h1 is some appropriate initial header. We shall say
that R implements A on G for indicating that R produces
preferred paths according to A on G.

Similarly to [2, 3], we assume that node labels (or ad-
dresses) can be encoded on c logn bits3 for some c constant.
We further assume that for each node vi ∈V the edges ema-
nating from vi are labeled locally: LE(vi,v j)∈{1, . . . ,deg(vi)}.
Additionally, the edge label li+1 is understood as coming
from the local label space LE(vi) of vi. These limitations are
to ensure that no extra routing information can be encoded
in the labels besides pure identification. No such limitation
exists, however, on the header size.

Now, routing according to the policy routing function R

occurs as follows. Upon receiving a packet with header h, a
node u simply evaluates its local routing function Ru(h) =

R(u,h) to obtain a new header h′ and an outgoing port at
edge l. Then, u sets the packet’s header to h′ and forwards
it on l. In general, this routing model is suitable to represent
oblivious routing architectures, i.e., ones in which the route
of a packet depends only on the contents of the packet it-
self and some static forwarding information. Yet, it is broad
enough to capture basically any practically relevant forward-
ing scheme, like traditional destination-based and source-
destination-based forwarding, label swapping, etc. For fur-
ther details, consult [2, 3].

Introducing routing functions makes it comfortable to
characterize the local memory needed at network nodes to
implement a routing policy.

Definition 2 The local memory requirement MA of imple-

menting the routing policy A is defined as:

MA = max
G∈Gn

min
R∈R

max
u∈V

MA (R,u) ,

2 Without loss of generality, headers can be represented by natural
numbers.

3 Logarithms are of base 2.

Compact Policy Routing 5

where MA (R,u) is the minimum number of bits needed to

encode the local routing function Ru, R is the set of all pol-

icy routing functions implementing A on some graph G, and

Gn is the set of all graphs of size n.

A routing policy is said to be incompressible, if MA

is Ω(n). Otherwise A is compressible. Easily, an incom-
pressible routing policy does not scale well, as the memory
needed to store the local routing process of some node in-
creases with the number of nodes in at least one graph. On
the other hand, compressible routing policies scale well.

2.4 Algebraic compact routing

At this point, we have all the definitions in place to focus
on our main concern what we call algebraic compact rout-
ing: given a routing algebra describing a particular routing
policy, (i) identify the theoretical bounds on the memory re-
quirements needed to implement that algebra, and (ii) exam-
ine the local storage vs. path optimality trade-off. This trade-
off involves designing compact routing schemes that imple-
ment the algebra with sublinear local storage at the price of
letting traffic to be routed along non-preferred paths, whose
suboptimality is upper bounded by some suitably defined
notion of stretch.

From the standpoint of routing, regular algebras mani-
fest the “well-behaved cases” [20,21,24]. Monotonicity and
isotonicity, on the one hand, guarantee that the preferred
paths themselves can be obtained in polynomial time using
a generalization of Dijkstra’s algorithm. On the other hand,
in a regular algebra preferred paths emanating from a node
always make up a tree, allowing for a single routing entry
to be maintained with respect to each node and forwarding
packets based on the destination address only. This allows
us to store local routing information on at most Õ(n) bits
local memory. We formulate these ideas as follows.

For some graph G and algebra A , define a destination-

based routing function R̂ for implementing A on G as fol-
lows. Let the packet header consist of the identifier of the
packet’s destination and let node u forward a packet des-
tined to some v on the first edge lv along the preferred path
p∗uv: R̂u(v) = (v, lv). Sobrinho makes the following observa-
tion [21]:

Proposition 2 A can be implemented by a destination-based

routing function on any graph, if and only if A is regular.

One easily sees that R̂ basically corresponds to destina-
tion oriented routing tables, storing a single entry for each
destination node. This leads to the following observation.

Observation 1 If A is regular, then it can be implemented

using O(n logd) bits local information.

A key question in compact routing research is whether
this trivial routing function is optimal in the sense that it
requires the minimum possible local memory to encode pre-
ferred paths, or there are better algorithms using less local
space. For shortest path routing in particular, Fraigniaud and
Gavoille present the following negative result [2, 3].

Proposition 3 The shortest path algebra S = (N,∞,+,≤)

is incompressible.

For shortest path routing at least, routing tables are opti-
mal. For other routing policies, no such results exist. There-
fore, in the next section we deal with the algebraic charac-
terization of the memory requirements of policy routing.

3 Local memory requirements of policy routing over

delimited algebras

In what follows, we discuss the algebraic requirements for
a routing policy to be implementable with sublinear local
storage and we also give negative results indicating incom-
pressibility of some practically important routing policies.
In this section, we concentrate on delimited algebras exclu-
sively. Recall that this property ensures that finite weight
pairs combine to finite weights, implying that concatenation
of traversable paths is a traversable path.

First, we discuss an important family of delimited rout-
ing algebras: monotone and selective algebras4.

Theorem 1 If A is selective and monotone, then it is com-

pressible.

In fact, we shall prove a bit more. We shall show that if a
routing policy is selective, then a “preferred” spanning tree
always exists with the property that for any s, t ∈V the only
path pst contained in the tree is a preferred path. We say that
algebra A maps to a tree, if for any connected graph and
any weighing of the edges one can always find such a “pre-
ferred” spanning tree. Then, compressibility follows as rout-
ing over a tree is possible with logn bits local memory [11].

