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ABSTRACT
Packet processing programs may have multiple semantically equiv-

alent representations in terms of the match-action abstraction ex-

posed by the underlying data plane. Some representations may

encode the entire packet processing program into one large table

allowing packets to be matched in a single lookup, while others

may encode the same functionality decomposed into a pipeline of

smaller match-action tables, maximizing modularity at the cost of

increased lookup latency. In this paper, we provide the first sys-

tematic study of match-action program representations in order to

assist network programmers in navigating this vast design space.

Borrowing from relational database and formal language theory,

we define a framework for the equivalent transformation of match-

action programs to obtain certain irredundant representations that

we call “normal forms”. We find that normalization generally im-

proves the capacity of the control plane to program the data-plane

and to observe its state, at the same time having negligible, or

positive, performance impact.

CCS CONCEPTS
• Networks→ Programmable networks; Network performance
evaluation; • Theory of computation→ Database theory.

KEYWORDS
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1 INTRODUCTION
The match-action paradigm, describing general packet processing

programs in terms of a sequence of classifier tables of user-defined

(rule, action) pairs, has recently emerged as the prevalent model

for exposing the functionality of reconfigurable data-plane devices

to the network programmer [3]. This is on the one hand thanks to

the convenient abstraction of “flows”, traffic aggregates defined by
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wildcard rules on header fields, making it possible to formulate data-

plane programs in the mental model familiar from L2/L3 forwarding

tables, firewalls, QoS classifiers, etc. This abstraction, furthermore,

ended up being simple enough to be efficiently implemented in data

plane devices [16]. Correspondingly, the match-action paradigm

has become themajor driver for data-plane programming languages

(OpenFlow 1.1+ [26], P4 [5]), reconfigurable hardware ASICs (RMT

[6]), software switches (OVS [28], ESwitch [24]), programmable ker-

nel datapaths (eBPF/XDP [32]), and network-function virtualization

frameworks (FastClick [2], BESS [13], NetBricks [27]).

Any nontrivial packet processing program may have multiple

semantically equivalent representations in terms of match-action

tables. Certain functionality may be best represented as a single

match-action table, yielding a complex data-plane classifier match-

ing on possibly many header fields simultaneously, while others

may lend themselves to be modularized into a pipeline of succes-

sive tables [7, 12, 16, 23, 24]. Different representations in turn may

have different operational properties, and currently there is very

little understanding as to which representation is optimal for a

particular purpose. In this paper, we take the first steps at studying

the systematic transformations of match-action programs between
single-table and multi-table forms and understanding how choosing

a representation affects the complexity of control-plane–data-plane
interactions and the raw packet-processing performance.

Our main contributions are as follows:

Redundancy in match-action programs. We observe that cer-

tain intrinsic dependencies that may exist between different match

and action fields may introduce considerable redundancy, depend-

ing on the particular representation (single-table or multi-table

pipeline) chosen. This redundancy may then unnecessarily bloat

data-plane footprint and adversely affect the capacity of the control

plane to program and monitor the data plane. While earlier work

hinted at the possibility of “flow state explosion” phenomena to

arise in various match-action program representations [24], to the

best of our knowledge we are the first to uncover the systematic

reasons behind such redundancy (§2).

Normal forms.We categorize the types of dependencies that may

exist in match-action programs and we show certain multi-table

representations that are guaranteed to be irredundant. Borrowing

from relational database theory, we call these irredundant represen-

tations normal forms and we show in real-life use cases that such

normal forms naturally arise in well-known applications. We note

that our normal forms are orthogonal to existing approaches for

minimizing packet classifiers [21, 23] (§3).

Program transformation.We define a formal framework for the

equivalent transformation of match-action programs (decompos-

ing a match-action table into multiple tables and vice versa) and

we give sufficient and necessary conditions for the existence of
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such semantically equivalent decompositions. Our framework pro-

vides the first formal methodology for network programmers to

reason about the redundancy in packet processing programs and

to systematically convert between different representations (§4).

Performance. Finally, we study the implications of match-action

program transformations to data-plane performance. In our pre-

liminary benchmarks conducted on several real programmable

switches, we find that normalization generally allows for more

efficient data-plane programmability and observability, while it

has very small performance impact. We find one particular soft-

ware switch [24], however, where normalization also brings 1.5×

throughput improvement and significant latency reduction (§5). We

summarize our findings in §6.

2 MOTIVATION
Consider the sample cloud access-gateway & load-balancer pipeline
depicted in Fig. 1a, routing different tenants’ services available

on specific public IP address/TCP port combinations to the VMs

running the corresponding workload.

Packets destined to the web service of tenant 1 at IP address

192.0.2.1 and TCP port 80 are handled by one of the first two en-

tries. Packets whose source IP address matches 0.0.0.0/1 are sent

to vm1 (first entry in Fig. 1a, source address prefix is marked in

binary notation) and the rest, matching 128.0.0.0/1, to vm2 (sec-

ond entry), distributing load roughly evenly between the backends.

Similarly, entries 3–5 distribute load for the second tenant’s HTTPS

service at 192.0.2.2 across vm3, vm4, and vm5 in proportion 1:1:2,

while entry 6 simply routes SSH requests for 192.0.2.3 to vm6

without splitting.

Packets are matched successively against the entries (order im-

plies priority), by applying each entry’s wildcard rules (ip_src,
ip_dst, tcp_dst) on the corresponding bits of the packet header

and, once a matching rule is found, the corresponding action (out)
is executed; packets missing all entries are handled by the table’s

default action (drop, send to the controller, etc.). We call such a

single-table pipeline the universal match-action table representation.
Fig. 1b specifies the same functionality, but this time decom-

posed into two stages of match-action tables. Here, the first table

T0 matches only the ip_dst and tcp_dst fields and then directs

execution to per-tenant second-stage tables T1, T2, and T3, which
in turn perform load-balancing for each tenant separately and send

packets to the proper backends. Fig. 1c gives the same pipeline using

opaque metadata tags instead of explicit goto_table instructions
to chain match-action tables, and Fig. 1d shows an alternative de-

composition. We call these multi-table representations the normal
forms of a match-action program (in particular, the second normal

form) for reasons that will be made clear in the next section.

Next, we compare the universal table representation and the

normal form considering various operational aspects.

Controllability. Suppose that tenant 1, identified by the IP ad-

dress/TCP port pair 192.0.2.1:80, wishes to move its service from

unencrypted HTTP (tcp_dst=80) to the more secure HTTPS ver-

sion (tcp_dst=443). In this case, the controller needs to update

both of the two entries that relate to tenant 1 in the universal table

(the first two flows), whereas in the normal form modifying only

one entry is enough to reach the same effect. Similarly, changing

table T0
ip_src ip_dst tcp_dst out

0/1 192.0.2.1 80 vm1

1/1 192.0.2.1 80 vm2

00/2 192.0.2.2 443 vm3

01/2 192.0.2.2 443 vm4

1/1 192.0.2.2 443 vm5

* 192.0.2.3 22 vm6

(a)

table T0
ip_dst tcp_dst goto

192.0.2.1 80 T1
192.0.2.2 443 T2
192.0.2.3 22 T3

↗
→
↘

table T1
ip_src out

0/1 vm1

1/1 vm2

table T2
ip_src out

00/2 vm3

01/2 vm4

1/1 vm5

table T3
ip_src out

* vm6

(b)

table T0
ip_dst tcp_dst wr_meta

192.0.2.1 80 1

192.0.2.2 443 2

192.0.2.3 22 3

↓
table T1
meta ip_src out
1 0/1 vm1

1 1/1 vm2

2 00/2 vm3

2 01/2 vm4

2 1/1 vm5

3 * vm6

(c)

table T0
ip_dst tcp_dst

192.0.2.1 80

192.0.2.2 443

192.0.2.3 22

↓
table T1
ip_dst ip_src out

192.0.2.1 0/1 vm1

192.0.2.1 1/1 vm2

192.0.2.2 00/2 vm3

192.0.2.2 01/2 vm4

192.0.2.2 1/1 vm5

192.0.2.3 * vm6

(d)