Lemma 1 If A is monotone and selective, then A maps to

a tree. On the other hand, if A is delimited and A maps to

a tree, then A is monotone and selective.

Proof First, we show that if an algebra A is monotone and
selective, then it maps to a tree. Under these assumptions
on A , we construct an optimal spanning tree containing
only preferred paths over A . Take the edges in order of
non-decreasing weight according to �, add an edge to the
spanning tree T if no cycle arises, and terminate when T

spans G. We show that the only in-tree path pT
st between any

two nodes s and t is a preferred path over A . To see this,

4 Note that selectivity implies delimitedness.

6 Gábor Rétvári, András Gulyás, Zalán Heszberger, Márton Csernai, and József J. Bíró

1

2

3

w

w

w

(a) w⊕w ≻ w

1

2

3

w1

w2

w2

(b) w1 ≺ w2, w1 ⊕
w2 ≻ w2

1

2 3

4

w1

w2

w1

w2

(c) w1 = w2, w1 ⊕
w2 ≻ w2

Fig. 1: Counter-examples for different violations of selectivity

take any other s− t path pst in G. Due to the way the al-
gorithm proceeds, there is at least one edge (u,v) in pst so
that w(u,v) � w(i, j) for all (i, j) in pT

st . Then, due to selec-
tivity w(pT

st) ∈ {w(i, j) : (i, j) in pT
st}, and by monotonicity

w(pT
st) � w(u,v) � w(pst), therefore pT

st is a preferred s− t

path. This proves sufficiency.
We prove the second statement by contraposition. In par-

ticular, we show that if a delimited algebra A is either non-
monotone or non-selective, then in some graphs preferred
paths do not reside in a tree. Obviously, if A is not mono-
tone, then the preferred paths might contain loops. If, on
the other hand, A is monotone but not selective, then A

either contains a weight w ∈ W , so that w⊕w ≻ w (auto-
selectivity), or A contains two weights w1,w2 ∈ W,w1 �

w2, so that w1⊕w2 ≻w2. We distinguish the following cases:

– w⊕w≻w: for the case when A violates auto-selectivity,
Fig. 1a gives a graph in which the preferred paths are ex-
actly the direct edges and hence do not make up a tree;

– w1 ≺ w2 and w1 ⊕w2 ≻ w2: Fig. 1b gives a graph where
again preferred paths are via the direct edges and so no
optimal tree arises;

– w1 = w2 and w1 ⊕w2 ≻ w2: in the graph of Fig. 1c, pre-
ferred paths are again precisely the direct edges. To see
this, we only need to see that (i) w1 ≺ w2 ⊕ w1 ⊕ w2,

but this follows from w2 ⊕w1 ⊕w2

(M)

� w1 ⊕w2 ≻ w2 =

w1; and (ii) w2 ≺ w1 ⊕w2 ⊕w1 can be seen similarly.
Note that for the source-destination pairs that do not
reach each other via a direct edge any two-hop path is
a traversable preferred path, as w1 ⊕w2 = w2 ⊕w1 ≺ φ

due to delimitedness. ⊓⊔

Note that delimitedness in Lemma 1 is important, as one
easily finds non-delimited algebras that map to a tree even
without being selective, under the assumption that each node
have a finite-weight path to each other node (see more on
this assumption in Section 5). Further note that a special case
of this result for minimum- and maximum-type of weight
composition operators appeared in [26], and [25] gives sim-
ilar results for special routing algebras called dioids.

Theorem 1 suggests that routing policies characterized
by selective algebras can be implemented using tree routing
schemes [5,11], needing only logarithmic sized local storage
(see concrete examples in the next section). In contrast to se-
lective algebras however, there exists an important family of

routing policies that, similarly to shortest path routing, can
only be implemented using at least Ω(n) bits local memory.

Theorem 2 If A is delimited and strictly monotone, then it

is incompressible.

We shall prove a more general claim, of which the above
is a simple corollary.

Lemma 2 If A contains a delimited, strictly monotone sub-

algebra, then A is incompressible.

Proof We trace back incompressibility to the incompress-
ibility of minimum-hop routing (Proposition 3), by showing
that a delimited, strictly monotone algebra has subalgebras
possessing the same structure as shortest path routing. We
use the following basic facts from semigroup theory [27].
Every element w ∈ W of a semigroup (W,⊕) generates a
subsemigroup, the so called cyclic semigroup, (Ww,⊕) :Ww =

{w,w2,w3, . . .} through the power operation:

∀n ∈ N : wn =

{

w if n = 1

w⊕wn−1 otherwise

If the ordered semigroup (W,⊕,�) is delimited and strictly
monotone, then any of its cyclic subsemigroups (Ww,⊕) is
of infinite order, in which case it is isomorphic to the semi-
group (N,+) of natural numbers under addition through the
mapping f :N↔Ww, f (n) =wn. In addition, f is also an or-
der preserving isomorphism between the shortest path rout-
ing algebra S = (N,∞,+,≤) and (Ww,φ ,⊕,�) in this case,
as i < j ⇔ wi ≺ w j due to strict monotonicity. One easily
checks this by observing that for any i < j : wi ≺ wi ⊕w =

wi+1 � w j. Thus, if A = (W,φ ,⊕,�) has a strictly mono-
tone subalgebra, then for any graph G and any labeling of the
edges of G by natural numbers as weights, we can construct
a labeling using weights from W so that a path is a shortest
path in the algebra S = (N,∞,+,≤) if and only if it is a
preferred path in A . This implies that routing in A requires
at least as much local memory as shortest path routing (i.e.,
Ω(n) by Proposition 3), which completes the proof. ⊓⊔