Figure 1: Cloud gateway& load-balancer pipeline, ingress di-
rection: (a) universal tableT0 and equivalent decompositions
chainedwith (b) with goto instructions, (c) explicitmetadata
tags, and (d) repeated matches on the ip_dst field (the last
two omitting the goto jumps).

the public IP address would require two updates in the universal

table and if any of these updates gets lost (either because the data-

plane incorrectly implements atomic updates [12, 18] or it does not

support atomic updates at all [13]) then the service may remain

halfway-exposed on the new and the old IP addresses; since the

same functional modification requires only one update in the nor-

mal form, the service is guaranteed to always remain in a consistent

state. In general, we see that the normal form leads to a more re-
active data plane [4, 10, 15], in that the controller can apply more

changes on the normal form than on the universal table with the

same effort (i.e., changing the same number of rule-action pairs).

Monitorability. Suppose now that the task is to monitor the aggre-

gate traffic of tenant 2. This requires the installation of 3 counters

into the universal table (for entries 3–5) and then to add up the

readings in a separate step in the controller; in contrast, the normal

form allows to monitor at a single point as all traffic of tenant 2

flows through the second entry of table T0. In general, observing

and verifying a data-plane program in the normal form requires

less effort than for the single-table representation.

Redundancy. The operational benefits of multi-table representa-

tions trace back to the single reason that the universal representa-
tion encodes the packet-processing functionality in a redundant way,
whereas the normal form has all these redundancies eliminated. In our
example, the fact that “tenant 1 provides its service at 192.0.2.1:80”
is encoded twice in the universal representation while the normal

form uses only a single entry to state this fact, and the IP address/

TCP port association for tenant 3 is stated thrice in the universal

table. The normal form is accordingly smaller; for our example, the

universal table in Fig. 1a contains 24 match-action fields while the
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normalized pipeline in Fig. 1b contains only 21. In general, forN ser-

vices andM backends per service the universal table contains 4MN
fields while the normalized pipeline contains only N (3 + 2M) in the

decomposition of Fig. 1c, which yields roughly half the data-plane

encoding size (i.e., TCAM space [21, 23]) forM large enough.

Performance.Normalization involves the decomposition of amatch-

action program into a hierarchy of modular tables, and thereby it

may lead to substantially reduced throughput and increased latency

due to the larger number of subsequent match-action tables packets

need to be traced through. The general rule of thumb, analogously

to database theory, is to denormalize when performance is critical.
Our measurement studies on 4 programmable switches cast a much

richer performance landscape though, revealing intricate interac-

tions between match-action program representations and packet

classification speed and latency. We defer the discussion of the

measurement results to §5.

3 NORMAL FORMS FOR MATCH-ACTION
PROGRAMS

In order to model pipeline transformations, we adopt the formal-

ism from the NetKAT network programming language [1]. While

NetKAT can be used to reason about network-wide packet pro-

cessing policies in the “one big-switch” abstraction, in this paper

we use the framework in a severely restricted setting to describe

simplified per-switch local policies only. Note further that NetKAT
also defines various constructs called “normal forms”; our use of

the term will be completely different below.

In NetKAT, a packet header is represented as a record of header
fields f1, . . ., fk . A packet processing program contains predicates
to filter packets (e.g., the predicate ip_dst = 192.0.2.1would match

only packets containing the destination IP address 192.0.2.1) and
policies, which may combine predicates and actions (e.g., meta← 2

would modify the abstract metadata field meta to 2, goto(q) would
invoke the NetKAT program q on a packet, out(r ) would schedule

the packet to be forwarded to r , etc.) into complex packet processing

programs. The combination of predicates and actions may occur

using either the sequential composition operator a;b (which applies

first the expression a to the packet and then b to the result) or

the parallel composition operator a + b (which applies a and b
simultaneously). Header fields and actions will be collectively called

attributes.We assume that predicates define exact-match filters only;

see [1] on how to relax this assumption.

Given a match-action program T , our task is to remove redun-

dancy from T by equivalent transformations. We call this process

normalization and the intermediate representations we obtain along

the way will be called normal forms.

First normal form. A match-action program T is in the first nor-

mal form (1NF), if T is a set of entries composed into a table using

the parallel operator, with each entry defined as a set of match

expressions fi = x composed sequentially with a set of actions aj
taken from a fixed attribute set:

T = (f1 = x11; . . . ; fk = x
1k ;a11; . . . ;a1n ) +

(f1 = x21; . . . ; fk = x
2k ;a21; . . . ;a2n ) + . . . (1)

We further require that each entry is uniquely identified by the

match field values xi1, . . ., xik (cf. order-independence [17]). A

match-action program in the first normal form generally corre-

sponds to the “local OpenFlow normal form” from [1] with pri-

orities removed and the “universal table representation” from the

previous sections. The latter name comes from the universal relation
assumption in database theory, which states that any database can

be designed as a single, possibly very wide table [14]. In the context

of packet processing programs, this corresponds to the analogous

assumption that all match-action programs can be equivalently

formulated as a single universal match-action table.

In order to define the second and the third normal forms, we

borrow some further terminology from database theory. A superkey
is a set of attributes that together uniquely identify an entry in T .
Note that we let keys to contain both header fields fi and actions aj ;
for instance, in the universal table in Fig. 1a (ip_src, ip_dst, out)
is a superkey even though out is an action. A key is a minimal

superkey and a non-prime attribute is an attribute that does not

appear in any of the keys; e.g., in the above example (ip_src, ip_dst)
and (out) are (minimal) keys and tcp_dst is a non-prime attribute.

Secondnormal form. The second normal form (2NF) requires that

the pipeline be rid of certain types of redundancy. A key concept

in this context is functional dependencies: given a match-action

program T in 1NF, a set of attributes X in T is said to functionally

determine another set of attributes Y (denoted as X→Y ) if each
X value is associated with precisely one Y value in T [14]. For

instance, in the universal table in Fig. 1a both ip_dst→ tcp_dst
and out→ ip_dst are functional dependencies, but the latter is a
trivial dependency because out is a superkey.

A nontrivial functional dependency in a match-action table T
is a telltale sign of redundancy, since the fact that some x ∈ X
maps uniquely to some y ∈ Y needs to be encoded as many times

in T as x appears in T . Then, a match-action program is in 2NF if
it is in 1NF and there is no functional dependency from any proper
subset of any minimal key to a non-prime attribute [14]. For instance,
our universal table in Fig. 1a is not in 2NF as there is a functional

dependency ip_dst→ tcp_dst where the left-hand side ip_dst is
a subset of the key (ip_src, ip_dst) and the right-hand side is a

non-prime attribute.

In order to remove the redundancy introduced by a functional

dependency, the match-action table needs to be decomposed into

a pipeline of tables. Different programmable data planes expose

different “join” abstractions for the network programmer to com-

pose multi-table pipelines, like the goto_table instruction in Open-

Flow [26], the apply construct in P4 [5], or connecting input/

output gates in BESS [13] or Click [2]. For instance, the decom-

posed pipeline in Fig. 1b uses the goto_table operator; Fig. 1c

chains match-action tables by communicating the tenant identifier

from the first stage table to the second stage in explicit metadata
tags; and Fig. 1d reaches the same end by re-matching the ip_dst
field in the second table. In the sequel we treat all these “join” con-

structs unified under the umbrella of an abstract operation T ≫ S ,
with a slight abuse of the notation for the analogous high-level

sequential composition operator from Pyretic [29].

Exactly how to obtain such a decomposition is not important

for the moment (an initial theoretical framework will be revealed

in the next section), for now it is enough to know that, given a

non-trivial functional dependency, there is a systematic way to

decompose a universal table irrespective of the “join” abstraction



CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Felicián Németh, Marco Chiesa, and Gábor Rétvári

table T0
eth_type ip_dst mod_ttl mod_smac mod_dmac out

0x800 P1 1 SA D1 A
0x800 P2 1 SA D2 A
0x800 P3 1 SB D3 B
0x800 P4 1 SA D1 A

(a)

table T0
eth_type ip_dst group

0x800 P1 1

0x800 P2 2

0x800 P3 3

0x800 P4 1

→

table T1
group mod_ttl mod_smac mod_dmac out
1 1 SA D1 A
2 1 SA D2 A
3 1 SB D3 B

(b)

table T0
eth_type mod_ttl

0x800 1

→

table T1
ip_dst group
P1 1

P2 2

P3 3

P4 1

↓
table T2
group mod_dmac out wr_meta
1 D1 A MA
2 D2 A MA
3 D3 B MB

→

table T3
meta mod_smac
MA SA
MB SB

(c)