3.1 Examples

In Table 1, we list the intra-domain routing policies studied
most extensively in the literature, together with their alge-

Compact Policy Routing 7

Table 1: Local memory requirements of various routing policies

Algebra Definition Properties Local memory
Shortest path S = (N,∞,+,≤) SM, I Θ(n)
Widest path W = (N,0,min,≥) S, I, M Θ(logn)
Most reliable path R = ((0,1],0,∗,≥) SM, I Θ(n)
Usable path U = ({1},0,∗,≥) S, I, M Θ(logn)
Widest-shortest path W S = S ×W SM, I Θ(n)
Shortest-widest path S W = W ×S SM, ¬I Ω(n)

braic definition, basic properties, and the local memory re-
quirements as indicated by our results. Note that all the listed
algebras are delimited, and they are also regular except the
last one which is non-isotone. Here, S is the well-known
shortest path routing algebra, for which Proposition 3 pro-
vides an adequate incompressibility characterization. Easily,
Theorem 2 gives the same characterization.

W denotes the widest path routing policy [13]. Here, the
weight of an edge is its capacity, the end-to-end capacity of
a path equals the bandwidth of its bottleneck edge (the one
with the smallest capacity) and the higher the capacity along
a path the more preferred. Easily, this corresponds to the
selective regular algebra (N,0,min,≥), and so W is com-
pressible by Theorem 1. In particular, under the tree rout-
ing scheme due to Fraigniaud and Gavoille [11], widest path
routing can be implemented using 5logn bit addresses and
3logn bits local memory, or log2 n bits using the scheme
of Thorup and Zwick [5]. Similar is the case for the usable
path routing strategy (U), applied extensively in Ethernet
switching5. However, the rest of the routing policies listed
in the table are incompressible.

Most reliable path routing (R) denotes the policy when
edges are assigned a reliability metric denoting the possi-
bility that a packet will be transmitted successfully over the
edge, and the path with the highest probability of success is
favored. Easily, R contains the delimited strictly monotone
subalgebra ((0,1),0,∗,≥). Widest-shortest path (W S) rout-
ing prefers from the set of shortest paths the one with the
highest free capacity [14], and shortest-widest path (S W , [13,
15]), just contrarily, prefers the shortest one out of the set
of widest paths. These algebras can be expressed as lexico-
graphic products of the S and W algebras and, by Propo-
sition 1, strictly monotone [23]. Hence, for R and W S ,
which are isotone, Theorem 2 supplies the local memory re-
quirement of Ω(n). This characterization is tight apart from
a logarithmic factor, as simple table-based destination-oriented
routing requires Õ(n) bits by Observation 1. On the other
hand, S W is not isotone. Theorem 2 holds for non-isotone
algebras as well, which supplies a Ω(n) bits local memory
requirement for S W too. At the moment, it is an open ques-
tion whether this characterization is tight, as the only trivial
routing function for S W stores a separate routing table en-

5 The fact that Ethernet runs over what is called the Spanning Tree
Protocol shows the expressiveness of Lemma 1.

try for each source-destination pair, which needs O(n2 logd)

bits per router.

4 Compact policy routing

As has been shown in the previous section, many practically
relevant routing policies are impossible to implement with
sublinear size routing tables. In the case of shortest path
routing, a standard way to improve scalability is to define
compact routing schemes. In these schemes, paths are al-
lowed to be longer than the shortest one, but path increase is
upper bounded by a multiplicative stretch factor k, meaning
that the paths yielded by the compact routing scheme are at
most k times as long as the shortest one. In the followings,
we characterize the routing policies that admit similar com-
pact implementations, at least for a sufficient abstract notion
of stretch. Consider the following definition:

Definition 3 A routing scheme is of stretch k over algebra

A , if for any path pst selected by the scheme: w(pst) �

(w(p∗st))
k, where p∗st is some preferred s− t path in A .

Note that (w(p∗st))
k =w(p∗st)⊕w(p∗st) · · ·⊕w(p∗st)

︸ ︷︷ ︸

k times

, which

implies that the above definition indeed generalizes the no-
tion of multiplicative stretch originally defined for shortest
path routing.

4.1 Algebraic requirements of compact policy routing

First, we ask which routing algebras lend themselves to be
implemented by a compact routing scheme of finite stretch.

Theorem 3 If a routing algebra A is delimited and regular,

then there is a stretch-3 compact routing scheme for A .

We show that the stretch-3 shortest path routing scheme
due to Cowen [4] readily generalizes to regular algebras. Be-
low, we briefly reproduce that scheme. For further details,
see [4] and [5].