Figure 2: An L3 forwarding pipeline: (a) “universal” tableT0, (b) equivalent two-stage decompositionT0≫T1 violating 3NF; and
(c) equivalent pipeline T0 ×T1 ≫T2 ≫T3 in 3NF.

used by the underlying data plane so that the decomposed pipelines

will encode equivalent semantics. Furthermore, herein we leave the

intriguing question of how functional dependencies are defined, and

known during decomposition, for further study; we merely note

that dependencies may exist inherently encoded into the high-level

data plane model (e.g., in our example the functional dependency

ip_dst→ tcp_dst is an intrinsic consequence of the way the access
gateway service is defined) or they may be transient data-level

dependencies that may happen in a given ephemeral data-plane

configuration but may easily disappear during the next update.

Third normal form. Consider the sample L3 pipeline in Fig. 2a.

The match fields {eth_type, ip_dst} check the protocol version

and match on the (disjoint) prefixes P1–P4, while the action at-

tributes {mod_ttl,mod_smac,mod_dmac, out} encode standard
IP packet processing actions: decrement the TTL field, rewrite the

source and the destination MAC addresses, and forward on some

port. This single-table representation is often chosen in IP router

ASICs due to its simplicity (minus the matching on eth_type that

happens separately); see, e.g., [16, Section 2: L2L3 use case].

Observe that (ip_dst) is a minimal key for the L3 pipeline and all

other attributes are non-prime. Further note that multiple prefixes

may map to the same next-hop with the same MAC address (e.g.,

P1 and P4 to D1). This gives rise to the functional dependency

mod_dmac → (mod_ttl, mod_smac, out). Therefore, our L3
pipeline violates 2NF. Decomposition along this functional depen-

dency over the metadata-based join semantics yields the pipeline

in Fig. 2b, where packet processing actions with respect to each

unique next-hop are encoded in a separate second-stage table. It

is noteworthy how this decomposition reproduces the group-table

abstraction in OpenFlow [26] and Broadcom’ OF-DPA switches [9],

or the neighbor-table in OS IP stacks [30].

Nevertheless, there remains further redundancy: groups that use

the same outgoing port map to the same source MAC (e.g., group

1 and 2), yielding the functional dependency out→mod_smac.
None of these attributes belongs to a minimal key, thusly the

pipeline may be in 2NF. Yet, it violates the stronger notion of 3NF,
which rules out transitive functional dependencies between non-prime
attributes.

The pipeline in Fig. 2c has this dependency eliminated, and

hence satisfies the requirements of 3NF. Note that we organized

the eth_type and mod_ttl attributes into a separate tableT0; since

these attributes take the same value for each entry the join with T0
simplifies into a Cartesian product, yielding the pipeline T0 ×T1 ≫
T2≫T3. This example also demonstrates that while the≫ operation

is not commutative this Cartesian product × is (we could as well

append T0 at the end of the pipeline or anywhere in between) and,

accordingly, that normal forms may not be unique.

Although relational database theory defines further useful nor-

mal forms (e.g., the Boyce–Codd normal form requires all functional
dependencies to be removed), we stop at 3NF as we find this notion

to capture most practical cases. The interested reader is referred

to the Appendix for a discussion of an industrial use case for our

normalization framework that goes beyond 3NF.

4 EQUIVALENT TRANSFORMATIONS
One of the postulates of relational database theory is that the de-

composition of a relation RXYZ with attributes XYZ into relations

RXY Z RXZ is lossless if and only if X→Y is a functional depen-

dency (Heath’s theorem, [14]). This theorem then marks functional-

dependencies as the main driver for the normalization of match-

action programs, where the fact that Y depends on X is stated in

a separate match-action table TXY , chained before another table

TXZ that specifies the rest of the pipeline logics: TXY ≫TXZ .