For each u ∈ V , choose some node set L ⊆ V and with
each u ∈ V associate a landmark lu as the node closest (ac-
cording to A) to u in the set L. Additionally, for each u ∈V

define a ball B(u) : {v ∈V : w(p∗u,v)� w(p∗u,lu)}, where p∗s,t

8 Gábor Rétvári, András Gulyás, Zalán Heszberger, Márton Csernai, and József J. Bíró

refers to the preferred s − t path for any s and t. Finally,
let the cluster of u be C(u) = {v ∈ V : u ∈ B(v)}. When A

is regular, one can use the lexicographic lightest path algo-
rithms in [20, 21] to obtain unique connected clusters for
each u.

The routing scheme is a hop-by-hop technique. The label
of node v consists of the triplet (v, lv,portlv,v), where v is the
identifier of the node, lv is the identifier of its corresponding
landmark, and portlv,v is the local port at lv to the first hop on
the preferred path from lv to v. The packet header is the label
of the target node. The routing table at node u /∈ L consists
of (v,portu,v) tuples with respect to each v ∈C(u)∪L, where
portu,v is again the local port label of the first edge along the
preferred u− v path.

Packet forwarding inside a cluster occurs along preferred
paths using the entries in the local routing tables. To route a
packet to a node v outside the cluster, node u first forwards
the packet to v’s landmark, from where it arrives to v using
again a direct route. In particular, when a packet with target
v arrives to a node u 6= v, u checks whether v is contained in
its local routing table. If not, then lv, the landmark of v is ex-
tracted from the header. If u = lv, then appropriate port label
is also extracted from the header, otherwise it is looked up in
the local routing table. Forwarding terminates when u = v.

From Proposition 2, we know that if A is regular, then
standard destination-based hop-by-hop routing is correct. To
show that the above scheme is also correct, the following
crucial fact is enough (observed for shortest path routing by
Cowen in [4]).

Lemma 3 Suppose that A is monotone. Now, if u stores an

entry in its local routing table towards some t, then the next

hop v along the preferred p∗ut path also stores an entry to t.

Proof Easily, by monotonicity p∗vt � p∗ut � p∗lt ,t so v also
stores an entry for t. ⊓⊔

Next, we show that the scheme is stretch-3 on A . As
forwarding inside clusters occurs along preferred paths, we
only need to prove stretch-3 for indirect forwarding via land-
marks.

Lemma 4 If A is regular, then for any u,v ∈ V with v /∈
C(u) : w(p∗u,lv)⊕w(p∗lv,v)� (w(p∗u,v))

3.

Proof (i) by assumption, w(p∗lv,v) � w(p∗u,v); (ii) using the

triangle inequality6, w(p∗u,lv)�w(p∗u,v)⊕w(p∗v,lv)=w(p∗u,v)⊕
w(p∗lv,v) (the latter equlality comes by commutativity); (iii)

by isotonicity, from (i) and (ii) we have w(p∗u,lv)� w(p∗u,v)⊕

w(p∗u,v). Combining (i) and (iii) by isotonicity we obtain
w(p∗u,lv)⊕w(p∗lv,v)� w(p∗u,v)⊕w(p∗u,v)⊕w(p∗u,v). ⊓⊔

6 The triangle inequality represents the basic fact that for any triplet
u,v,w∈V the u−w−v path of weight w(p∗u,w)⊕w(p∗w,v) is a candidate
for the preferred u− v path p∗u,v, and therefore w(p∗u,v) � w(p∗u,w)⊕
w(p∗w,v).

Finally, we show that the local information is indeed
sublinear. Obviously, addresses can be encoded on 3logn

bits. The size of the local routing table at node u is O(|C(u)|+

|L|). Using the landmark selection technique given by Cowen
one obtains a local memory requirement of O(n2/3) [4], which
is improved by Thorup and Zwick to Õ(n1/2) in [5].

Note that delimitedness is important to be able to ap-
ply Cowen’s scheme. If the algebra is not delimited, then
we might not be able to find landmarks reachable from each
node in the first place. And even if we did, the very defini-
tion “stretch-k” is not quite reasonable for non-delimited al-
gebras as it allows the stretched path to be of infinite weight.
Suppose that for some non-delimited algebra and for some
u− v pair w(p∗u,v) ≺ φ but w(p∗u,v)

3 = φ . In such cases, the
weight of the preferred u− v path is finite, but the weight
of the path through a landmark can be of weight φ by this
stretch-3 scheme, even though such a path is practically not
traversable from u to v.

An interesting case is when the policy is the widest-
path routing algebra W . In this case, for any n ∈ N and any
w ∈W : wn = w. Hence, stretch-3 paths are exactly the pre-
ferred paths in this case. The same applies to any selective
and monotone algebra. Thus, Theorem 3 in fact gives an al-
ternative proof to the claim that monotone and selective al-
gebras are compressible.

We argued in Section 2.4 that regular algebras are the
“well behaved” cases from the aspect of distributed rout-
ing, as they can be implemented by destination-based rout-
ing tables. Our results so far indicate that regular algebras
are “well-behaved” from the standpoint of compact routing
as well: not just that we could give a general result charac-
terizing the memory requirements for implementing regular
algebras, but we also found that even when a regular algebra
turns out incompressible a stretch-3 compact routing scheme
is guaranteed to exist. In the next section, we show that if
regularity fails, then finite stretch compact routing becomes
significantly more difficult.