Next, we cast the decompositionTXY ≫TXZ using the metadata-

based join abstraction (see Fig. 1c and Fig. 2 for examples). We may

introduce a new “write-metadata” action AX into TXY and a new

metadata match-fieldMX into TXZ to communicate match results

for X from one table to another, which yields the NetKAT policy

(TXYAX ;TMXZ ). Another alternative to implement TXY ≫ TXZ
would be to simply re-match onX in the second table (as per Fig. 1d):

(TXY ;TXZ ). This may result in larger data-plane footprint though,

since X may involve matching on multiple header fields. Finally,

the goto_table abstraction may also be used to encodeTXY ≫TXZ
(see Fig. 1b); this join abstraction results the smallest aggregate

space in general. Exactly which join abstraction to use is highly

implementation specific; certain switches will work best with the

metadata-based join, others may have limited support for metadata-

based matches and hence will use the goto or the “rematching”

strategy, while there are switches that are completely agnostic to

normalization (see the next section for some initial benchmarks).

First, we consider decomposition along a functional dependency

X→Y for the case when the attribute sets X and Y contain header
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fields exclusively. For instance, the functional dependency ip_dst
→ tcp_dst of Fig. 1 is of this type. The below result states that,

with this assumption, decomposition along a functional dependency

generates a semantically equivalent match-action program.

Theorem 1. Let T be a match-action program in 1NF over the
attributes XYZ and suppose that T contains a functional dependency
X→Y where X and Y are header fields. Then, the decomposition
TXY ≫TXZ is equivalent to T .

Proof. LetT be a match-action program in 1NFwith the disjoint

attribute set {X ,Y ,Z }, where X and Y are header fields. Suppose

there is dependency X→Y , denoted by the function D: X 7→ Y .
Using the NetKAT axiom BA-Seq-Comm from [1], Eq. (1) can be

rearranged as T =

∑
i xi ;yi ; zi , where xi and yi are predicates and

zi are policies for each i . Then, further applying the NetKAT axioms

we write:

T =

∑
i
xi ;yi ; zi

=

∑
i
xi ;D(xi ); zi (by X→Y )

=

∑
i
xi ;xi ;D(xi ); zi (by BA-Seq-Idem)

=

∑
i
xi ;D(xi );xi ; zi (by BA-Seq-Comm)

=

∑
i

(
xi ;

( ∑
j :xi=x j

D(x j )

)
;xi ; zi

)
(by KA-Plus-Idem)

=

∑
i

(( ∑
j :xi=x j

xi ;D(x j )

)
;xi ; zi

)
(by KA-Seq-Dist-L)

=

∑
i

((∑
j
xi ;x j ;D(x j )

)
;xi ; zi

)
(by BA-Contra and KA-Plus-Zero)

=

∑
i

(
xi ;

(∑
j
x j ;D(x j )

)
;xi ; zi

)
(by KA-Seq-Dist-L)

=

∑
i

((∑
j
x j ;D(x j )

)
;xi ;xi ; zi

)
(by BA-Seq-Comm)

=

∑
i

(∑
j
x j ;D(x j )

)
xi ; zi (by KA-Plus-Zero)

=

(∑
j
x j ;D(x j )

)
;

(∑
i
xi ; zi

)
(by KA-Seq-Dist-L)

= TXY ≫TXZ . (by Eq. (1)) □

Similar ideas may be used to extend the theory to the cases when

X→Y maps predicates to actions or actions to actions. Certain

cases, however, require special caution. Consider the universal table

in Fig. 3a and the decomposition in Fig. 3b along a functional depen-

dency output→ vlan (using the metadata-based join abstraction)

where the left-hand side is an action and the right-hand size in a

match field. In this decomposition, the first table violates the 1NF

“order-independence” assumption as the first two entries both con-

tain the same match predicate (in_port=1). Consequently, a packet
with in_port=1 would match two entries, a fact that we cannot

table T0
in_port vlan out

1 1 1

1 2 2

2 1 1

3 1 3

(a)

table T1
in_port Aout

1 1

1 2

2 1

3 3

→

table T2
Mout vlan out
1 1 1

2 2 2

3 1 3

(b)

Figure 3: Decomposition on the functional dependency
output→ vlan may not yield sub-tables in 1NF: (a) univer-
sal table T0, (b) incorrect two-stage decomposition T1 ≫ T2
where T1 is not in 1NF.

communicate across match-action tables using our join abstractions

(see [31] for concurrent joins).

This observation leads us to conclude that the area of match-

action table normalization is richer than relational database nor-

malization theory: a naïve decomposition along certain type of

functional dependencies, namely dependencies X→Y where X
contains actions and Y includes predicates, does not result 1NF

sub-tables, despite that relational database theory would suggest

so. Such “action-to-match” dependencies are somewhat artificial

though, as the whole point in a match-action program is to asso-

ciate actions with matches, that is, to describe a “match-to-action”

dependency. This discussion suggests that, using the ideas above,

one could equivalently normalize any 1NF match-action program

all the way into 3NF analogously to how relational database theory

would postulate; uncovering the precise formal relations with data-

base normalization and a mathematical proof are, however, beyond

the space limits of this paper.

5 EVALUATION
Next, we analyze the data-plane impacts of normalization. For this,

we implemented the gateway & load-balancer pipeline from Fig. 1

with the universal table and the decomposed pipelines in 3 pop-

ular programmable software switches, Open vSwitch (OVS, [28]),

ESwitch [24], and Lagopus [19], and a hardware NoviFlow 2128

OpenFlow switch [25] with 28x10Gbps ports. We measured the raw

performance (packet rate and latency) with traffic of 64 byte-long

packets, 20 random services, and 8 backends per service, using an

open-source data-plane measurement framework [20, 33]
1
.

Reactiveness. First, we checked whether normalization indeed

results in more reactive pipelines. Recall, we observed in §2 that

updating a normalized pipeline needs to touch fewer table entries

than updating the universal pipeline. Our measurements with the

NoviFlow switch clearly reproduced this premise: compared to the

nominal case (no updates) atomically updating a random service port
100 times per second in the universal table results in 20× throughput
loss, whereas no performance drop is visible for the normalized pipeline
(see Fig. 4). The reason is the 8× greater control plane churn in the

universal representation compared to the normalized one, which

takes a toll on forwarding speed. Meanwhile, we see minor latency

increase for normalization (roughly 25%), mostly independently

from the control plane churn. Note that operational switches may

experience similar, or larger, control plane churn during update

bursts [8].

1
The configuration for each of the evaluations can be found at https://github.com/

hsnlab/tipsy/tree/master/module/gwlb.
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Figure 4: Reactiveness on the gateway & load-balancer
pipeline, Noviflow switch: universal table and normalized
representation using goto_table based join.

Table 1: Static performance on the gateway & load-balancer
pipeline with the universal table (Fig. 1a) and the normal-
ized pipelines using goto_table based join (Fig. 1b). Packet
rate is specified in [Mpps] and delay is specified as the 3

rd

quartiles latency [µs].
OVS ESwitch Lagopus Noviflow

Rate Delay Rate Delay Rate Delay Rate Delay

universal 4.7 426 9.6 426 1.4 731 10.73 6.4

goto 4.8 422 15.0 247 1.4 728 10.74 8.4

Static performance. The nominal performance results (no run-

time updates) are given in Table 1.

First, we see that Lagopus and OVS are agnostic to normaliza-

tion. For OVS, the reason is that the datapath collapses OpenFlow

tables into a single flow cache [28]; in other words, OVS explicitly

denormalizes the pipeline prior to encoding it into the datapath.

The NoviFlow switch produces line-rate throughput irrespectively

of the particular representation, with a slight latency impact due to

the longer pipeline.

For ESwitch, however, we see completely different results: using

the goto_table join on the normal form improves raw through-

out by more than 50% and, at the same time, latency halves. This

stems from the datapath architecture of ESwitch, which carefully

instantiates each match-action table with the most efficient packet

classifier template possible. The universal table can be encoded

only with the slowest wildcard matching template, leading to poor

performance and large delay. In the decomposed pipeline, however,

the first table will be compiled to the very fast exact-match tem-

plate and the second table to an efficient longest-prefix-matching

template, resulting in substantial throughput boost and significant

latency reduction. In general, decomposition usually yields much
simpler match-action sub-tables (less fields, simpler match-type),

which is expected to transform into improved performance on a data

plane device that can dynamically optimize the datapath to the

given pipeline representation.