4.2 Compact routing when isotonicity fails

We have shown that regularity of a delimited routing algebra
is sufficient to define a stretch-3 compact routing scheme.
It is an intriguing question whether it is necessary as well.
At the moment, we do not have an answer to this question.
What we can show, however, is that when isotonicity fails in
a very intricate way, then no stretch-k routing exists for any
k constant.

Theorem 4 Let k ≥ 1 and let A = (W,φ ,⊕,�) be a mono-

tone algebra with the property that for any p ≥ 2 there ex-

ists a set of weights {w1,w2, . . . ,wp} ⊆ W so that ∀i, j ∈

{1, . . . , p}, i 6= j:

wi ⊕w j ≻ w2k
i and wi ⊕w j ≻ w2k

j . (1)

Compact Policy Routing 9

c1

z1,1

z1,2

t4

t3

t2

t1
z2,1

z2,2

c2

w1

w1

w1

w1

w1

w1
w2

w2

w2

w2

w2

w2

Fig. 2: A sample graph for p = 2, δ = 2 if the words for the
target nodes are [1,1], [1,2], [2,1] and [2,2]

Then, there is no stretch-k routing scheme with sublinear

memory requirement at all nodes.

Proof Borrowing the idea from [2], we present a family
of graphs on which any stretch-k implementation of A re-
quires Ω(n) bits at some nodes. Start with a set of nodes
ci ∈ C, |C| = p ≥ 2. To each ci ∈ C, add δ ≥ 2 neighbors
zi j, i ∈ {1, . . . , p}, j ∈ {1, . . . ,δ} and label the edges by wi.
Finally, add δ p nodes t ∈ T and connect these to the zi j

nodes according to the following rule: for each t ∈ T take
the alphabet consisting of the symbols (1, . . . ,δ), construct
a word of length p from this alphabet and add an edge from
zi j to t if the ith symbol in the word is exactly j. Label any
(zi j, t) edge by wi. Fig. 2 gives an example.

By monotonicity and (1), the preferred path p∗ci,t
from

any ci ∈ C to any t ∈ T is the min-hop path, so w(p∗ci,t
) =

wi ⊕wi = w2
i . Fraigniaud and Gavoille in [2] show that en-

coding these paths in the above family of graphs requires
Ω(n logδ) bits of storage space at the nodes in C. Intuitively
speaking, the idea is that there are 2Θ(n2) different graphs
on n nodes in this graph family, and to encode the min-hop
paths the routing algorithm needs to be able to differentiate
amongst them, which requires Θ(n) local storage space on
at least one node. See [2] for a detailed exposition of this
idea.

Unfortunately, any stretch-k compact routing scheme for
k finite needs to encode the exact same min-hop paths. By
construction, any non-preferred path pci,t goes through at
least two edges of weight w j for some j ∈ {1, . . . , p}, j 6= i,
and hence is at least of stretch k: w(pci,t) � wi ⊕wi ⊕w j ⊕

w j
(i)
= (wi⊕w j)⊕ (wi⊕w j)

(ii)
� wi⊕w j

(iii)
≻ (w2

i)
k = w(p∗ci,t

)k,
where (i) is by associativity and commutativity, (ii) is by
monotonicity, and (iii) is by (1). ⊓⊔

A key to the above result is the weight set with the spe-
cial structure (1), an extreme form of strict monotonicity. For
k ≥ 2, (1) violates isotonicity, therefore the theorem does not
apply to regular algebras. But to many non-regular algebras
it does. For the shortest-widest path policy in particular, one
easily generates the weights wi with the required properties.
Let wi = (bi,ci), where bi denotes the capacity and ci a pos-
itive cost, and for each i = 1, . . . , p choose bi = i and let

ci = (2k)i−1. One easily checks that this construction satis-
fies (1), since if i< j then bi < b j implies (bi,ci)+(b j,c j) =
(bi,ci + c j) > (b j,c j)

2k, while from ci < 2kci ≤ c j we get
(bi,ci + c j) > (bi,ci)

2k. This then implies that the shortest-
widest path policy does not admit a compact implementation
for any finite stretch by Theorem 4.

5 Policy routing over non-delimited algebras

So far, we have seen that delimited regular algebras are the
easy cases for compact policy routing, as they admit tight
bounds on the local memory requirements needed to imple-
ment them and a stretch-3 compact routing scheme. How-
ever, many real-world routing policies do not lead to de-
limited regular algebras (or commutative, or associative al-
gebras, for that matter). Up to this point, we have hardly
considered such non-delimited and/or non-regular algebras,
even though from a practical perspective they bear particu-
lar importance. The most prominent of these is the routing
policies used by the Border Gateway Protocol (BGP), the
inter-domain routing mechanism that glues the Internet to-
gether [28, 29]. Below, we discuss to what extent the above
algebraic treatment can be applied to BGP policy routing
algebras and highlight some intricate consequences of non-
delimitedness along the way.

BGP policy routing can be described at various levels of
depth. At the first, elemental level, BGP policy routing cor-
responds to the so called provider-customer routing policy.
Under this policy, Autonomous Systems, corresponding to
the nodes of the inter-domain routing network, can enter into
a customer-provider relationship, in which one node acts as
a provider selling wholesale transit service to the other node
(its customer) towards the rest of the network. In this policy,
any path that crosses a provider link after a customer link is
a forbidden path, because allowing such path would mean
that a customer allowed transit service to its provider, a vi-
olation of the provider-customer agreement between them.
Any other path is allowed and equally preferred.

In order to correctly represent this policy as a routing al-
gebra, we need to extend the compact policy routing frame-
work introduced in Section 2. In the rest of the section, the
network is modeled as a simple, symmetric, strongly con-
nected digraph G(V,A) with possibly asymmetric weights.
Moreover, the notion of routing algebras needs to be some-
what weakened too: a routing algebra A = (W,φ ,⊕,�) will
be a totally ordered, right-associative semigroup with a com-
patible infinity element:

– (W,⊕) is a right-associative semigroup
– Closure: w1 ⊕w2 ∈W for all w1,w2 ∈W

– Right-associativity: w1⊕w2⊕w3 is evaluated as w1⊕

(w2 ⊕w3) for all w1,w2,w3 ∈W

10 Gábor Rétvári, András Gulyás, Zalán Heszberger, Márton Csernai, and József J. Bíró

Table 2: Weight composition in the provider-customer alge-
bra B1

⊕ c p

c c φ
p p p

Right-associativity is important, as BGP is a path-vector
protocol in which link properties compose from the destina-
tion towards the source [21, 22].

Under this extended framework, the provider-customer

routing algebra is defined as B1 = ({p,c},φ ,⊕,�), where
arcs are labeled by the weights p (provider) and c (customer)
with the understanding that if w(i, j)= p then w(j, i)= c and
vice versa; ⊕ is given in Table 2; and all traversable paths
have the same preference by �, i.e., c= p≺ φ . Here, the rule
c⊕ p = φ stands for the rule that no path can contain a c− p

subpath (a so called valley) [30]. Easily, B1 is monotone,
but not regular neither delimited.

Next, we turn to characterize the local memory require-
ments for implementing the provider-customer policy.

Theorem 5 B1 is incompressible. In addition, there is no

stretch-k compact routing scheme for B1 for any finite k ≥ 2.

Proof We show a weight set satisfying (1), from which a
similar argumentation as in Theorem 4 gives the required re-
sult. Use the same graph construction as in the proof of The-
orem 4, and set wi = c for each arc (ci,zi j) and (zi j, t) : t ∈ T

and p in the reverse direction. Hence, preferred paths have
weight c, and because customer arcs are exactly provider
arcs in the reverse direction the weight of any non-preferred
path is at least c⊕ p = φ ≻ ck for any k ≥ 1. ⊓⊔

One important subtlety is worth mentioning. In our graph
construction there are some nodes that do not have a traversable
path between them. For instance, the weight of any path be-
tween nodes ci ∈ C is φ . Such cases do not make too much
sense in reality, therefore, in the rest of this paper we make
the following basic assumption:

Assumption 1 (A1) Global reachability: for each s, t ∈V,s 6=

t, there is an s− t path pst in G so that w(pst)≺ φ .

In addition, in line with what we see in the Internet and
the rest of the literature [21, 31], we also assume:

Assumption 2 (A2) No provider-loops: G contains no di-

rected p-cycles.

It turns out that these simple assumptions render the al-
gebra B1 compressible.

Theorem 6 If A1 and A2 holds, B1 is compressible.

Proof We trace B1 back to a delimited, selective, and mono-
tone algebra, which is compressible according to Theorem 1.

Table 3: Weight composition in valley-free routing

⊕ c r p

c c φ φ
r r φ φ
p p p p

Call a node in G a root if it does not have a provider.
We show that under our assumptions G contains exactly one
root node. Considering only the p arcs of G, due to A2 we
get a directed acyclic graph, which by definition contains
at least one node with zero out-degree. Therefore, G con-
tains at least one root. In addition, there is at most one such
root node, because if there were more they would not have a
traversable path between them, hereby violating A1. This is
because any path between two roots would start with a c arc
and end in a p arc, resulting in weight φ .

We build an undirected graph G′ out of G and present a
weight assignment using the weights from the usable path
routing algebra U introduced in Section 3.1. Let G′ con-
tain all the nodes of G and place a single undirected edge
between all node pairs which are connected by an arc in G.
Now, for every node v in G′ select a preferred provider pv

in G and assign weight 1 to the edge connecting v and pv.
Finally assign weight φ to every unassigned edges. Now, the
following claims are easy to see: (i) every node has a path of
weight 1 to the root; therefore (ii) every pair of nodes have
a path of weight 1 between each other; and finally (iii) if a
path is of weight φ in G over B1 then the corresponding path
is of weight φ in G′ over U . Since U is monotone and se-
lective and G′ is an undirected graph, Theorem 1 guarantees
compressibility. ⊓⊔

We have seen that B1 in general is incompressible, but
under some reasonable but somewhat subtle assumptions
it becomes compressible. It is exactly these subtleties that
make the case of non-delimited algebras difficult.

At a second level of BGP routing, further relationships
between nodes can be considered. The simplest amongst
these is the peer relationship, in which nodes voluntarily
exchange traffic with each other in a settlement-free man-
ner. Considering such peer relationships besides provider-
customer relationships, we get to the so called valley-free

routing algebra B2 = ({p,r,c},φ ,⊕,�), where p and c are
for provider and customer arcs as before, and r stands for
peer arcs with the assumption that w(i, j) = r ⇒ w(j, i) = r;
⊕ is given in Table 3; and finally � orders the same prece-
dence to each traversable path: c = r = p ≺ φ [21, 22].