6 CONCLUSIONS
In this paper, we presented a formal framework for the equiva-

lent transformation of match-action programs between single-table

and multi-table representations. We showed that match-action pro-

grams can be normalized into a form that is guaranteed to be free

from certain type of redundancies, which we described using the

notion of functional dependencies. We argued that these irredun-

dant normal forms simplify the control-plane–data-plane interface,

which transforms into substantial performance boost when control

plane churn is of concern. On the other hand, the denormalized

form may be more efficient on static workloads, since it generally

results smaller latency. We found, however, that on switches that

can dynamically optimize the data-plane to the pipeline representa-

tion (ESwitch) normalization may result considerable performance

boost.

We have stopped redundancy-elimination at the third normal

form. Database theory, however, recognizes several normal forms

that go beyond 3NF by removing so calledmulti-valued dependencies
from relations. Understanding the landscape beyond 3NF in match-

action programs is currently a compelling open research problem;

the Appendix shows an interesting industrial use case for such

future research.
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APPENDIX
BEYOND THE THIRD NORMAL FORM
A match-action pipeline may often contain redundancy beyond

what normal forms can capture. We take the example of Software-

Defined Internet eXchange (SDX) as an example [10, 11]. A simpli-

fied SDX interconnects a set of member networks that exchange

traffic according to their configured routing policies. In the example

of Fig. 5, one IXP member A receives routes for two IP prefixes P1
and P2 from members C and D, where C only announces P1 while
D announces both prefixes. AS A specifies its outbound policy as

preferringC overD for HTTP traffic for IP prefixes that are actually

announced by C (i.e., P1 only). AS C specifies its inbound policy
as balancing ingress load across its two edge routers C1 and C2.

The rest of the traffic follows BGP ranking where we assume D is

preferred over C .
The original SDX controller would collapse all policies into a

single universal match-action tableT (see Fig. 5a).
2
One could try to

normalize T into 3 tables Tan , Tout , and Tin for the announcement,

2
For simplicity, we do not model Forwarding Equivalence Classes.

table T
in ip ip tcp outputport src dst dst
A 0/1 P1 80 C1

A 1/1 P1 80 C2

∗ ∗ P1 ∗ D
∗ ∗ P2 ∗ D

(a)

tab. Tan
ip Ndst
P1 C
P1 D
P2 D

�

table Tout

N in tcp Mport dst
C A 80 C
D ∗ ∗ D

�

table Tin

N ip outsrc
C 0/1 C1

C 1/1 C2

D ∗ D

(b)

table Tan
ip_dst all best
P1 {C , D } D
P2 {D } D

�

table Tout
in_port x ∈ all tcp_dst N

A C 80 C
∗ ∗ ∗ best

�

table Tin
N ip_src out
C 0/1 C1

C 1/1 C2

D ∗ D

(c)

Figure 5: (a) Q simplified universal SDX table, (b) the individ-
ual tables, and (c) the metadata-based pipeline.

outbound, and inbound policies, so that their join would produce

the original table (see Fig. 5b):

T = Tan ≫
an .N =out .N

Tout ≫
out .M=in .M

Tin .

This decomposition belongs to the fourth and the fifth normal
forms as it cannot be derived from functional dependencies alone.

The resultant pipeline Tann ≫ Tout ≫ Tin would however be in-

correct as Tin is not order-independent, i.e., a packet to P1 has to
choose between the 1

st
and 2

nd
entries without any knowledge

whether the outbound policy in the next stage will be matched or

not.

One way to communicate multiple matches across consecutive

tables would be to encode the multiple match results into a meta-

data/header field and then let the next table match on this field, as

shown in Fig. 5c where all is the extra field added in the pipeline.

This is also the solution proposed in [10], which has been cleverly

generalized in [22], and begs for a systematic approach to fully

characterize its intrinsics.