Theorem 7 If A1 and A2 holds, B2 is compressible.

Proof By temporarily neglecting peer arcs, split the graph
to strongly connected valley-free components (SVFC) with
the property that in each component any pair of nodes u,v

Compact Policy Routing 11

can be bidirectionally connected by a valley-free path us-
ing customer-provider arcs only. In each SVFC, valley-free
routing reduces to the B1 subalgebra and therefore can be
done in a compact manner. Furthermore, roots in the SVFCs
are connected in a full peer mesh due to A2, routing on
which can be done using O(logn) local memory by a spe-
cial port labeling [32]. The combination of these two routing
schemes yields an O(logn) routing scheme for B2. ⊓⊔

At the third level, BGP classifies paths according to the
local preference rules. A minimalistic rule contained in basi-
cally every local preference setting is that customer paths are
favored over peer and provider paths. This can be described
by the algebra B3 = ({p,r,c},φ ,⊕,�), where ⊕ again is as
in Table 3 and c ≺ r � p.

Theorem 8 B3 is incompressible, even under A1 and A2.

Additionally, there is no stretch-k compact routing scheme

for B2 for any finite k ≥ 2.

Proof We use the same graph construction and labeling as
in the proof of Theorem 5. Observe that A2 readily applies.
To ensure that A1 also applies, add an arc of weight r be-
tween each unreachable node pair. Now, preferred paths are
exactly the two-hop paths of weight c, and because every
non-preferred path has weight of either r or φ and r ≻ ck

and φ ≻ ck for any k ≥ 1, the claim follows. ⊓⊔

BGP policy routing is, naturally, substantially richer than
B1, B2, or B3. At the fourth level, for instance, usually path
length is taken into account, leading to the algebra B4 =

B3×S . Using the foregoing argumentation, one easily checks
the below claim.

Theorem 9 B4 is incompressible, even under A1 and A2.

6 Conclusions and open questions

Thanks to the tenacious research efforts in the field of com-
pact routing, we now have a remarkable insight into the the-
oretical scalability of shortest path routing. Motivated by
the fact that many routing applications adopt a significantly
more complex way to classify paths than pure shortest path
routing (for instance, BGP places path length only at the
third place when fixing path preference), in this paper we
proposed an algebraic approach towards generalizing the the-
ory of compact routing to policy routing. Our contribution
is twofold: first, we presented some “landmark” theorems,
which can be used as guidelines to roughly classify rout-
ing policies based on their algebraic properties, and second
we identified some algebraic requirements for effectively
trading between path preference and memory. As an impor-
tant message, we identified delimitedness and regularity as
the cornerstones of compact policy routing, allowing for a
generic compressibility theory to be formulated as well as

defining a finite stretch compact routing scheme. The fact
that regular algebras are exactly the ones that can be ef-
ficiently implemented in a distributed way [20–23] makes
these algebras highly attractive for designing future routing
policies [33].

Besides answering the most elemental questions, this pa-
per perhaps leaves more issues open than it answers. We
have seen that selectivity is sufficient for a delimited routing
algebra to be compressible, and strict monotonicity is suf-
ficient for incompressibility. However, it is not clear which
are the corresponding necessary conditions. Finding a mini-
mal algebra that eventuates incompressibility is therefore an
interesting open issue. On the other hand, by requiring se-
lectivity for compressibility we seem to be on the safe side,
since selectivity not only guarantees compressibility but also
a very appealing memory requirement of O(logn). Whether
there are compressible algebras with Ω(logn) local mem-
ory requirement is also an intriguing problem. As pointed
out in the paper, it is also an open question whether the Ω(n)
characterization for non-isotone algebras is tight, as the only
trivial routing function needs Õ(n2) bits per router.

We have shown some real-world routing policies whose
memory requirement cannot be relaxed, even by allowing ar-
bitrary finite stretch. Unfortunately, the widely applied BGP
policy qualifies for this property. Therefore, perhaps the most
compelling question raised in this paper is “what can we do
if stretch doesn’t help?”

Acknowledgements

This work was performed in the High Speed Networks Lab-
oratory at BME-TMIT. This work is connected to the scien-
tific program of the "Development of quality-oriented and
cooperative R+D+I strategy and functional model at BME"
project. This project is supported by the New Hungary De-
velopment Plan (Project ID: TÁMOP-4.2.1/B-09/1/KMR-
2010-0002).

References

1. G. Rétvári, A. Gulyás, Z. Heszberger, M. Csernai, and J. J. Bíró.
Compact policy routing. In Proceedings of the 30th annual ACM

SIGACT-SIGOPS symposium on Principles of distributed comput-

ing, PODC ’11, pages 149–158, 2011.
2. P. Fraigniaud and C. Gavoille. Memory requirement for universal

routing schemes. In Proceedings of the fourteenth annual ACM

symposium on Principles of distributed computing, PODC ’95,
pages 223–230, 1995.

3. C. Gavoille and S. Pérennès. Memory requirement for routing
in distributed networks. In Proceedings of the fifteenth annual

ACM symposium on Principles of distributed computing, PODC
’96, pages 125–133, 1996.

4. L. Cowen. Compact routing with minimum stretch. In ACM-SIAM

SODA’99, pages 255–260, 1999.

12 Gábor Rétvári, András Gulyás, Zalán Heszberger, Márton Csernai, and József J. Bíró

5. M. Thorup and U. Zwick. Compact routing schemes. In ACM

SPAA’01, pages 1–10, 2001.
6. C. Gavoille. Routing in distributed networks: Overview and open

problems. ACM SIGACT News, 32(1):52, 2001.
7. D. Krioukov, kc claffy, K. Fall, and A. Brady. On compact routing

for the Internet. ACM Comp. Comm. Review, 37(3):41–52, 2007.
8. C. Gavoille. An overview on compact routing. In Workshop on

Peer-to-Peer, Routing in Complex Graphs, and Network Coding,
2007.

9. G.N. Frederickson and R. Janardan. Designing networks with
compact routing tables. Algorithmica, 3(1):171–190, 1988.

10. D. Krioukov, K. Fall, and X. Yang. Compact routing on Internet-
like graphs. In INFOCOM 2004, the Twenty-third Annual Joint

Conference of the IEEE Computer and Communications Societies,
volume 1, 2004.

11. P. Fraigniaud and C. Gavoille. Routing in trees. In ICALP ’01,
pages 757–772, 2001.

12. O. Younis and S. Fahmy. Constraint-based routing in the Inter-
net: Basic principles and recent research. IEEE Communications

Surveys and Tutorials, 5(1), 2004.
13. Zheng Wang and Jon Crowcroft. Quality-of-service routing for

supporting multimedia applications. IEEE Journal of Selected Ar-

eas in Communications, 14(7):1228–1234, 1996.
14. G. Apostolopoulos, R. Guerin, S. Kamat, and S. K. Tripathi. Qual-

ity of service based routing: A performance perspective. In SIG-

COMM, pages 17–28, 1998.
15. Qingming Ma and P. Steenkiste. On path selection for traffic with

bandwidth guarantees. In Proceedings of the 1997 International

Conference on Network Protocols (ICNP ’97), page 191, 1997.
16. M. Caesar and J. Rexford. BGP routing policies in ISP networks.

Technical Report UCB/CSD-05-1377, EECS Department, Univer-
sity of California, Berkeley, 2005.

17. G. Apostolopoulos, R. Guerin, S. Kamat, A. Orda, and S. K. Tri-
pathi. Intra-domain QoS routing in IP networks: A feasibility and
cost/benefit analysis. IEEE Network, 13:42–54, 1999.

18. D. Awduche. MPLS and traffic engineering in IP networks. IEEE

Communications Magazine, 37(12):42–47, Dec 1999.
19. W. Lee, M. Hluchyi, and P. Humblet. Routing subject to quality of

service constraints in integrated communication networks. IEEE

Network Magazine, 9(4):46–55, July-August 1999.
20. J. Sobrinho. Algebra and algorithms for QoS path computation

and hop-by-hop routing in the Internet. IEEE/ACM Trans. Netw.,
10:541–550, August 2002.

21. J. Sobrinho. Network routing with path vector protocols: theory
and applications. In SIGCOMM ’03, pages 49–60, 2003.

22. T. Griffin and J. Sobrinho. Metarouting. In SIGCOMM ’05, pages
1–12, 2005.

23. A. Gurney and T. Griffin. Lexicographic products in metarouting.
In Network Protocols, IEEE International Conference on, pages
113–122, 2007.

24. C.-K. Chau, R. Gibbens, and T. G. Griffin. Towards a unified
theory of policy-based routing. In INFOCOM 2006, the 25th

IEEE International Conference on Computer Communications.

Proceedings, pages 1–12, 2006.
25. M. Gondran and M. Minoux. Graphs, Dioids and Semirings: New

Models and Algorithms. Springer Publishing Company, Incorpo-
rated, 1 edition, 2008.

26. B. Awerbuch and Y. Shavitt. Topology aggregation for directed
graphs. IEEE/ACM Trans. Netw., 9:82–90, February 2001.

27. A. H. Clifford and G. B. Preston. The Algebraic Theory of Semi-

groups, Volume I. Number 7 in Mathematical Surveys. American
Mathematical Society, 1961.

28. G. Huston. Interconnection, peering, and settlements. In Proceed-

ings of the INET, 1999.
29. F. Wang and L. Gao. On inferring and characterizing Internet rout-

ing policies. In Proceedings of the 3rd ACM SIGCOMM confer-

ence on Internet measurement, pages 15–26, 2003.

30. L. Gao. On inferring autonomous system relationships in the In-
ternet. IEEE/ACM Trans. on Networking, 9:733–745, 2000.

31. T. Griffin, F. Shepherd, and G. Wilfong. Policy disputes in path-
vector protocols. In ICNP ’99, page 21, 1999.

32. P. Fraigniaud and C. Gavoille. Local memory requirement of uni-
versal routing schemes. Technical Report 96-01, École Normale
Supérieure de Lyon, 69364 Lyon Cedex 07, 1996.

33. A. Seehra, J. Naous, M. Walfish, D. Mazieres, A. Nicolosi, and
S. Shenker. A policy framework for the future Internet. HotNets-

VIII, 2009.

